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Abstract. This paper considers constrained and unconstrained parametric
global optimization problems in a real Hilbert space. We assume that the
gradient of the cost functional is Lipschitz continuous but not smooth. A
suitable choice of parameters implies the linear or superlinear (supergeomet-
ric) convergence of the iterative method. From the numerical experiments,
we conclude that our algorithm is faster than other existing algorithms for
continuous but nonsmooth problems, when applied to unconstrained global
optimization problems. However, because we solve 2n + 1 subproblems for
a large number n of independent variables, our algorithm is somewhat slower
than other algorithms, when applied to constrained global optimization.
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1. Introduction

In this paper, we consider the problem of minimizing the functional VP (x),
where x belongs to the whole Hilbert space H or to some bounded closed subset
H1 ⊂ H and p is an abstract parameter,

inf
x∈H

Vp(x) = V ∗
p or inf

x∈H1

Vp(x) = V ∗
p .

We suppose that there exists a Lipschitz continuous gradient ∇Vp(x) and at least
one solution point x∗ ∈ H (respectively x∗ ∈ H1), for which

inf
x∈H

Vp(x) = Vp(x∗) = V ∗
p , (1)

1 This work was partially supported by the NATO Outreach Fellowship - Mathematics 219.33.
2 We thank Professor Hans D. Mittelmann, Arizona State University, for cooperation and support.
3 Professor, Department of Computer Sciences, University of Verona, Verona, Italy.
4 Visiting Professor, Department of Mathematics, Ohio University, Athens, Ohio.

409

0022-3239/06/0900-0409/0 C© 2006 Springer Science+Business Media, Inc.



410 JOTA: VOL. 130, NO. 3, SEPTEMBER 2006

inf
x∈H1

Vp(x) = Vp(x∗) = V ∗
p . (2)

The present paper continues some investigations of Refs. 1–5. We suppose
also that all local minima are isolated. We consider first the global unconstrained
optimization algorithm and then we continue with the constrained case.

In Ref. 2, we presented a parametric Newton method for optimization prob-
lems in Hilbert spaces. This is a modified Newton method for solving the mini-
mization problems, avoiding the calculation of the inverse operators in the infinite-
dimensional spaces. This method solves parametric optimization problems (see
Refs. 6–15) in a real Hilbert space, supposing that the gradient of the cost func-
tional is a Lipschitz continuous nonsmooth function. This problem could be solved
with other methods (see Refs. 16–21).

Under the Lipschitz continuity of ∇Vp(x), we can construct the Clark subd-
ifferential ∂2Vp(x) (see Refs. 2, 22–27) for which (∂2Vp(x))∗∇Vp(x) is a multi-
valued map of H into bounded, closed, and convex subsets of H. Here, (∂2Vp(x))∗

is the adjoint map; i.e.,
〈
∂2Vp(x)x, y

〉 ≡ 〈
x, (∂2Vp(x))∗y

〉
, (3)

where 〈·, ·〉 is the scalar product in H. Using the properties of ∂2Vp(x) and the
Lipschitz continuity of ∇Vp(x), the map (∂2Vp(x))∗∇Vp(x) is usc (Refs. 2, 22,
23, 25).

We use the following notations:

|x| =
√

〈x, x〉 is the norm of H ;

X = {x ∈ H |Vp(x) = V ∗
p } is the set of solutions of (1) which does not depend

on the disturbances of the parameter p;
PrA(x) = {y ∈ H‖x − y| = minz∈A |x − z|} is the metric projection of x

into A ⊂ H;
m(Vp(x)) is the metric projection of the origin into the values of the usc

multifunction (∂2Vp(x))∗∇Vp(x);
Xδ = {x ∈ H |miny∈H |x − y| < δ} is a δ-neighborhood of X.
We proved in Ref. 2 the following theorem.

Theorem 1.1. Consider the differential inclusion

ẋ ∈ −(∂2Vp(x))∗∇Vp(x), x(0) = xk, k = 0, 1, 2, . . . , (4)

where the right-hand side is a usc multifunction with bounded, closed, and convex
values, xk /∈ Xδ, and δ > 0 is arbitrarily chosen. Let |m(Vp(x))| ≥ η > 0, x /∈ Xδ,

and let

X = {x ∈ H |Vp(x) = V ∗
p } ≡ {y ∈ H |∇Vp(y) = 0}.
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If the differential inclusion (4) admits a solution and the set of the solutions is
bounded for t ≥ 0, then every solution of

ẋ ∈ −(∂2Vp(x))∗∇Vp(x)/|m(Vp(x))|2, x(0) = xk, k = 0, 1, 2, . . . , (5)

can be extended up to the set X in a finite time Tk ≤ (1/2)|∇Vp(xk)|2.

We present two iterative procedures. We consider the following procedure
for the undisturbed case:

xk+1 = xk − |∇Vp(xk)|2m(Vp(xk))/|m(Vp(xk))|2, k = 0, 1, 2, . . . , (7)

where x0 is known. This is a modified Newton method where the calculation of the
inverse operator is replaced by the calculation of the metric projection m(Vp(x))
of the origin into the values of the usc multifunction (∂2Vp(x))∗∇Vp(x).

We consider also the following iterative procedure for the disturbed case:

xk+1 = xk − ∣∣∇V εk

pk
(xk)

∣∣2
m

(
V εk

pk
(xk)

)/∣∣m
(
V εk

pk
(xk)

)∣∣2
, k = 0, 1, 2, . . . , (8)

where x0 is known and ∇V εk
pk

(x) and m(V εk
pk

(x)) denote the approximating values
of ∇Vpk

(x) and m(Vpk
(x)) respectively.

Let us consider now the following problem. We solve a nonlinear equation,
with the left-hand side being is a scalar function in the Hilbert space H.

A parametric Lyapunov function method for solving nonlinear systems in
Hilbert spaces was presented in Ref. 1. This method considers a nonlinear system
of finitely many equations in Hilbert spaces. Using the left-hand sides of the equa-
tions, a family of scalar and convex functions is constructed. Under the hypothesis
of convexity, these functions are the Lyapunov functions for the differential inclu-
sion for which the right-hand side is the negative value of a maximal monotone
operator. Every solution of the differential inclusion solves the nonlinear system
of equations in a finite moment of time.

An iterative method for finding at least one of the solutions of the system is
presented. This method is based on the Lyapunov function and depends on a vector
parameter. A suitable choice of the parameter implies the linear or superlinear
convergence.

Let f (x) be a scalar function (it can be nonsmooth) which is defined on the
Hilbert space H by the following equation:

f (x) = Vpi(x) − Vpi(xi+1) = 0, i = 0, 1, 2, . . . , (9)

where xi+1 is the (i + 1)th local minimum point of the problem (1). We denote a
family of functions depending on p′ by

Wp′ (x) = α
∣∣Vpi

(x) − V ∗
pi

(xi+1)
∣∣1+p′ ≥ 0, i = 0, 1, 2, . . . , (10)
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and also for the case with disturbances a family of functions depending on p′(ε′),

Wp′(ε′)(x) = α
∣∣Vpi

(x) − V ∗
pi

(xi+1)
∣∣1+p′(ε′) ≥ 0, i = 0, 1, 2, . . . , (10′)

where α > 0 and the parameter p′(ε′) ∈ (p′ − ε′, p′ + ε′) and p′ − ε′ > −1, ε′ >

0. According to Ref. 22, the generalized directional derivative is

f 0(x; v) = lim sup
y→x,λ↓0

[f (y + λv) − f (y)]/λ

and the generalized gradient is

∂f (x) = {ζ ∈ H |f 0(x; v) ≥ 〈ζ, v〉, ∀v ∈ H }.

Definition 1.1. See Ref. 22. f is said to be regular at x provided:

(i) For all v, the usual one-side directional derivative f ′(x; v) exists.
(ii) For all v, f ′(x; v) = f 0(x; v).

We suppose that the function f (x) is regular. We suppose also that functions
Wp′ (x) and Wp′(ε′)(x) are locally convex at every local minimum of the cost
functional Vp(x). Let us denote the metric projection of the point x on the set X′

by Pr ′
Xx; i.e.,

Pr ′
Xx =

{
y ∈ X′| |x − y| = min

z∈X′
||x − z||

}
(11)

We denote by m(∂Wp′(ε′)(x)) the metric projection of the origin into the set
∂Wp′(ε′)(x).

Let 0 /∈ ∂Wp′(ε′)(x0). Consider the following differential inclusion (see
Ref. 28):

ẋ ∈ −∂Wp′(ε′)(x)/|m(∂Wp′(ε′)(x))|, x(0) = x0, (12)

As long as

f (x) = Vpi
(x) − V ∗

pi
(xi+1)

is a regular function, according to Ref. 22 we have

∂Wp′(ε′)(x) = α
∣∣Vpi

(x) − V ∗
pi

(xi+1)
∣∣p′(ε′)

sign
(
Vpi

(x) − V ∗
pi

(xi+1)
)
∂
(
Vpi

(x)

−V ∗
pi

(xi+1)
)
(1 + p′(ε′)). (13)

When Wp′(ε′)(x) is a convex function, the subdifferential ∂Wp′(ε′)(x) is a maximal
monotone operator and the differential inclusion

ẋ ∈ −∂Wp′(ε′)(x), x(0) = x0, (14)

has a unique solution; see Ref 29. We denote by
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X′ = {
x ∈ H |f (x) = Vpi

(x) − V ∗
pi

(xi+1) = 0
}

the solution set of equation (9) and let

X′
1 = {x ∈ H | 0 ∈ ∂Wp′(ε′)(x)}

be the set of the stationary points of the differential inclusion (12). We use the
next theorem (see Ref. 1).

Theorem 1.2. Consider equation (9). Let the function (10) be convex for
the parameters α > 0, p′ > −1 + ε′, ε′ > 0. Let the solution set X′ be not empty.
Then:

(i) The solution set X′ of (1) coincides with the set for which the origin
belongs to the subdifferential ∂Wp′(ε′)(x), i.e. X′ = X′

1.
(ii) For every initial position x0 ∈ H and every solutions x(t) of the dif-

ferential inclusion (12), there exists a finite moment T ≤ Wp′(ε′)(x0) (T
possibly depends on the solution) for which x (T) solves equation (9).

Under the conditions of the Theorem 1.2, every approximative method which
solves the differential inclusion (12) generates an approximate solution of equation
(9). In Ref. 29, this approximate solution is obtained using the Iosida approxima-
tion, which has a good relation with the Euler implicit scheme for the systems of
ODEs.

We consider now two iterative procedures based on (12). For the undisturbed
case,

xk+1 = xk − Wp′k (xk)m(∂Wp′k (xk))/|m(∂Wp′k (xk))|2, k = 0, 1, . . . , (15)

and for the disturbed case,

xk+1 = xk − Wp′k (ε′k )(xk)m(∂Wp′k(ε′k )(xk))/|m(∂Wp′k(ε′k )(xk))|2,
k = 0, 1, . . . . (16)

We divide the solution of the unconstrained global minimization problem
into two steps:

Step 1. The first step solves equation (1) with the iterative procedure (7)
or (8) for the disturbed case of the parametric Newton method for optimization
problems in Hilbert space (see Ref. 2). We start at a given initial point x0

0 and
find the local minimum point x1 using the correspondent iterative procedure (7)
or (8). On every next ith step, the iterative procedure starts the iterations at the
initial point x0

i and finds the local minimum xi+1. On the ith iteration, we look for
a solution xi+1 different from xi . The selection of xi

0 insures that. But it is possible
also that Vp(xi) = Vp(xi+1). This could happen when the cost functional has the
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same value at these local minimum points. Then again, we construct the same
plane (hyperplane)

V = Vp(xi+1) = Vp(xi)

and look for its intersection with the surface (hypersurface) Vp(x); i.e. we solve
with the procedure (15) or (16) the equation

Vp(x) − Vp(xi+1) = 0

at a point xi+1
0 different from xi−1

0 and xi
0. We solve now the optimization problem

with initial point xi+1
0 . If the solution is one of the previous local minimum points,

we return to solving the equation Vp(x) − Vp(xi+1) = 0 at a point xi+2
0 different

from xi−1
0 , xi

0, xi+1
0 . Again, we solve the optimization problem with the initial

point xi+2
0 and so on.

Step 2. The second step solves equation (9) with the iterative procedure (15)
or (16) of the parametric Lyapunov function method for solving nonlinear systems
in Hilbert spaces (see Ref. 1). We find first the initial point for the next iteration
process which solves the nonlinear equation (9). For that purpose, we construct
a plane for the three-dimensional case or a hyperplane for the multidimensional
cases through the point x1[xi on every next ith step] V = Vp(x1) [V = Vp(xi)]
on the ith step. For the three-dimensional case, we construct the plane as we turn
the vector with the initial point x1 and the terminal point −kx0

0 (the initial point is
xi and the terminal point is −kxi−1

0 for the ith iteration) around the point x1 (xi)
in the plane V = Vp(x1) [V = Vp(xi)], where k is a positive integer. We take the
terminal point of this vector as the initial point for the procedure (15) or (16). If this
plane has the only common point x1 [xi] with the surface [i.e., no other common
point with the surface (hypersurface) Vp(x)], then x1 [xi] is the global minimum
of the problem. If we find a solution different from the x1 [xi] solution with the
procedure (15) or (16), we denote it with x1

0 [xi
0] and use it as the initial point for the

procedures (7) or (8) of Step 1. It is possible also that Vp(xi) = Vp(xi+1). This could
happen when the cost functional has the same value at these local minimum points.
Then again, we construct the same plane [hyperplane] V = Vp(xi+1) = Vp(xi), go
to the Step 2, and look for its intersection with the surface [hypersurface] Vp(x);
i.e., we solve with the procedure (15) or (16) the equation

Vp(x) − Vp(xi+1) = 0 (17)

at a point xi+1
0 different than xi−1

0 and xi
0. We solve now the optimization problem

(Step 1) with initial point xi+1
0 . If the solution is one of the previous local minimum

points, we return to Step 2 to solve equation (8) with another initial point. The
solution point xi+2

0 should be different from xi+1
0 , xi

0, x
i+1
0 . Again, we solve the

optimization problem (Step 1) with the initial point xi+2
0 and so on.

The global constrained optimization case (2) includes some additional prob-
lems:
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(P1) We consider one subproblem for the inner points of the bounded closed
set H1 and the subproblems on the boundaries. For example, if every independent
variable is located in a closed interval, then we solve 2n + 1 subproblems if n
is the number of independent variables, because there is one subproblem for the
inner points and 2n subproblems on the boundary planes [hyperplanes].

(P2) The algorithm takes more computer time for every subproblem, because
it has to be checked on every step if the new point is still in the bounded set. The
solution for a given subproblem could happen to be a boundary point which is not
a local minimum.

(P3) The global solution of the problem is the solution point of the above
subproblems that gives the minimum value to the cost functional Vp(x).

2. Main Results

Theorem 2.1.
(i) Let us consider the minimizing problem (1) and look for the local minimum

nearest to the initial point xi
0 with the iterative procedure (7) where x ∈ H , ∇ Vp(x)

is Lipschitz continuous, m(Vp(x)) is the metric projection of the origin into the
values of the usc multifunction (∂2 Vp(x))∗∇ Vp(x). Let the nearest local minimum
(solution set) in the cone of decreasing direction for the given initial point xi

0 be
isolated and such that

X = {x ∈ H |Vp(x) = V ∗
p } ≡ {y ∈ H |∇ Vp(y) = 0}

is invariant with respect to p [if xi
0 coincides with a local minimum, then the

first iterative procedure is skipped and we move to (ii)], xk /∈ X, k = 0, 1, 2, . . . ,

and |m(Vp(x)| > 0, x /∈ X. The pk, k = 0, 1, 2, . . . , are chosen via the following
equalities:

∣∣∇ Vpk
(xk)

∣∣2 = 〈
m

(
Vpk

(xk)
)
, xk − PrX(xk)

〉
; (18)

then,

|xk+1 − PrX(xk+1)| ≤ |xk − PrX(xk)|, k = 0, 1, 2, . . . .

(ii) We consider also the nonlinear equation (9) and the iterative procedure
(15), where f (x) is a regular function defined in the Hilbert space H. Let there
exist a δ′-neighborhood X′

δ′ of the set X′ for which

〈ξ, x − y〉 �= 0, ξ ∈ ∂ Wp′(x), y ∈ PrX′x, x ∈ X′
∂ ′ \X′,

where Wp′ (x) is defined by (10). Let p′k be any solution of the following equality:

Wp′k (xk) + 〈m(∂ Wp′k (xk)), yk − xk〉 = 0, (19)

where yk ∈ Pr ′
Xxk are arbitrarily chosen. If the initial point x0 ∈ X′

δ′ and if
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ε′k ≤ (q ′/2)Wp′k(ε′k) (xk), 0 < q < 1,

then the following inequality:

|xk+1 − yk+1| ≤ |xk − yk| (20)

holds for every yk ∈ Pr ′
Xxk, k = 0, 1, 2, . . . .

(i) and (ii) ensure that the algorithm for the global optimization problem is
monotonous.

Proof.
(i) Let us consider

0 < Ak = |xk+1 − yk+1|2/|xk − yk|2, where yk = PrX(xk),

k = 0, 1, 2, . . . .

Using (7) and (18), we can write

Ak = |xk+1 − yk+1|2 /|xk − yk|2
≤ |xk+1 − yk|2/|xk − yk|2
= 1 + (∣∣∇ Vpk

(xk)
∣∣2/[∣∣m(Vpk

(xk))|2|xk − yk|2])(|∇ Vpk
(xk)|2

− 2
〈
m(Vpk

(xk)), xk − yk

〉)

= 1 − (〈
m

(
Vpk

(xk)
)
, xk − yk

〉)2/[|m(
Vpk

(xk)
)|2|xk − yk|2

]
< 1.

(ii) As long as f (x) is regular function, the generalized gradient ∂Wp′(∈′)(x)
is a weakly compact and convex set; see Ref. 22. Thus, m(∂Wp′(ε′)(x)) is well
defined. Under (11) and (20), for any yk ∈ Pr ′

Xxk, k = 0, 1, 2, . . . , we obtain

0 ≤ A′
k = |xk+1 − yk+1|2/|xk − yk|2 ≤ |xk+1 − yk|2/|xk − yk|2
= (1/|xk − yk|2)|yk − xk + Wp′k (xk)m(∂ Wpk (xk))/|m(∂ Wp′k (xk))|2
= (Wp′k (xk))2/[|m(∂ Wp′k (xk))|2|xk − yk|2] + 1

+ 2Wp′k (xk)(m(∂ Wp′k (xk)), yk − xk)/

[|m(∂ Wp′k (xk))|2|xk − yxk|2].

Under the equality (19), we complete the proof:

0 ≤ A′
k ≤ (Wp′k (xk))2/[|m(∂ Wp′k (xk))|2|xk − yk|2] + 1

+ 2(−Wp′k (xk)) Wp′k (xk)/[|m(∂ Wp′k (xk))|2|xk − yk|2]

= 1 − (Wp′k (xk))2

[|m(∂ Wp′k (xk))|2|xk − yk|2]

=1 − (B ′
k)2 < 1,
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where

B ′
k = (Wp′k (xk))/[|m(∂ Wp′k(xk))||xk − yk|].

Thus, for every xk ∈ X′
δ′ \X′, k = 1, 2, . . . , we obtain

0 ≤ A′
k < 1 − (Bk)2 < 1. (21)

Then, the procedure (15) is monotonous. From (i) and (ii), we conclude that the
global minimization algorithm is monotonous. �

The next theorem refers to the disturbed case when we use the proce-
dure (8). We denote by ∇ V εk

pk
(x) and m(V εk

pk
(x)) the approximating values of

∇Vpk
(x) and m(Vpk

(x)), respectively.

Theorem 2.2.
Let the conditions of the Theorem 2.1 be fulfilled except (18) and (19).

(i) Consider the iterative procedure (8). If the pk are chosen by the following
inequalities:
∣∣∇ V εk

pk
(xk)

∣∣2 ≤ (1 + q)
〈
m

(
V εk

pk
(xk)

)
, xk − x∗〉 , 0 < q < 1, (22)

then the iterative procedure (8) is monotonous.
(ii) We consider also the nonlinear equation (9) and the iterative

procedure (16) where f (x) is a regular function defined in the
Hilbert space H. Let there exist a δ′-neighborhood X′

δ′ of the set
X′ for which 〈ξ, x − y〉 �= 0, ξ ∈ ∂Wp′(ε′)(x), y ∈ PrX′x, x ∈
X′

δ′ \X′, where Wp′(ε′)(x) is defined by (10′). Let p
′k(ε

′k) be any solution
of the following inequality:

W
p′k(ε′k ) (xk) + 〈m(∂Wp′k(ε′k )(xk)), yk − xk〉 < ε′k, (23)

where yk ∈ Pr ′
Xxk are arbitrary chosen. If the initial point x0 ∈ X′

δ′ and if

ε′k ≤ (q ′/2)Wp′k(ε′k )(xk), 0 < q < 1,

then the following inequality:

|xk+1 − yk+1| ≤ |xk − yk| (24)

holds for every yk ∈ Pr ′
Xxk, k = 0, 1, 2, . . . . If Wp′(ε′)(x) is a convex function,

then the inequality (23) is sufficiently fulfilled with any ε′ > 0. In this case, (23)
is superfluous.

(i) and (ii) ensure that the algorithm for the global optimization problem is
monotonous.
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Proof.
(i) As was done in the proof of the Theorem 2.1, by (8) and (22) we have

Ak = |xk+1 − yk+1|2/|xk − yk|2
≤ |xk+1 − yk|2/|xk − yk|2
= 1 + (∣∣∇ V εk

pk
(xk)

∣∣2/[∣∣m
(
V εk

pk
(xk)

)∣∣2|xk − yk|2
])(∣∣∇ V εk

pk
(xk)

∣∣2

− 2
〈
m

(
V εk

pk
(xk)

)
, xk − yk

〉)

≤ 1 + (∣∣∇ V εk

pk
(xk)

∣∣2/[∣∣m(V εk

pk
(xk))

∣∣2|xk − yk|2
])

(1 + q − 2)
〈
m(V εk

pk(xk)), xk − yk

〉
.

Thus, we have

Ak ≤ 1 − (1 − q)
(∣∣∇ V εk

pk
(xk)

∣∣2/

[∣∣m
(
V εk

pk
(xk)

)∣∣2|xk − yk|2
])〈

m
(
V εk

pk
(xk)

)
, xk − yk

〉
< 1. (25)

(ii) As long as f (x) is a regular function, the generalized gradient ∂Wp′(ε′)(x)
is a weakly compact and convex set (see Ref. 22). Thus, m(∂Wp′(ε′)(x)) is well
defined. Under (11) and (24), for any yk ∈ pr ′

Xxk, k = 0, 1, 2, . . . , we obtain

0 ≤ A′
k = |xk+1 − yk+1|2/|xk − yk|2
≤ |xk+1 − yk|2/|xk − yk|2 = (1/|xk − yk|2)|yk − xk

+Wp′k (ε′k )(xk) m(∂W
pk(ε′k ) (xk))/|m(∂V

p′k(ε′k ) (xk))|2
= (Wp′k (ε′k )(xk))2/[|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2] + 1 + 2Wp′k (ε′k )

×(xk)(m(∂W
p′k(ε′k ) (xk)), yk − xk)/[|m(∂W

p′k(ε′k ) (xk))|2|xk − yxk|2].

Under the inequality

ε′k < (q ′/2)W
p′k(ε′k ) (xk)

and (23), we complete the proof:

A′
k ≤ (

Wp′k (ε′k )(xk)
)2

/
[
|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2
]

+ 1

+ 2 (ε′k − W
p′k(ε′k ) (xk)) W

p′k(ε′k ) (xk)/
[
|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2
]

= 1 − (
Wp′k (ε′k )(xk)

)2
/
[
|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2
]

+ 2 ε′k (
Wp′k (ε′k )(xk)

)
/
[
|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2
]

≤ 1 − (1 − q ′)
(
Wp′k (ε′k )(xk)

)2
/
[
|m(∂W

p′k(ε′k ) (xk))|2|xk − yk|2
]

= 1 − (1 − q ′)(B ′
k)2 < 1.
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Thus, for every xk ∈ X′
δ′ \X′, k = 1, 2, . . . , we obtain

0 ≤ A′
k < 1 − (1 − q ′)(B ′

k)2 < 1. (26)

Then, the procedure (16) is monotonous and the global algorithm is monotonous.
�

We use the following technical lemma (see Ref. 2).

Lemma 2.1. Let the conditions of the Theorem 1.1 be fulfilled and let x(t)
be a solution of (5) with initial condition x(0) = xk for which x(Tk) = x∗ ≡ X ≡
{y ∈ H |∇Vp(y) = 0} is the unique minimum point of the problem (1). Suppose
that P is a compact set, (∂2Vp(x))∗∇Vp(x)/|∇Vp(x)| is uniformly continuous at
every point (p, x∗), p ∈ P, and the following limit is single-valued:

lim
p→p∗,x→x∗ (∂2Vp(x))∗∇Vp(x)/|∇Vp(x)| = u(p∗) �= 0. (27)

Then, for every ε > 0 and all sufficiently large k, the following inequalities are
valid:

∣∣〈m(Vpk
(xk))/|∇Vpk

(xk)|, xk − x∗〉∣∣

≥
∫ Tk

0
ds/|∇Vpk

(x(s))| (1 − ε/|u(p∗)| − ε2 − ε|u(p∗)|) ,

[|m(Vpk
(xk))|/|∇Vpk

(xk)|] |xk − x∗|

≤
∫ Tk

0
[1/|∇Vpk

(x(s))|] ds
(
1 + ε/|u(p∗)| + ε2 + ε|u(p∗)|) .

We present next two convergence theorems.

Theorem 2.3.
(i) Consider the minimizing problem (1) and the iterative procedure (7),

where x ∈ H, ∇Vp(x) is Lipschitz continuous, m(Vp(x)) is the metric projection
of the origin into the values of the u.s.c. multifunction (∂2Vp(x))∗∇Vp(x), x∗ ≡
X ≡ {y ∈ H |∇Vp(y) = 0} is the unique isolated local minimum point in the cone
of decreasing direction for the given initial point x1

0 , the pk belong to a compact
set P and are chosen by

|∇Vpk
(xk)|2 = 〈

m(Vpk
(xk)), xk − x∗〉 , (28)

k = 0, 1, 2, . . . Let for every δ > 0, there exists η(δ) > 0 for which |m(Vpk
(x))| ≥

η(δ), |x − x∗| ≥ δ, k = 0, 1, 2, . . .. Let (δ2Vp(x))∗∇Vp(x)/|∇Vp(x)| be uni-
formly continuous at every point (p, x∗), p ∈ P and the limit (27) is single-valued.
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If there exists a solution of (5) for every pk, then the procedure (7) has a superlinear
rate of convergence.

(ii) Consider also the nonlinear equation (9) where f (x) is a regular function
defined on the Hilbert space H and the Lyapunov function Wp′ (x) is from (10). Let
the conditions of Theorem 1.2(ii) be fulfilled. Let m(∂Wp′k (xk)) be a continuous
function at the solutions set X. Let the solution set X′ �= ∅ of (9) coincide with
the set for which origin belongs to ∂Wp′(x), i.e. X′ = X′

1. Let there exist a δ′-
neighborhood X′

δ′ of the set X′ for which x0 ∈ X′
δ′ \X′ and 〈ξ, x − y〉 �= 0, ξ ∈

∂Wp′ (x), y ∈ Pr ′
Xx, x ∈ X′

δ′ \X′, and

inf lim
k→∞

|m(∂Wp′k (yk))| �= 0, (29)

where inf is taken at all sequences yk ∈ X′
δ′ \X′, k = 1, 2, . . . . Consider the pro-

cess (15). Let p′k be chosen under the (19). We recall that m(∂Wp′k (x)) is a
continuous function at the solution set X′. Then, the procedure (15) has a super-
geometric convergence rate and therefore the global optimization algorithm has a
supergeometric rate of convergence.

Proof.
(i) According to Ref. 30, the iterative procedure (7) has a superlinear rate of

convergence if

lim
k→∞

|xk+1 − x∗|/|xk − x∗| = 0.

We have (see the proof of Theorem 1.1)

Ak − |xk+1 − x∗|2/|xk − x∗|2
≤ 1 − (〈

m(Vpk
(xk)), xk − x∗〉)2/[∣∣m

(
Vpk

(xk)
)∣∣2|xk − x∗|2

]

= 1 − (Bk)2.

Thus, Bk ≤ 1 and, under the conditions of the theorem, the limit of Bk is equal to
1, i.e.,

lim
k→∞

Bk = lim
k→∞

∣∣〈m(Vpk
(xk)), xk − x∗〉∣∣/[∣∣m(Vpk

(xk))
∣∣|xk − x∗|] = 1. (30)

By the Lemma 2.1, for any ε > 0 and all sufficiently large k, we have

Bk ≥
∫ Tk

0 [1/|∇Vpk
(x(s))|] ds

(
1 − ε/|u(p∗)| − ε2 − ε|u(p∗)|)

∫ Tk

0 [1/|∇Vpk
(x(s))|] ds

(
1 + ε/|u(p∗)| + ε2 + ε|u(p∗)|)

.

Thus, we can write

lim
k→∞

Bk ≥ (
1 − ε/|u(p∗)| − ε2 − ε|u(p∗)|)/(

1 + ε/|u(p∗)| + ε2 + ε|u(p∗)|).
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As long as ε > 0 is arbitrarily chosen, the proof is complete and (7) has superlinear
rate of convergence.

(ii) According to Ref. 30 the convergence rate is supergeometric if, for all
yk ∈ Pr ′

Xxk, k = 0, 1, . . . , it has

lim
k→∞

A′
k = lim

k→∞
|xk+1 − yk+1|2/|xk − yk|2 = 0.

Under the continuity of m(∂Wp′k (x)) and (19) we obtain

lim
k→∞

B ′
k ≥ lim

k→∞
|m(∂Wp′k (xk(tk)))|/|m(∂Wp′k (xk))| = r = 1.

Under (21), we have B ′
k ≤ 1 and by (29) we obtain

0 ≤ lim sup
k→∞

A′
k ≤ 1 − lim inf

k→∞
(Bk)2 < 1 − r < 1. (31)

By (31), we obtain

lim
k→∞

A′
k ≤ 1 − lim

k→∞
(B ′

k)2 = 1 − 1 = 0;

consequently, the procedure (15) has a supergeometric rate of convergence. It
follows then from (i) and (ii) that the global minimization algorithm will have
supergeometric convergence rate.

�

Theorem 2.4.
(i) Let the conditions of Theorem 2.2 (i) and Theorem 2.3 (i) be fulfilled.

Suppose that, if the pk are chosen by the following additional inequalities:

|∇V εk

pk
(xk)|2 ≥ q

〈
m(V εk

pk
(xk)), xk − yk

〉
, 0 < q < 1, (32)

and ε′k is chosen under the following inequality:

ε′k < (q/2) Wp′k (ε′k)(xk).

Then, the iterative procedure (8) has an asymptotic linear rate of convergence with
a constant

√
1 − q(1 − q).

(ii) Consider also the nonlinear equation (9), where f (x) is a regular defined
on Hilbert space H and the Lyapunov function Wp′(ε′)(x) is from (10′). Let the
conditions of Theorem 1.2 (ii) be fulfilled. Let the solution set X′ �= ∅ of (9)
coincide with the set for which the origin belongs to the subdifferential ∂Wp′(ε′)(x),
i.e. X′ = X′

1. Let there exist a δ′-neighborhood X′
δ′ of the set X′ for which x0 ∈

X′
δ′ \X′ and

〈ξ, x − y〉 �= 0, ξ ∈ ∂Wp′(ε′)(x), y ∈ pr ′
Xx, x ∈ X′

δ′ \X′, and

inf lim
k→∞

|m(∂Wp′k(ε′k )(yk))| �= 0, (33)
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where inf is taken at all sequences yk ∈ X′
δ′ \X′, k = 1, 2, . . .. Consider the process

(16). Let ε′k and p′k(ε′k) be chosen under (23) and the following inequalities:

ε′k < (q ′k/2)Wp′k (ε′k )(xk).

Then, the procedure (16) has a geometric convergence rate and from (i) and
(ii) the global minimization algorithm has a geometric convergence rate.

Proof.
(i) Under (25) and (32), we have

Ak ≤ 1 − (1 − q)
(∣∣∇V εk

pk
(xk)

∣∣2/
[|m(V εk

pk
(xk))|2|xk − yk|2]

)

〈
m(V εk

pk
(xk)), xk − yk

〉

≤ 1 − q(1 − q)
〈
m

(
V εk

pk
(xk)

)
, xk − yk

〉2/[
|m(V εk

pk
(xk))|2|xk − yk|2

]

= 1 − q(1 − q)B2
k .

According to Lemma 2.1,

lim
k→∞

Bk ≤ lim
k→∞

〈
m

(
V εk

pk
(xk)

)
, xk − yk

〉/[|m(V εk

pk
(xk))|2|xk − yk|

] = 1.

Thus,

lim
k→∞

√
Ak = lim

k→∞
|xk+1 − yk+1|/|xk − yk| ≤

√
1 − q(1 − q).

(ii) According to Ref. 30, the convergence rate is geometric if, for all yk ∈
pr ′

Xx, k = 0, 1, . . . , we have

lim
k→∞

A′
k = lim

k→∞
|xk+1 − yk+1|2/|xk − yk|2 ≤ const < 1.

For any k, if xk ∈ X′, the statement of the theorem is trivial. Let xk /∈ X′, k =
0, 1, . . . . As long as x ∈ X′

δ′ , under Theorem 2.2 [see (24)] we obtain that, for all
k = 0, 1, . . . , xk ∈ X′

δ′ \X′. By the conditions of the theorem (see Theorem 1.2),
for every initial point xk(0) = xk , there exists a moment Tk ≤ Wp′k (ε′k)(xk) < ∞
for which the respective solution xk(·) of (12) satisfies the inclusion xk(Tk) ∈ X′.
Now, for all k = 0, 1 . . . , we can write as in the previous theorem the following
inequalities:

B ′
k = Wp

′k (ε
′k)(xk)/[|m(∂Wp

′k(ε′k)(xk))||xk − yk|]

≥ −
∫ T k

0

〈
m(∂Wp

′k(ε′p)(xk(t))), ẋk(t)
〉
dt/[|m(∂Wp

′k (ε′k)(xk))||xk − xk(Tk)|]

= −
∫ T k

0

〈
m(∂Wp

′k(ε′k )(xk(t))), ẋk(t)
〉
dt/[|m(∂Wp

′k(ε′k )(xk))||
∫ T k

0
ẋk(t)dt |]
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≥ Tk/[|m(∂Wp
′k(ε′k)(xk))|

∫ Tk

0
(1/|m(∂Wp

′k (ε′k)(xk(t)))|)dt].

For every ξ ∈ ∂Wp
′k(ε′k)(y), we have

|ξ | ≥ |m(∂Wp′k(ε′k )(y))|.
By the mean theorem, tk ∈ (0, Tk), and (33), we obtain

lim inf
k→∞

B ′
k ≥ lim inf

k→∞
Tk/

[
|m(∂Wp′k(ε′k )(xk))|

∫ Tk

0
(1/|m(∂Wp′k(ε′k )(xk(t)))|)dt

]

= lim inf
k→∞

Tk/

[
|m(∂Wp′k(ε′k )(xk))|

∫ Tk

0
(1/|ξ (tk)|) dt

]

≥ lim inf
k→∞

|m(∂Wp′k(ε′k )(xk(tk)))|/|m(∂Wp′k(ε′k )(xk))| = √
r �= 0.

Under (26), we have B ′
k ≤ 1 and by (33) we obtain

0 ≤ lim sup
k→∞

A′
k ≤ 1 − (1 − q ′) lim inf

k→∞
(B ′

k)2 < 1 − (1 − q ′)r < 1. (34)

Thus, the iterative procedure (32) has at least a geometric convergence rate
with a parameter not greater than

√
1 − r + rq ′. Hence, it follows from (i) and

(ii) that the global minimization algorithm is with a geometric convergence rate.
�

Corollary 2.1. Let the conditions of Theorem 2.4 be fulfilled. Let suppose
that, in Theorem 2.4 (ii), m(∂Wp′k(ε′k )(x)) is a continuous function at the solutions
set X′ and ε

′k <
(
q ′k/2

)
Wp′k (ε′k)(xk), where 0 < q ′ < 1. Then, the procedure (16)

has a supergeometric convergence rate. Therefore, the global minimization algo-
rithm has a geometric convergence rate for the procedure (8) and a supergeometric
rate of convergence for the procedure (16).

Proof. According to Ref. 30, the convergence rate is supergeometric if, for
all yk ∈ pr ′

Xxk, k = 0, 1, . . . ,

lim
k→∞

A′
k = lim

k→∞
||xk+1 − yk+1||2/||xk − yk||2 = 0.

Under the additional condition for m(∂Wp′k(ε′k )(x)) to be continuous and (23), we
obtain

lim
k→∞

B ′
k ≥ lim

k→∞
|m(∂Wp′k(ε′k )(xk(tk)))|/|m(∂Wp′k(ε′k )(xk))| = 1.

But from (34), then

lim
k→∞

A′
k ≤ 1 − lim

k→∞
(B ′

k)2(1 − q
′k) = 1 − r lim

k→∞
(1 − q

′k) = 0.

�
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3. Numerical Examples

Example 3.1. Unconstrained Global Optimization Ease.

min (x,y)V (x, y) = (4 − 2.1x2 + (1/3)x4)x2 + xy + 4(y2 − 1)y2.

The solution points are two:

(x∗
1 , y∗

1 ) = (−0.09, 0.71), (x∗
2 , y∗

2 ) = (0.09,−0.71),

where

V (−0.09, 0.71) = V (0.09,−0.71) = −1.03.

Different initial points give one of the solution points. The program solving
the unconstrained global optimization case will be included in the next pack-
age ftp://plato.asu.edu/pub/other software/. There will be also a link to it on
http://plato.la.asu.edu/topics/problems/global.html. The problem was solved with
exactness 10−6 in less then 2 sec.

The same problem with the same exactness was solved with CG-
plus (conjugate gradient algorithm) in 6 sec; see http://www-neos.mcs.anl.
gov/neos/solvers/UCO:CGPLUS/. The same problem with the same exactness
was solved with NMTR (trust region version of Newton’s method) in 3 sec; see

Fig. 1. Uncostrained optimization example.
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http://www-neos.mcs.anl.gov/neos/solvers/UCO:NMTR/. We can generalize that
the program realization of our algorithm for the unconstrained global optimization
case is working better (faster) than the program realizations of the other algorithms
for the continuous cases. The smoothness is not necessary.

Example 3.2. Constrained Global Optimization Ease.

min
−1≤x,y,z≤1

−|V (x, y, y)|,

where

V (x, y, z) =

∣∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣∣
= (z − x)(z − y)(y − x).

To solve this problem, we solve seven subproblems. One subproblem refers
to the inner points of the cube; six subproblems refer to its six boundary sides.
Then, the global solution is the minimum value of the global solutions of the seven
subproblems. The solution points are six:

(x∗
1 , y∗

1 , z∗
1) = (−1, 1, 0), (x∗

2 , y∗
2 , z∗

2) = (−1, 0, 1),

(x∗
3 , y∗

3 , z∗
3) = (0,−1, 1), (x∗

4 , y∗
4 , z∗

4) = (0, 1 − 1),

Fig. 2. Costrained optimization example.
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(x∗
5 , y∗

5 , z∗
5) = (1,−1, 0), (x∗

6 , y∗
6 , z∗

6) = (1, 0,−1).

The algorithm finds only one of them.

Remark 3.1. This example is important for the solution of a more general
problem: min x∈E − |V (x)|, where V is a generalized Vandermonde determinant
and E is a compact set. This is a general approach of finding Fekete points.

The problem was solved with exactness 10−6 in 18 sec. The same
problem was solved with the same exactness with BLMVM (limited
memory variable metric method) in 10 sec; see http://www-neos.mcs.anl.
gov/neos/solvers/BCO:BLMVM/. The same problem was solved with the same
exactness with L-BFGS-B (limited memory BFGS algorithm) in 7 sec; see
http://www-neos.mcs.anl.gov/neos/solvers/BCO:L-BFGS-B/ The same problem
was solved with the same exactness with TRON (trust region Newton method)
in 5 sec; see http://www-neos.mcs.anl.gov/neos/solvers/BCO:TRON/. We gener-
alize that the program realization of our algorithm for the constrained case is
slower than the program realizations of the other algorithms for the continuous
nonsmooth cases.
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