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Abstract

It is well known that polynomial interpolation at equidistant nodes can give bad approximation
results and that rational interpolation is a promising alternative in this setting. In this paper we
confirm this observation by proving that the Lebesgue constant of Berrut’s rational interpolant grows
only logarithmically in the number of interpolation nodes. Moreover, the numerical results show that the
Lebesgue constant behaves similarly for interpolation at Chebychev as well as logarithmically distributed
nodes.

1 Introduction

Suppose we want to approximate a function f : [a, b] → ℝ by some function g that interpolates f at the
n+ 1 distinct interpolation nodes

a = x0 < x1 < ⋅ ⋅ ⋅ < xn = b.

Given a set of basis functions bi which satisfy the Lagrange property

bi(xj) = �ij =

{
1, if i = j,

0, if i ∕= j,

the interpolant g can be written as

g(x) =

n∑
j=0

bj(x)f(xj).

The Lebesgue constant of this interpolation operator is

Λn = max
a≤x≤b

Λn(x),

where Λn(x) is the associated Lebesgue function

Λn(x) =

n∑
j=0

∣bj(x)∣ . (1)

The Lebesgue constant has been studied intensively in the case of polynomial interpolation, that is, when
bi are the Lagrange basis polynomials (see [3, 4, 9] and references therein). In the special case of equidistant
nodes, the Lebesgue constant for polynomial interpolation grows exponentially [8, 10, 11], which is one of
the reasons why other interpolation methods should be used in this setting. One popular alternative is
rational interpolation and two recent results by Carnicer [5] and Wang, Moin, and Iaccarino [12] confirm
that rational interpolation at equidistant nodes can have a much smaller Lebesgue constant than polynomial
interpolation. However, both papers report only numerical observations and do not give any theoretical
bounds.
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In this paper we investigate the rational interpolant that was introduced by Berrut [1] with basis functions

bi(x) =
(−1)

i

x− xi

/ n∑
j=0

(−1)
j

x− xj
, i = 0, . . . , n (2)

and show that the associated Lebesgue constant grows logarithmically in the number of interpolation nodes.
More precisely, we prove in Section 2 that the Lebesgue constant is bounded by 2 + ln(n) from above
and asymptotically by 2

� ln(n + 1) from below, which improves the lower bound given by Berrut and
Mittelmann [2]. The more interesting bound is of course the upper bound as it gives information on the
stability of the interpolation process and the conditioning of the interpolation problem.

The numerical results in Section 3 further indicate that the Lebesgue constant of Berrut’s rational
interpolant at equidistant nodes is even smaller than the Lebesgue constant for polynomial interpolation
at Chebychev nodes. Moreover, we observe that the Lebesgue constant of Berrut’s interpolant behaves
similarly if Chebychev or logarithmically distributed nodes are considered instead of equidistant nodes.

2 Main result

Let us start by recalling some well-known bounds for the partial sums of the Leibniz series and the harmonic
series, namely

�

4
− 1

2n+ 3
≤

n∑
k=0

(−1)
k

2k + 1
≤ �

4
+

1

2n+ 3
(3)

and

ln(n+ 1) ≤
n∑
k=1

1

k
≤ ln(2n+ 1) (4)

for any n ∈ ℕ. Moreover, it follows from (4) that

n∑
k=0

1

2k + 1
=

2n+1∑
k=1

1

k
−

n∑
k=1

1

2k
≥ ln(2n+ 2)− 1

2
ln(2n+ 1) ≥ 1

2
ln(2n+ 3). (5)

We are now ready to prove our main result, that the Lebesgue constant of Berrut’s interpolant at
equidistant nodes grows logarithmically in the number of nodes, by establishing logarithmic upper and
lower bounds. For simplicity we assume without loss of generalization that the interpolation interval is
[0, 1], so that the interpolation nodes are equally spaced with distance ℎ = 1/n, that is,

xj = jℎ =
j

n
, j = 0, . . . , n. (6)

Our first results concerns the lower bound of the Lebesgue constant.

Theorem 1. The Lebesgue constant for interpolation with the basis functions bi(x) in (2) at the nodes xj
in (6) satisfies

Λn ≥ cn ln(n+ 1)

for cn = 2n/(4 + n�) with limn→∞ cn = 2/�.

Proof. By the general definition of the Lebesgue function in (1) we have

Λn(x) =

n∑
j=0

1

∣x− j/n∣∣∣∣∣∣
n∑
j=0

(−1)
j

x− j/n

∣∣∣∣∣
=

n∑
j=0

1

∣2nx− 2j∣∣∣∣∣∣
n∑
j=0

(−1)
j

2nx− 2j

∣∣∣∣∣
=:

N(x)

D(x)

for the basis functions in (2) and the nodes in (6). Our goal now is to bound the numerator N(x) from
below and the denominator D(x) from above.
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Let us first assume that n is even, say n = 2k, and let x = (n+ 1)/(2n). Using (5) we get

N

(
n+ 1

2n

)
=

n∑
j=0

1

∣n+ 1− 2j∣
=

2k∑
j=0

1

∣2(k − j) + 1∣
=

k∑
j=0

1

∣2(k − j) + 1∣
+

2k∑
j=k+1

1

∣2(k − j) + 1∣

=

k∑
j=0

1

2j + 1
+

k−1∑
j=0

1

2j + 1

≥ 1

2
ln(2k + 3) +

1

2
ln(2k + 1)

≥ ln(2k + 1) = ln(n+ 1)

for the numerator, and by the triangle inequality and (3) we get

D

(
n+ 1

2n

)
=

∣∣∣∣∣
n∑
j=0

(−1)
j

n+ 1− 2j

∣∣∣∣∣ =

∣∣∣∣∣
2k∑
j=0

(−1)
j

2(k − j) + 1

∣∣∣∣∣ =

∣∣∣∣∣
k∑
j=0

(−1)
j

2(k − j) + 1
+

2k∑
j=k+1

(−1)
j

2(k − j) + 1

∣∣∣∣∣
≤

∣∣∣∣∣(−1)
k

k∑
j=0

(−1)
j

2j + 1

∣∣∣∣∣+

∣∣∣∣∣(−1)
k
k−1∑
j=0

(−1)
j

2j + 1

∣∣∣∣∣ =

k∑
j=0

(−1)
j

2j + 1
+

k−1∑
j=0

(−1)
j

2j + 1

≤
(
�

4
+

1

2k + 3

)
+

(
�

4
+

1

2k + 1

)
≤ �

2
+

2

2k + 1
=
�

2
+

2

n+ 1
,

for the denominator. Therefore,

Λn

(
n+ 1

2n

)
=
N
(
n+1
2n

)
D
(
n+1
2n

) ≥ 2 ln(n+ 1)

� + 4
n+1

. (7)

Similarly, if n is odd, say n = 2k + 1, then at x = 1/2 we have

N

(
1

2

)
=

n∑
j=0

1

∣n− 2j∣
=

2k+1∑
j=0

1

∣2(k − j) + 1∣
=

k∑
j=0

1

∣2(k − j) + 1∣
+

2k+1∑
j=k+1

1

∣2(k − j) + 1∣
= 2

k∑
j=0

1

2j + 1

≥ ln(2k + 3) = ln(n+ 2)

and

D

(
1

2

)
=

∣∣∣∣∣
n∑
j=0

(−1)
j

n− 2j

∣∣∣∣∣ =

∣∣∣∣∣
2k+1∑
j=0

(−1)
j

2(k − j) + 1

∣∣∣∣∣ =

∣∣∣∣∣
k∑
j=0

(−1)
j

2(k − j) + 1
+

2k+1∑
j=k+1

(−1)
j

2(k − j) + 1

∣∣∣∣∣ = 2

k∑
j=0

(−1)
j

2j + 1

≤ 2

(
�

4
+

1

2k + 3

)
=
�

2
+

2

n+ 2
,

and therefore

Λn

(
1

2

)
=
N
(
1
2

)
D
(
1
2

) ≥ 2 ln(n+ 2)

� + 4
n+2

. (8)

From (7) and (8) we finally conclude

Λn = max
0≤x≤1

Λn(x) ≥ 2 ln(n+ 1)

� + 4
n+1

≥ 2 ln(n+ 1)

� + 4
n

=
2n

4 + n�
ln(n+ 1)

for any n ∈ ℕ.

Note that the bound in Theorem 1 is a considerable improvement of the corresponding result given by
Berrut and Mittelmann [2, Theorem 3.1], namely Λn ≥ 1/(2n2). Our next result concerns the upper bound
of the Lebesgue constant.
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Theorem 2. The Lebesgue constant for interpolation with the basis functions bi(x) in (2) at the nodes xj
in (6) satisfies

Λn ≤ 2 + ln(n).

Proof. If x = xk for any k, then it follows from the interpolation property of the basis functions that
Λn(x) = 1. So let xk < x < xk+1 for some k and consider the function

Λn,k(x) =

(x− xk)(xk+1 − x)

n∑
j=0

1

∣x− xj ∣∣∣∣∣∣(x− xk)(xk+1 − x)

n∑
j=0

(−1)
j

x− xj

∣∣∣∣∣
=:

N

D
. (9)

Our goal now is to bound the numerator N from above and the denominator D from below.
We first focus on the numerator,

N = (x− xk)(xk+1 − x)

n∑
j=0

1

∣x− xj ∣

= (x− xk)(xk+1 − x)

⎛⎝k−1∑
j=0

1

x− xj
+

1

x− xk
+

1

xk+1 − x
+

n∑
j=k+2

1

xj − x

⎞⎠
= (xk+1 − x) + (x− xk) + (x− xk)(xk+1 − x)

⎛⎝k−1∑
j=0

1

x− xj
+

n∑
j=k+2

1

xj − x

⎞⎠
= (xk+1 − xk) + (x− xk)(xk+1 − x)

⎛⎝k−1∑
j=0

1

x− xj
+

n∑
j=k+2

1

xj − x

⎞⎠ .

As the nodes xj are equally spaced with distance ℎ = 1/n we have

1

xi − xj
=

1

ℎ(i− j)
=

n

i− j

for any i ∕= j and

(x− xk)(xk+1 − x) ≤
(
ℎ

2

)2

=
1

4n2

for xk < x < xk+1. Therefore, using also (4), we get

N ≤ 1

n
+

1

4n2

⎛⎝k−1∑
j=0

1

xk − xj
+

n∑
j=k+2

1

xj − xk+1

⎞⎠
=

1

n
+

1

4n2

⎛⎝k−1∑
j=0

n

k − j
+

n∑
j=k+2

n

j − k − 1

⎞⎠
=

1

n
+

1

4n

⎛⎝ k∑
j=1

1

j
+

n−k−1∑
j=1

1

j

⎞⎠
≤ 1

n
+

1

4n

(
ln(2k + 1) + ln(2n− 2k − 1)

)
=

1

n
+

1

4n
ln
(
(2k + 1)(2n− (2k + 1))

)
≤ 1

n
+

1

4n
ln
(
(2n/2)2

)
=

1

n
+

1

2n
ln(n).
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We now turn to the denominator in (9), ignoring the absolute value and assuming both k and n to be
even for the moment, so that

D = (x− xk)(xk+1 − x)

n∑
j=0

(−1)
j

x− xj

= (x− xk)(xk+1 − x)

⎛⎝k−1∑
j=0

(−1)
j

x− xj
+

1

x− xk
+

1

xk+1 − x
−

n∑
j=k+2

(−1)
j

xj − x

⎞⎠
=

1

n
+ (x− xk)(xk+1 − x)

⎛⎝k−1∑
j=0

(−1)
j

x− xj
−

n∑
j=k+2

(−1)
j

xj − x

⎞⎠ .

Pairing the positive and negative terms in the rightmost factor adequately then gives

S =

k−1∑
j=0

(−1)
j

x− xj
−

n∑
j=k+2

(−1)
j

xj − x

=
1

x− x0
+

(
1

x− x2
− 1

x− x1

)
+ ⋅ ⋅ ⋅+

(
1

x− xk−2
− 1

x− xk−3

)
− 1

x− xk−1

− 1

xk+2 − x
+

(
1

xk+3 − x
− 1

xk+4 − x

)
+ ⋅ ⋅ ⋅+

(
1

xn−1 − x
− 1

xn − x

)
. (10)

Since both the leading term and all paired terms are positive, we have

S > − 1

x− xk−1
− 1

xk+2 − x
≥ − 1

xk − xk−1
− 1

xk+2 − xk+1
= −2n

and further

D =
1

n
+ (x− xk)(xk+1 − x)S ≥ 1

n
+

1

4n2
(−2n) =

1

n
− 1

2n
=

1

2n
.

This bound also holds if n is odd as this only adds a single positive term 1/(xn−x) to S in (10), and if k is
odd then a similar reasoning shows that D ≤ −1/(2n). Therefore, we have ∣D∣ ≥ 1/(2n) regardless of the
parity of k and n, and combining the bounds for numerator and denominator in (9) yields

Λn = max
k=0,...,n−1

(
max

xk<x<xk+1

Λn,k(x)

)
≤ N

D
≤

1
n + 1

2n ln(n)
1
2n

= 2 + ln(n).

3 Numerical experiments

Besides the theoretical results in the previous section, we also performed a number of numerical experiments
to further analyse the behaviour of the Lebesgue function and the Lebesgue constant of Berrut’s rational
interpolant.

Figure 1 shows the Lebesgue function for interpolation at n+ 1 equidistant nodes for some small values
of n. The plots suggest that the maximum is always obtained near the centre of the interpolation interval,
which explains why we analyse the Lebesgue function at x = 1/2 for odd n and at x = 1/2 + ℎ/2 for even
n in the proof of Theorem 1.

We further computed the Lebesgue constant numerically for 1 ≤ n ≤ 200 by evaluating

Λn ≈ max
0≤k≤N

Λn

(
k

N

)
for N = 10 000n. Figure 2 shows these values as well as the lower and upper bound from Theorem 1 and
Theorem 2. Our results suggest that the sequences (Λ2k−1)k∈ℕ and (Λ2k)k∈ℕ are strictly increasing and
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Figure 1: Lebesgue function of Berrut’s interpolant at n+ 1 equidistant nodes for n = 10, 20, 40.
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Figure 2: Lebesgue constant of Berrut’s interpolant at n+ 1 equidistant nodes for 1 ≤ n ≤ 200, compared
to our lower and upper bound and Rivlin’s lower bound for polynomial interpolation at Chebychev nodes.

that Λ2k < Λ2k−1 for k ≥ 2. Thus, interpolation at an odd number of equidistant nodes (i.e. n even) is
slightly more stable than interpolation at an even number of nodes, which could be related to the fact that
Berrut’s rational interpolant reproduces only constant functions for even n, but linear functions for odd n
(which follows from Theorem 3 in [6]). Moreover, we observe that for n ≥ 10 the Lebesgue constant of
this rational interpolant is even smaller than the lower bound for the Lebesgue constant for polynomial
interpolation at Chebychev nodes that was found by Rivlin [7], namely 2

� ln(n+ 1) + � with � ≈ 0.9625.
Interestingly, the Lebesgue constant of Berrut’s rational interpolant behaves very similarly if we consider

interpolation at the Chebychev nodes

xj = cos

(
2j + 1

2n+ 2
�

)
, j = 0, . . . , n

and the logarithmically distributed nodes

xj = ln

(
1 +

i

n
(e− 1)

)
, j = 0, . . . , n.

The corresponding Lebesgue functions for some small values of n are plotted in Figure 3 and Figure 4,
respectively. Figure 5 shows the numerically computed Lebesgue constants, together with the two functions
2
� ln(n + 1) + 0.6 and 2

� ln(n + 1) + 1.2 as a reference to help comparing the two plots. As for equidistant
nodes, it seems that (Λ2k−1)k∈ℕ and (Λ2k)k∈ℕ are strictly increasing and that Λ2k < Λ2k−1 for k ≥ 2 in
both cases.

Overall, we observe that the Lebesgue constants for Chebychev points are greater than those for loga-
rithmically distributed points, which in turn are slightly greater than the Lebesgue constants for equidistant
points. However, in all three cases, the asymptotic growth seems to be 2

� ln(n+ 1).
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Figure 3: Lebesgue function of Berrut’s interpolant at n+ 1 Chebychev nodes for n = 10, 20, 40.
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Figure 4: Lebesgue function of Berrut’s interpolant at n+ 1 logarithmic nodes for n = 10, 20, 40.
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Figure 5: Lebesgue constant of Berrut’s interpolant at n+ 1 Chebychev (left) and logarithmic nodes (right)
for 1 ≤ n ≤ 200, compared to two logarithmic functions.
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