HYPER2D: a numerical code for
hyperinterpolation at Xu points
on rectangles®

Marco Caliari, Marco Vianello
Dept. of Pure and Applied Mathematics
University of Padova

Stefano De Marchi, Roberto Montagna
Dept. of Computer Science
University of Verona

Abstract

Hyperinterpolation at Xu cubature points for the product Cheby-
shev measure provides a simple and powerful polynomial approxima-
tion formula in the uniform norm on rectangles. Here, we present an
accurate and efficient Matlab/Octave implementation of the hyperin-
terpolation formula, accompanied by several numerical tests.

Keywords: Bivariate hyperinterpolation, Xu points, Lebesgue constant.

AMS Subject classification: 65D05, 65D15, 656D32.

1 Introduction

Hyperinterpolation of multivariate continuous functions on compact subsets
or manifolds, originally introduced by L.H. Sloan in [15], is a discretized
orthogonal projection on polynomial subspaces, which provides an approx-
imation method more general (in some sense) than interpolation. Its main

*Work supported by the ex-60% funds of the Universities of Padova and Verona, and
by the GNCS-INdAM.

success up to now, has been given by the application to polynomial approx-
imation on the sphere; see, e.g., [10, 13].

Indeed, in order to become an efficient approximation tool in the uniform
norm, hyperinterpolation needs a “good” cubature formula (i.e., positive
weights and high algebraic degree of exactness), together with “slow” increase
of the Lebesgue constant (the operator norm). The importance of these
basic features can be understood by summarizing briefly the structure of
hyperinterpolation.

Let Q C R? be a compact subset (or lower dimensional manifold), and 1
a positive measure such that p(2) =1 (i.e., a normalized positive and finite
measure on €2). For every function f € C(€) the u-orthogonal projection of
f on TI¢ (the subspace of d-variate polynomials of degree < n) can be written
as

5./ () = / Ko(@,y)f(y) du(y) with Sep=plorpe I, (1)

where @ = (21, %2, ---,%4), Y = (Y1, Y2, - - -, Ya), and the so-called reproducing
kernel K, is defined by

Kn(x,y) =)) Pa(@)Paly), o= (o, 0as...,04) (2)

k=0 |a|=k

the set of polynomials {P,, |a| =a; + ...+ ag =k, 0 <k < n} being any
p-orthonormal basis of T1¢, with P, of total degree |«; cf. [8, §3.5].

Now, given a cubature formula for y with N = N(n) nodes &€ € = C Q,
€ = (&, &,...,&), and positive weights {we }, which is exact for polynomials
of degree < 2n,

/Q p(x)dp =" wep(€), Vp e, | 3)

gcE
we obtain from (1) the polynomial approximation of degree n
f@)~ Lof(x) = wekKy(x,€) f(€) . (4)
éee

It is known that necessarily N > dim(II¢), and that (4) is a polynomial
interpolation at = whenever the equality holds; cf. [15, 10].
The hyperinterpolation error in the uniform norm, due to exactness on

[1¢ . can be easily estimated as

2n»

I = Lafllee < (U4 An) Balf), An = L] = ma {;we |Kn(w,5>|} ,
5)

where A, is the operator norm of L, : (C(Q),] - lleo) = TE(2),] - [lso)s
usually termed the “Lebesgue constant” in the interpolation framework.

The aim of this paper is to provide an efficient implementation of hy-
perinterpolation in dimension d = 2 on rectangles, based on cubature at Xu
points [16, 6]. In section 2, we discuss a Matlab-like implementation of hy-
perinterpolation at Xu points. The corresponding Matlab/Octave functions
are displayed and described in section 3. In section 4 we state a conjecture
on the asymptotics of the Lebesgue constant, based on a wide set of numer-
ical experiments. Finally, we provide the numerical results corresponding to
hyperinterpolation of several test functions.

2 Hyperinterpolation at Xu points

In the paper [16], Y. Xu introduced a set of Chebyshev-like points in the

square € = [—1,1]?, which generate a (near) minimal degree cubature for
the normalized product Chebyshev measure,
1 dz1d
dy D107 Q=[-1,1]2. (6)

RV e

For even degrees, such points and the corresponding minimal cubature ap-
peared already in [12]. In addition, Xu proved that these points are also
suitable for constructive polynomial interpolation, in a polynomial subspace
Vi, II2_, C V, C II2. Interpolation at the Xu points, recently studied thor-
oughly in [2, 3, 4], turned out to be a good approximation method in the
uniform norm. In particular, its Lebesgue constant is O(log” n), n being the
degree, i.e. the polynomial approximation is “near-optimal” (cf. [5]).

Hyperinterpolation at the Xu points, even though is not interpolant,
shares the same good computational features of Xu-like interpolation, as
it has been recently shown in [6]. In particular, hyperinterpolation (of degrre
n) and interpolation (of degree n + 1) at the same set of Xu points exhibit
very close errors. Here we describe an efficient Matlab-like implementation
of the hyperinterpolation formula on rectangles.

Consider the n 4+ 2 Chebyshev-Lobatto points on the interval [—1, 1]

2k = Zkpt1 = COS k=0,....n+1. (7)

n+1’

The Xu points on the square €) for cubature with exactness degree 2n + 1,
are defined as the two dimensional Chebyshev-like set

E=AUB, card(E) = N,

where

e case nodd, n=2m —1

Aoda = { (22, 22j+1), 0< 1< m, 0<j<m-—1}
Bodd = {(z2i+1,22), 0<i<m—1, 0<j<m}

(8)

with N = (n+1)(n + 3)/2. These points generate a minimal cubature
formula, that is

[@) =3 wene), Vo B,, . Q
Q ez
where the weights are simply wg = (n+1) 2 for £ € 2NN (boundary
points), wg = 2(n +1) 2 for £ € 2N 0 (interior points); cf. [12, 16].

e case n even, n = 2m

Aeven :{(ZQZVZQJ); OSZSm: OS] Sm}

10
Beven = {(22i+laz2j+1)7 0 S { S m, 0 S] S m} ()

with N = (n + 2)?/2. The weights for the corresponding near minimal
cubature formula are wg = (n+1)72/2 for € = (1,1) and &€ = (-1, -1)
(corner points), wg = (n + 1)~2 for the other boundary points and
we = 2(n + 1)72 for the interior points.

Hence, in view of (3) we can construct the hyperinterpolation formula (4),
which is not interpolant, since in both cases

N > v = dim(I2) = F 1)2(” +2) (1)

The polynomial approximation (4) can be rewritten as

n

Lnf(x) = Z Z calPo(T), co= ngf(f)Pa(ﬁ) (12)

k=0 |a|=k ge=

where the coefficients ¢, can be computed once and for all. Now, take the
pu-orthonormal basis

{FPalx) = Tj(21)Th—j(22), = (j,k—j), 0<j<k<n} (13)

where 7 is the normalized Chebyshev polynomial of degree j (that is Tp(-) =
1, T;(-) = /2 cos(j arccos(-))). In order to implement efficiently the hyperin-
terpolation formula (12) in Matlab/Octave, it has to be rewritten in a matrix
formulation, avoiding iteration loops. Consider the matrices

D(E, f) = diag ([wef(€), €= (&,&) € E]) e RV, (14)

4

To(&:)
T(’L) (E) _ ‘ 1(6) ‘ c R(H-FI)XN’ Z — 1, 2’ (15)
N Tn(é-z) ,
i ¢e=]
and _ -
big bio b1n+1
boy bao ban 0
BB, f)=| : i o i | eROEXEED (16
bpi bpp 0 - 0
bpprs 0 - 00
which is the upper-left triangular part of
_ — - —\/
(bi5) = BE) =TW(E)DE, f) (TP (®)) (17)

(where the ' symbol denotes the transposition), that is the coefficients {c,}
n (12). Then, (12) becomes

Lof(x) = [To(z1) Ti(z1) -+ Ta(z1)] Bo(E, f) |- (18
Tn(l‘g)

Given a set X C (of target points with cardinality M, we compute

To(x;)
TO(X) = 1(_) e RvHxM -y —q 9 (19)

L zeX .

and then

Lf(X)= |- Luf(z) | =diag (TO(X) B(E, /) TO (X))

-~

zeX

(20)
Notice that the meaning of the keyword “diag” is different in (14) and (20)
(as it is in Matlab/Octave): in (14) it represents a diagonal matrix with the

5

specified diagonal, whereas in (20) it represents the diagonal (as a column
vector) of the specified matrix.

Clearly, we can immediately extend the hyperinterpolation formula to a
function f defined on a generic rectangle [a, b] x [c, d], via the affine mapping

o:[-1,1]* = [a,b] x [c,d],

b—a b+ a d—c d+c
t t1,t0) = t . 21
5 1+ 5 , 09(t1,12) 5 2 + 7 (21)

Indeed, for a set of target points X C [a,b] X [c, d], we have simply

o1(t1, 1) =

L, f(X) = diag (T (@}(X))' Bo(Z. fo o) TO(7 (X)) . (22)

Remark 1 The representation (12) of the hyperinterpolation polynomial is
particularly suitable for a Matlab-like implementation as (14)—(22), since it
allows to easily avoid bottlenecks like recurrences and iterations loops, via
predefined matrix functions. Moreover, for evaluation at a large number of
points, it compares favourably with other implementations. First, we observe
that a simple analysis of the hyperinterpolation algorithm gives the following
complexity estimates for construction (excluding evaluation of the function
f at the Xu points), and evaluation at M target points:

e construction: cost of (15) 4 cost of (17) &~ 2¢ynN +2vN flops
e evaluation: cost of (19) + cost of (20) ~ 2¢rnM +2vM flops,

where N is the number of Xu cubature points, v = dim(I12), and cr denotes
the average evaluation cost of a single Chebyshev polynomial via its trigono-
metric representation. Notice that N ~ n?/2 = v, already for moderate
values of the degree n (cf. (8), (10) and (11)).

The hyperinterpolation polynomial can also be computed via (4), by using
the compact trigonometric formula for the reproducing kernel obtained by
Xu (cf. [16]) and adopted in the Fortran implementation of [6]. In practice,
such a formula is severely ill-conditioned and has to be stabilized, as shown
in [2]. After stabilization, for degrees up to the hundreds its final pointwise
evaluation complexity (excluding evaluation of f at the Xu points) is of the
order of 24cg, N flops, that is linear in the number of Xu points. Here cg,
denotes the average cost of the sine function. Thus the implementation (14)-
(22) in terms of flops is more convenient than the stabilized Xu formula on
a large number of evaluation points, say M > N, since 2v < 24cg, N. This
happens in many applications, like quality plotting or data compression (see,

e.g., [3])-

It is also worth noticing, however, that in practice, due to internal Mat-
lab/Octave optimizations of matrix operations, for M > N the bulk is given
by the computation of (19), and thus the CPU times turn out to increase
linearly instead of quadratically in the degree (see the numerical tables in
the last section). In these cases, our present implementation is still more
convenient than that based on the stabilized Xu formula for the reproducing
kernel, since 2crn < 24cg, N already for relatively small values of n.

Remark 2 The implementation (14)—(22) could be easily extended to the
construction and evaluation of the Lagrange interpolation polynomial at the
Xu points. The interpolation formula, however, involves two sums like (4),
one with K, and another with K, ., see [16]. Even if optimized, the re-
sulting algorithm is more expensive than that for hyperinterpolation. Since
hyperinterpolation errors are very close to interpolation errors (see [6]), the
former should be preferred as an approximation tool whenever the interpo-
lation property is not a strict requirement.

Remark 3 We discuss here the construction of a practical a posteriori error
estimate, that could be useful in several applications of hyperinterpolation.
Going back to the meaning of hyperinterpolation as a discretized truncated
Fourier series (u-orthogonal projection on I12), i.e. to the fact that L, f(z) ~
Spf(zx), since {c,} are the Fourier coefficients discretized by cubature at Xu
points, we can write the following chain of estimates

1f = Laflloo = If = Snfllec <2 Z > / y)f(y) du(y)

k=n—2|a|=k

[Pty)du(‘ 23 Ylel, (29

k=n-2|a|=k

25303
k=n—-2|a|=k
where the bound |P,(z)| < 2 has been used (cf. (13)). The passage from the
first to the second row in (23) is somehow empirical, but similar to popular
error estimates for one-dimensional Chebyshev series, based on the last two
or three coefficients (cf., e.g., [1]). In fact, here we use just the coefficients
corresponding to the last three values of k£, namely £k =n —2,n — 1,n. The
practical behavior of (23) has been satisfactory in almost all our numerical
tests; see the last section.

3 Matlab/Octave code

Here we report the Matlab/Octave code of the main functions for the hyper-
interpolation on rectangles. A Matlab/Octave interface based on this code

7

can be downloaded from [7].
The function hypcoeffs (Table 1) builds the matrix By(Z, foo) in (22),
via the mapping o in (21).

Table 1: Function hypcoeffs

function [BO]=hypcoeffs(n,a,b,c,d)
[xil,xi2,wxi]=xupts(n+1)

Txil=T(n,xil);

Txi2=T(n,xi2);

fxi=f (((b-a)*xil+(b+a)) /2, ((d-c)*xi2+(d+c))/2)));
BO=Txil.*repmat (wxi.*fxi,n+1,1)*Txi2’;
BO=fliplr(triu(f1liplr(B0)));

Table 2: Function xupts

function [xil,xi2,wxi]=xupts(n)

if (mod(n,2)==0)
m=n/2;
xil=repmat(z(2:2:n),1,m+1);
wxi=[ones(1,m) repmat(2*ones(l,m),1,m-1) ones(l,m)];
xil=[xil reshape(repmat(z(1:2:n+1),m,1),1,mkx(m+1))];
wxi=[wxi ones(1,m) 2*ones(l,m*x(m-1)) ones(1,m)];
xi2=x11([m* (m+1)+1:2%m* (m+1) ,1:mx(m+1)]) ;

else
m=(n-1)/2;
xil=repmat(z(1:2:n),1,m+1);
wxi=[0.5 ones(1,m) repmat([1 2%ones(l,m)],1,m)];
xil=[xil reshape(repmat(z(n+1:-2:2) ,m+1,1),1,(m+1)"2)];
wxi=[wxi 0.5 ones(1,m) repmat([1 2%ones(1,m)],1,m)];
xi2=-xi1([(m+1) "2+1:2%(m+1)~2,1: (m+1)"2]);

end

wxi=wxi/n~2;

The function xupts (Table 2) called in hypcoeffs provides the Xu points
and weights for cubature of exactness degree 2n — 1 (corresponding to the
subspace V,, of n-degree polynomials, cf. [16]) without using iteration loops,
via the Matlab/Octave functions repmat and reshape. Clearly, in order to
hyperinterpolate at degree n, it has to be called with the input argument set
to n + 1, since exactness degree at least 2n is needed.

8

The function hypval (Table 3) computes the vector L, f(X) in (22) via
the inverse mapping o~!. Notice that it computes the diagonal of the matrix
specified in (22) without performing the two whole matrix products.

Table 3: Function hypval

function [Lnfx]=hypval(BO,n,a,b,c,d,x1,x2)
Tx1=T(n, (2xx1-(b+a))/(b-a));

Tx2=T(n, (2*¥x2-(d+c))/(d-c));
Lnfx=sum((Tx1’*B0) .*Tx2’,2)’;

The function T (Table 4), called by hypcoeffs and hypval, computes
the normalized Chebyshev polynomials arrays T in (15). Notice that, due
to roundoff errors, the input s of T, when called by hypval, could lie out of
[—1,1], and in these cases is set to the nearest endpoint.

Table 4: Function T

function t=T(n,s)
t=cos([0:n]’*acos(max(min(s,1),-1));
t(2:n+1, :)=sqrt(2)*t(2:n+1,:);

4 Numerical tests

Hyperinterpolation of degree n at the Xu points possesses two important
features, that make it a good approximation tool in the uniform norm, for
functions that can be sampled without restrictions on rectangles.

The first is that its Lebesgue constant increases very slowly, as that of
near-optimal interpolation points on the square (cf. [4, 5]). Indeed, as proved
in [6], it can be rigorously bounded by

2
A, <8A2+54,+3, A,=—=log(n+1)+5. (24)
m
However, the factor 8 in (24) is an overestimate. Indeed, a wide set of

numerical experiments on the maximization of the Lebesgue function up to
degree n = 1000 (not reported for brevity), lead to the following

e conjecture: A, < B, ~c(2 logn)2 , with ¢< 2.

In addition, with the implementation (14)—(20) the average pointwise
complexity over a large number of target points, say M > N points, is of
the order of 2v ~ n? flops (see Remark 1), that is linear in the dimension of
the polynomial space and quadratic in the degree.

In this section we show the hyperinterpolation errors in the max-norm
normalized to the max deviation of the function from its mean, at a sequence
of degrees, n = 10, 20, ..., 60, on a well-known test functions suite by Franke-
Renka (cf. [9, 14]). These ten functions, termed F1, ..., F10, are plotted in
the figures below. The corresponding “true” errors, reported in Tables (5)-
(6), have been computed on a 100 x 100 uniform control grid. In the tables
we report also (in parenthesis) the a posteriori empirical error estimate given
by the last term of (23), normalized as above.

The last four functions, proposed by Renka in [14], are considered more
challenging for the testing of interpolation methods at scattered points, due
to their multiple features and abrupt transitions. Here, we can see in Tables
(5)—(6) that only F10, and much less severely F2, are really “difficult” for
hyperinterpolation at Xu points. In all the other cases the approximation
behavior of the hyperinterpolation polynomial is quite satisfactory. With the
smoothest functions, like F4 and F6, the error stabilizes rapidly around ma-
chine precision. It is interesting to observe that with the oscillating function
F7(z1,25) = 2cos (10z1) sin(10z3) + sin(10z1z5), the error starts decaying
rapidly as soon as the degree n allows to recover the oscillations. On the
other hand, the troubles with F10 are natural, since it has a gradient dis-
continuity in the center of the square, whereas the Xu points cluster at the
boundary.

As for the empirical error estimates, we can see that they tend to over-
estimate in almost all the cases, except for F2 and F10, where they under-
estimate the true errors. The worst overestimate arises with F4 for n = 20
(estimate/error s 158), whereas the worst underestimate concerns the less
smooth test function F10 for n = 60 (estimate/error ~ 0.18). In general,
we can consider the behavior of the (normalized) a posteriori estimate (23)
satisfactory enough, even though this topic needs further investigations.

We stress that hyperinterpolation at Xu points is very stable. Indeed,
we could hyperinterpolate at much higher degrees without drawbacks. For
example, we can take n = 300 (N = 45602 Xu points), obtaining an error of
3.6 1072 for the test function F2.

Finally, in Table 7 we report the CPU times for construction and evalu-
ation of the hyperinterpolation polynomial at the M = 10000 target points
belonging to the control grid. The tests have been performed with Matlab
6.5 on a AMD Athlon 2800+ processor machine. As expected from the com-
plexity analysis in Remark 1 since M > N, the evaluation time is clearly

10

F1 F2

)
)
%

4

7

7
7

7

7
_

_

NN
025 N\
%% 02 SN \
z - NN
%! SRR
455 LN
o o1 NN
o =258 RTINS
e Eeesss 01 LR
%55 eesune! LR
e seesse NIRRT
ot iester 005 \$$§§\\f\“§§gs
Z22e%es fseee NS
e S 0 NN
Eesecesn == NN
Zessee NS
— Nt
== NS

0.4 7
7L

035 50 035
% £ 03 s
025 KK 025 P
02 | S 02 Y i
0.15 K0 : e e SN
o1 s oss 2S5y

= S 041 i et e NI
0.05 S S SIS g g 2t IS S S S SN RN

S IS SIS a0 2 20 2 S S AN S S T R
o SIS 0.05 et 0 et NI SRR
SEESSSSISSSSOSSSS o a0 et g e e S e S S S
I S SIS 070020 a %000 % %0 % %0 S S e S Se SN AT NI IRN S
== IS
== 555555 555
< == 355
0 S
;
1
1
1 0 0 "0

0.35 e
03 i
o s oS SS e RS SIS N
025 s i
e e e T NN
0.2 o sssssiaoaoaaa
Rk
015 7 S
e e I RN
o1 [RN
o2 2050 50% 0 el e s e
0.05 120200052040 30303s 8303 e84 S
RIERIRIIIIRNSS
0 10000020205 500
GRS

XSS, SSus
=
S

oo Ts 00t % %
= e

Figure 1: Franke’s test functions.

dominant. It is worth noticing that the increase of the evaluation (and of
the total) CPU time is linear in the degree, and not quadratic as expected
from the flops estimates. This can be ascribed to the fact that, due to in-
ternal Matlab/Octave optimizations of matrix operations (see, e.g., [11]),
the dominant execution time is given by the computation of the Chebyshev
polynomials arrays at the target points in (19).

11

Table 5

“‘ i “ N

oy “\«\\‘

‘W;%‘ 5
QI

F7 F8

75
‘\\ R
‘\\\\\\ 2

\ /
‘ 5% ’l ll l
,”06‘\““\\\ N2

o "
= % 0o
‘8‘}“8\“33““ "ll, ll;};;'

0'.'0 097572
*u 7
m":/'/l
\‘t’l”’l%

Figure 2: Renka’s additional test functions.

“True” and estimated (in parenthesis) hyperinterpolation errors for

the Franke’s test functions in Fig. 1, in the max-norm normalized to the max
deviation of each function from its mean.

n 10 20 30 40 50 60
N 72 242 512 882 1352 1922
F1 73E2 44E3 16E4 12E6 86E9 24E-11
(1L5E-1) (1.5E-2) (5.3E-4) (9.0E-6) (5.8E-8) (1.7E-10)
F2 29E-1 63E2 12BE2 21E3 39E4 6.6E5
(1.4E-1) (2.1E-2) (3.3E-3) (5.7E-4) (1.0E-4) (1.7E-5)
F3 37E-3 57E-6 10E-8 16E-11 4.0E-14 3.3E-14
(4.3E-2) (6.7E-5) (1.0E-7) (1.8E-10) (2.9E-13) (7.7E-15)
F4 21E4 40E-10 10E-14 1.1E-14 10E-14 15E-14
(1.0E-2) (6.3E-8) (2.8E-14) (5.7E-15) (6.7E-15) (3.7E-15)
F5 37E2 53E5 907E9 40E-13 7.3E-15 9.0E-15
(2.3E-1) (8.0E-4) (2.6E-7) (1.7E-11) (2.7E-15) (2.0E-16)
F6 2.1E5 80E9 40E-12 40E-15 5.1E-15 59E-15

(3.3E-4) (8.6E-8) (4.0E-11) (2.4E-14) (3.3E-15) (1.6E-15)

12

Table 6: As in Table 5 for the additional test functions in Fig. 2.
n=10 n=20 n = 30 n =40 n = 50 n = 60
Fr 21E-1 4.0E-6 3.3E-13 9.0E-15 1.9E-14 1.4E-14
(7.3E-1) (1.6E-4) (2.6E-11) (7.0E-15) (6.0E-15) (7.0E-15)
F8 1.2E-1 2.3E-3 1.7E-5 4.3E-8 4.0E-11 2.1E-14
(24E-1) (1.1E-2) (1.3E-4) (4.8E-7) (6.1E-10) (3.0E-13)
F9 3.3E-1 4.6E-3 2.0E-5 5.3E-8 8.9E-11 1.1E-13
(9.8E-1) (3.7E-2) (2.5E-4) (7.0E-7) (1.1E-9) (1.6E-12)
F10 5.5E-1 1.2E-1 6.4E-2 4.0E-2 2.8E-2 2.0E-2
(8.7E-1) (7.0E-2) (1.9E-2) (9.1E-3) (5.4E-3) (3.7E-3)

Table 7: CPU times (seconds) for construction (excluding evaluation of f)
and evaluation of the hyperinterpolation polynomial at M = 10000 target
points; cf. Remark 1.
n=10 n=20 n=30 n=40 n=50 n=2060
constr. time 0.0015 0.0095 0.011 0.03 0.06 0.1
eval. time 0.17 0.29 0.44 0.99 0.75 0.89

References

[1] Z. Battles and L.N. Trefethen, An extension of MATLAB to continuous
functions and operators, SIAM J. Sci. Comput. 25 (2004), 1743-1770.

[2] L. Bos, M. Caliari, S. De Marchi and M. Vianello, A numerical study of
the Xu polynomaial interpolation formula, 2004, to appear in Computing
(preprint available at www.math.unipd.it/~marcov/publications.html).

3] L. Bos, M. Caliari, S. De Marchi and M. Vianello, Bi-
variate interpolation at Xu points: results, extensions and ap-
plications, 2005, to appear in ETNA (preprint available at
www.math.unipd.it/~marcov/publications.html).

[4] L. Bos, S. De Marchi and M. Vianello, On the Lebesque constant for
the Xu interpolation formula, 2005, to appear in J. Approx. Theory
(preprint available at www.math.unipd.it/~marcov/publications.html).

[6] M. Caliari, S. De Marchi and M. Vianello, Bivariate polynomial inter-
polation on the square at new nodal sets, Appl. Math. Comput. 165
(2005), 261-274.

13

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Caliari, S. De Marchi and M. Vianello, Hyperinterpolation on the
square, submitted to J. Comput. Appl. Math. (preprint available at
www.math.unipd.it/~marcov/publications.html).

M. Caliari, S. De Marchi, R. Montagna and M. Vianello, HYPER2D: a
Matlab/Octave interface for hyperinterpolation at Xu points on rectan-
gles, downloadable from www.math.unipd.it/~marcov/software.html.

C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables,
Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge
University Press, Cambridge, 2001.

R. Franke, Scattered data interpolation: Tests of some methods, Math.
Comput. 38 (1982), 181-200.

K. Hesse and I.H. Sloan, Hyperinterpolation on the sphere, UNSW
School of Mathematics, preprint AMR05/23, 2005.

C. Moler, MATLAB incorporates LAPACK. Increasing the speed and
capabilities of matriz computation, MATLAB News & Notes - Winter
2000.

C.R. Morrow and T.N.L. Patterson, Construction of algebraic cubature
rules using polynomial ideal theory, STAM J. Numer. Anal. 15 (1978),
953-976.

M. Reimer, Multivariate Polynomial Approximation, International Se-
ries of Numerical Mathematics, vol. 144, Birkhauser, Basel, 2003.

R.J. Renka, Algorithm 792: Accuracy tests of ACM Algorithms for In-
terpolation of Scattered Data in the Plane, ACM Trans. Math. Software
25 (1999), 79-93.

I.H. Sloan, Polynomial interpolation and hyperinterpolation over general
regions, J. Approx. Theory 83 (1995), 238-254.

Y. Xu, Lagrange interpolation on Chebyshev points of two variables, J.
Approx. Theory 87 (1996), 220-238.

14

