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They showed that when the barrels are new the diffusion 
kinetics measured in terms of the rate of accumulation of the 
compound, can be fit by exponentials functions of the rate, 
otherwise, when the barrels are already used, by polynomials 
of decreasing degree. In [9] the study of a Fickian diffusion 
model for simulating the wine losses during ageing in oak 
barrels, has been presented. This model is based on Fick's 
second law that models non-steady state diffusion processes, 
that is processes in which the concentration within the diffu-
sion volume changes with respect to time. Letting u(x,t) the 
concentration function (subject to some Dirichlet and Robin 
boundary conditions) the diffusion equation corresponding to 
Fick's second law is 
 

ut (x,t) = D u x,x(x,t) 
 

where D is the diffusion coefficient that depends on the type 
of wood. The interest of these two examples is the fact that 
the wine and the phenomena connected to the ageing is 
dynamically evolving as a diffusion process. 
 
Wine as chaotic dynamical system 
 

So far we have not yet discussed what is a dynamical sy-
stem and in particular a chaotic dynamical system: this is 
what are going to say. 
The ``system-wine'' depends on many variables, part of them 
come from the environment, especially soil and climate, and 
the others from the grapes, that combine in chaotic way. This 
is the intuitive reason why the wine can be considered a cha-
otic dynamical system. We will conclude (see next section) by 
suggesting a particular wine called Chaos, a mix of montelpul-
ciano, syrah and merlot. The wine is produced in the region 
Marche in Italy and its bottle’s labels are different views of the 
Mandelbrot set.  

To understand a dynamical system we need to know its 
state. The state of a dynamical system is determined by a col-
lection of real numbers, or more generally by a set of points in 
an appropriate state space. 

To be clearer, for modeling the dynamics of a system, we 
start from a set x1,…,xn of measurable quantities that repre-
sent the system's state at the time t, that is 
 

x(t):=( x1(t),…, xn(t)) 
 

If t is a real number, the dynamical system is called conti-
nuous otherwise, when t is a natural number, the system is 
called discrete. 

The evolution of system is formally a function, that once 
the initial state x0 at t0 is known, allows to uniquely determine 
the state of the system in any successive time t: 
 

xt=F(t0,x0;t)             (4) 
 

Hence, starting from the initial condition x(t0), the set of values 
obtained by (4) is the trajectory of the system passing through 
x0(t0).In practise, it is not easy to find the operator F and peo-
ple try to recover it by using some differential equations repre-

senting the local evolution of the system. These equations, in 
the continuous setting, describe the variation of each state 
variable xi w.r.t. the others and itself, too. That is 
 

dxi/dt=fi(x1,…,xn),    i=1,…,n. 
 

Unfortunately only in simple cases, for example with linear 
differential equations, one can find the analytic solution of the 
system satisfying the initial conditions. Similar considerations 
can be done for discrete dynamical systems where difference 
equations will be considered instead of differential equations: 
 

xi(t+1)= fi(x(t)). 
 

It is beyond the aim of this paper to go further in the theory of 
dynamical systems. What we only want to understand is why 
wine is a chaotic dynamical system. 

For a dynamical system to be classified as chaotic, most 
scientists will agree that it must have the following properties. 

- It must be sensitive to initial conditions. That is an 
arbitrarily small perturbation of the current trajectory 
may lead to significantly different future behavior. 
Sensitivity to initial conditions is often confused with 
chaos in popular accounts. 

- It must be topologically mixing, in the sense that the 
system will evolve over time so that any given region 
or open set of its phase space will eventually overlap 
with any other given region. Here, mixing is really 
meant to correspond to the standard intuition: the 
mixing of colored dyes or fluids is an example of a 
chaotic system. 

- Its periodic orbits must be dense. 
A simple example of a real chaotic system is the smoke of 
cigarettes. In fact, even if cigarettes are lighted in macrosco-
pical similar conditions, their smoke can behave in very diffe-
rent way, depending on the air pressure, the air currents, the 
air temperature and so on. 
Similarly, the fermentation of the must, that contains about 
2000 known compounds, depends on the air pressure, hu-
midity, temperature, the lunar phase, and so on. Therefore, 
small changes of these during the fermentation could influen-
ce significatively the production and also the evolution of the 
wine, so that we can get a good wine or a  “good vinegar” 
Figure 4 shows these two chaotic dynamical systems: the 
match's smoke and the must. 
 

   
 

Figure 4: (Right) A match's smoke and (Left) the fermenting must.  
 

In many physical and mathematical models of wine fer-
mentation kinetics, people mostly study the diffusion of some 
compounds and their effect on other compounds, such as 
yeast cells and sugars, or the diffusion of the flavors in oak 
barrels or due to oak chips. These models are essentially a 
description of chemical phenomena by means of biological 
mathematical models. As detailed in [11] the fermentation ki-
netics model can be subdivided into three parts: a growth mo- 



del, a substrate model and a product model. 
Recently the sigmoidal logistic model has been one of the 
most popular used for simulations due to its property of good 
fit of experimental data. In its standard form the sigmoidal cur-
ve is the solution of the Cauchy problem 
 

dp/dt=p(1-p),    p(0)=p0.          (5) 
 

This first order non-linear differential equation (5) is indeed a 
special case of the well-known Verhulst logistic model 
 

dp/dt=k p (1-p/C),    p(0)=p0.         (6) 
 

where the constant k represents the growth rate and C the 
carrying capacity of the system. This model, in the discrete 
case, is usually represented (after a scaling process) by the 
iterative map 
 

xn+1= σ xn(1- xn),    n ≥0 

which, for values of the parameter σ grater than 3.45, 

shows some chaotic behaviour that graphically produces the 
well-known bifurcation diagram (see Fig. 6, right). 
 

 
 

Figure 6: (left) Lorenz attractor, (right) the Logist map and its bifurca-
tion diagram 

 
Some dynamical systems are chaotic everywhere but in many 
cases chaotic behaviour is found only in a subset of the phase 
space. The cases of great interest arise when the chaotic 
behaviour takes place on an attractor, since then a large set 
of initial conditions will lead to orbits that converge to this 
chaotic region. While most of the motion types mentioned 
above give rise to very simple attractors, such as points and 
circle-like curves called limit cycles, chaotic motion gives rise 
to what are known as strange attractors, i.e. attractors that 
can have great detail and complexity. For instance, a simple 
three-dimensional model of the Lorenz weather system gives 
rise to the famous Lorenz attractor (see Figure 6 well-known 
for its butterfly shape. Strange attractors are also fractals 
whose most important representatives are the Mandelbrot set 
and the Julia sets, famous also as screen savers. 
In conclusion, wine fermentation and wine ageing are not 
simple dynamical systems to study and the study of the wine 
fermentation should be better modeled by reaction-diffusion 
equations of the form 
 

du(x,t)/dt=D ∆ u(x,t)+ K g(u(x,t))        (7) 
 

where the function g represents the reaction of the system, 
usually a non-linear function of u, with the function u depen-
ding on the vector x, which represents the variables involved 
in the evolution, and the time t. For these equations the so-
lution is usually found by sophisticated numerical methods (cf. 
e.g. [6]). Unfortunately the great number of substances that 
make up wine, make its behaviour often chaotic and therefore 
people solving numerically the reaction-diffusion equations of 
the wine evolution, should study other aspects connected to 
the numerical solution, such as stability. 
 
“Chaos” is also a wine 
 

We have just seen that wine is composed of at least 2000 
compounds that combine and mix together and evolved in ti-
me, giving to the wine its “personality”. An Italian wine produ-
cer, the firm “Fattoria Le Terrazze” whose vineyards are in 
Numana nearby Ancona, has decided since 1997 to call one 

of its red wines with the name Chaos. The producer, on the 
basis of our previous discussion about the “chaos into the 
wine”, decided to use as label of Chaos, views of the Mandel-
brot set. In Figure 7 we show some labels of Chaos. 
 

   
 

Figure 7: Chaos 2000, 2001 and 2002. 

 
Acknowledgments. I would like to give a special thanks to 
the Italian Association of Sommeliers, delegation of Padua, 
who invited me to give this lesson on November 23rd, 2006.  
 
Bibliografia: [1] Associazione Italiana Sommeliers, Tecnica della De-

gustazione, 1B. Ed. AIS (2001). [2] Carl de Boor: A practical guide to 

splines. Appl. Mathematical Sciences 27, Ed. Springer, Rev. Edition 
(2001). [3] Gèrard Liger-Belair: Bollicine. Ed. Einaudi (2005). [4] En-
carna Gòmez-Plaza at al.: The effect of successive uses of oak barrels on 

the extraction of oak-related volatile compounds from wine. Int. J. Food 
Science and Tech. 39, 1069--1078, (2004). [5] M. Gardner, Enigmi e 

giochi matematici. SuperBur Saggi (2005). [6] J. C. Jorge and B. Bu-
janda: Numerical methods for evolutionary reaction-diffusion problems 

with nonlinear reaction terms. J. Comput. Appl. Math. 166 (1), 167--180, 
(2004). [7] D. Oltolini: La Fisica nel bicchiere. Il sommelier italiano, Jan. 
2005. [8] A. Rigamonti and A. A. Varlamov: Nunc est Bibendum:  Di-

vertissment di Fisici attorno a bicchieri di vino. Il Nuovo Saggiatore, Jan. 
2004. [9] A. Ruiz de Adana, L.M. Lopez and J. M. Sala: A Fickian mo-

del for calculating wine losses from oak casks depending on conditions in 

ageing facilities. Appl. Thermal Engineering 25, 709--718, (2005). [10] 
A. Terni: Matematica e vino. In Matematica e cultura 2006, Ed. 
Springer, pp. 241-244. [11] D. Wang et al.: Fermentation kinetics of dif-

ferent sugars by apple wine yeast Saccharomyces cerevisiae. J. of Inst. Bre-
wering 110 (4), 340--346, (2004). 
 

[ * ] Department of Computer Science, University of Verona (Italy), 
e-mail: stefano.demarchi@univr.it 
 

 

Buchi neri, informazione, computazione 
a scale ultramicroscopiche 

 

di Paolo Di Sia (
1,2

), Valerio Dallacasa (
1
) 

 
La fisica dei buchi neri 
 

La fisica dei buchi neri iniziò a svilupparsi in maniera for-
te negli anni ’60, in relazione anche a necessità riguardanti 
la ricerca di connessioni tra fisica quantistica e relatività ge-
nerale. I concetti di ordine e disordine in fisica assumono un 
significato preciso in particolare in relazione al concetto più 
generale di correlazione tra livelli energetici. Maggiore è tale 
correlazione, maggiore è l’ordine del sistema, mentre ad u-
na più larga distribuzione di livelli corrisponde un più alto va-
lore dell’entropia. All’inizio di tali studi emerse che ogni infor-
mazione va completamente perduta all’interno di un buco 
nero a causa di quello che il fisico J. A. Wheeler ha deno-
minato “teorema NO-HAIR” (dell’assenza di capelli) di un 
buco nero. Tale teorema restringe lo stadio finale di una 
stella collassante a sole 4 possibilità, che sono le 4 soluzioni 
delle equazioni di Einstein descriventi i buchi neri (abbre-
viati bn di seguito): 
1) bn di Schwarzschild, di massa M, carica Q=0, non rotan-

ti; 

2) bn di Kerr, di massa M, carica Q=0, rotanti; 
3) bn di Reisnerr-Nordstrom, di massa M, carica Q, non ro-

tanti; 
4) bn di Newmann, di massa M, carica Q, rotanti. 
[Segue al numero 119] 


