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Abstract

The basic LU factorization with row pivoting, applied to a rectan-

gular Vandermonde-like matrix of an admissible mesh on a multidimen-

sional compact set, extracts from the mesh the so-called Discrete Leja

Points, and provides at the same time a Newton-like interpolation for-

mula. Working on the mesh, we obtain also a good approximate estimate

of the interpolation error.

1 Introduction.

In the last two years, starting from the seminal paper of Calvi and Levenberg
[8], it has been recognized that the so-called “admissible meshes” play a central
role in the construction of multivariate polynomial approximation processes on
compact sets. This concept is essentially a matter of polynomial inequalities.

Indeed, we recall that an admissible mesh is a sequence of finite discrete
subsets An of a compact set K ⊂ Rd (or K ⊂ Cd), such that the polynomial
inequality

‖p‖K ≤ C‖p‖An
, ∀p ∈ P

d
n(K) (1)

holds for some constant C > 0, with card(An) that grows at most polynomially
in n. Here and below, ‖f‖X = supx∈X |f(x)| for f bounded on X , and Pd

n(K)
denotes the space of d-variate polynomials of total degree at most n, restricted
to K. Among their properties, it is worth recalling that admissible meshes are
preserved by affine mapping, and can be extended by finite union and product.

These sets and inequalities are known also under different names in vari-
ous contexts: (L∞) discrete norming sets, Marcinkiewicz-Zygmund inequalities
(especially for the sphere), and recently “stability inequalities” in more general
functional settings [14].

In [8, Thm.1] it was shown that the uniform error of the n-degree discrete

least squares polynomial approximation to a given continuous function at an
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admissible mesh is essentially within a factor C
√

card(An) from the best poly-
nomial approximation. On the other hand, Fekete Points (points that maximize
the absolute value of the Vandermonde determinant) extracted from an admis-
sible mesh have a Lebesgue constant

Λn ≤ CN , N := dim(Pd
n) (2)

that is within a factor C from the theoretical bound for the continuous Fekete
Points. Moreover, they distribute asymptotically as the continuous Fekete
Points, namely the corresponding discrete measure converges weak-∗ to the
pluripotential theoretic equilibrium measure of the compact set (cf. [4]).

In principle, following [8, Thm.5], it is always possible to construct an
admissible mesh on a Markov compact, i.e., a compact set which satisfies a
Markov polynomial inequality, ‖∇p‖K ≤ Mnr‖p‖K for every p ∈ Pd

n(K), where
‖∇p‖K = maxx∈K ‖∇p(x)‖2. This can be done essentially by a uniform dis-
cretization of the compact set (or even only of its boundary in the complex
case) with O(n−r) spacing, but the resulting mesh has then O(nrd) cardinality
for real compacts and, in general, O(n2rd) for complex compacts. Since r = 2
for many compacts, for example real convex compacts, the computational use of
such admissible meshes becomes difficult or even impossible for d = 2, 3 already
at moderate degrees.

On the other hand, it has been recently shown that optimal admissible

meshes, i.e., admissible meshes with O(nd) cardinality, can be constructed for
important classes of compact sets, such as convex polytopes and star-like do-
mains with smooth boundary (cf. [7, 10]). Moreover, admissible meshes whose
cardinality is within a logarithmic factor from the optimal one, termed near
optimal admissible meshes, exist on compact sets that are obtained from the
above classes by analytic transformations (cf. [10, 12]).

An alternative way of producing good low cardinality meshes for polyno-
mial approximation, is to look for the so-called weakly admissible meshes, which
satisfy (1) with a non constant C = Cn which increases however at most polyno-
mially in n, cf. [8]. For example, weakly admissible meshes with Cn = O(log2 n)
have been constructed on several standard 2-dimensional compact sets, such as
triangles, quadrangles and disks (cf. [6] and references therein).

Even when low cardinality admissible meshes are at hand, extracting good
interpolation points from them is a large-scale computational problem.

Indeed, consider the so-called Fekete points. These are defined as follows.
Suppose that z = (zi)1≤i≤N is an array of points restricted to lie in a compact

subset K̃ ⊂ K and that p = (pj)1≤i≤N is an array of basis polynomials for Pd
n

(both ordered in some manner). We may form the Vandermonde matrix

V (z; p) = V (z1, . . . , zN ; p1, . . . , pN ) = [pj(zi)] ∈ C
N×N .

The Fekete points of K of degree n, associated to K̃, are those which maximize
det(V (z; p)) over z ∈ K̃N . For K̃ = K these continuous Fekete points are well-
known to be good interpolation points for any compact K. However, computing
them is a difficult optimization problem.

Closely related to the Fekete points are the so-called Leja points; the main
difference being that the Leja points are a sequence while the Fekete points
in general are completely different for each order. Specifically, the Leja points
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associated to K̃ are defined as follows. The first point ξ1 is defined as

ξ1 = argmax
x∈ eK

|p1(x)|.

Then, supposing that ξ1, ξ2, · · · , ξk−1 have already been defined, the next point
is defined to be

ξk = argmax
x∈ eK

det|V (ξ1, . . . , ξk−1, x; p1, . . . , pk)|.

In case of non-uniqueness it can be chosen arbitrarily among the various max
points.

A less computationally expensive way of obtaining good points is to use
K̃ = An, an admissible mesh, with n sufficiently large to serve as a reasonable
discrete model of K resulting in discrete Fekete or Leja points. Specifically, we
form the rectangular Vandermonde-like matrix associated to An

V (a; p) = V (a1, . . . , aM ; p1, . . . , pN ) = [pj(ai)] ∈ C
M×N (3)

where a = (ai) is the array of the points of An, and p = (pj) is again the array
of basis polynomials for Pd

n (both ordered in some manner). For convenience,
we shall consider p as a column vector p = (p1, . . . , pN )t. Since the rows of the
rectangular Vandermonde matrix V (a; p) correspond to the mesh points and the
columns to the basis elements, computing the Fekete Points of an admissible
mesh amounts to selecting N rows of V (a; p) such that the volume generated
by these rows, i.e., the absolute value of the determinant of the resulting N ×N
submatrix, is maximum.

This problem is known to be NP-hard, so heuristic or stochastic algorithms
are mandatory; cf. [9] for the notion of volume generated by a set of vectors
(which generalizes the geometric concept related to parallelograms and paral-
lelepipeds), and an analysis of the problem from a computational complexity
point of view.

Almost surprisingly, good approximate solutions, called Discrete Extremal

Sets , can be given by basic procedures of numerical linear algebra. The first,
which gives the Approximate Fekete Points, corresponds to a greedy maximiza-
tion of submatrix volumes, and can be implemented by the QR factorization

with column pivoting (Businger and Golub 1965) of the transposed Vander-
monde matrix. This factorization is what is used by Matlab for the solution of
underdetermined systems by the “backslash” operator.

The second, which gives the Discrete Leja Points, corresponds to a greedy
maximization of nested square submatrix determinants, can be implemented by
the standard LU factorization with row pivoting. See [4, 5, 17] and the references
therein for a complete discussion of these two approaches.

In this paper we show that the computational process that produces the
Discrete Leja Points also naturally provides a multivariate version of Newton
interpolation, and a good numerical estimate of the interpolation error.

2 Multivariate Newton-like Interpolation.

The computation of Discrete Leja Points is based on the following algorithm,
that performs a greedy maximization of subdeterminants of the Vandermonde
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matrix at an admissible mesh. We use the notation V0([i1, . . . , ik], [j1, . . . , jk]) to
indicate the square submatrix of V0 corresponding to the row indices i1, . . . , ik
and the column indices j1, . . . , jk.

greedy algorithm (Discrete Leja Points):
• V0 = V (a; p); i = [ ];
• for k = 1 : N

“select ik to maximize |detV0([i, ik], [1, . . . , k])|”; i = [i, ik];
end

• ξ = a(i1, . . . , iN)

Observe that the selected points depend not only on the basis (as is also the
case with the Approximate Fekete Points), but also on its ordering. This does
not happen with the continuous Fekete Points, which are independent of the
polynomial basis. In the univariate case with the standard monomial basis, it is
not difficult to see that the selected points are indeed the Leja points extracted
from the mesh, i.e., given ξ1 ∈ An, the point z = ξk ∈ An is chosen in such a
way that

∏k−1

j=1
|z − ξj | is a maximum, k = 2, 3, . . . , N = n + 1 (cf. [1, 15] and

references therein).
The greedy algorithm above can be immediately implemented by the LU

factorization with standard row pivoting, as is sketched in the following Matlab-
like script:

algorithm DLP (Discrete Leja Points):
• V0 = V (a; p); i = (1, . . . , M)t;
• [P0, L0, U0] = LU(V0); i = P0 i;
• ξ = a(i1, . . . , iN)

This works since the effect of Gaussian elimination with row pivoting is
exactly that of iteratively seeking the maximum, keeping invariant the abso-
lute value of the relevant subdeterminants (see [5] for a full discussion of the
computational process). Observe that P0V0 = L0U0, where P0 is an M × M
permutation matrix, L0 is M ×N lower “triangular” with ones on the diagonal,
and U0 is N × N upper triangular.

An important feature is that Discrete Leja Points form a sequence, i.e., the
first m1 = dim(q1) computed for an ordered basis {q1, q2} are exactly the
Discrete Leja Points for q1. Hence, if the basis p is such that

span(p1, . . . , pNν
) = P

d
ν , Nν := dim(Pd

ν) , 0 ≤ ν ≤ n (4)

then the first Nν Discrete Leja Points are a unisolvent set for interpolation in
Pd

ν for 0 ≤ ν ≤ n. Moreover, it has been proved in [5, Thm.6.2] that, under
assumption (4), Discrete Leja Points have the same asymptotic behavior of
continuous Fekete Points (and of Approximate Fekete Points, cf. [4]), namely the
corresponding discrete measures converge weak-∗ to the pluripotential theoretic
equilibrium measure of the compact set.

We show now that the same computational process that gives the Discrete
Leja Points also naturally provides a Newton-like interpolation formula. The
connection between the LU factorization of Vandermonde matrices and Newton-
like interpolation was originally recognized by de Boor (see pages 865–866 of [3]
and also page 888 of [2] for the univariate case), and recently reconsidered in a
more general functional framework by Schaback et al. [11, 16].
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Consider the square Vandermonde matrix in the basis p at the Discrete Leja
Points ξ, where we assume (4). We have

V = V (ξ; p) = (P0V0)1≤i,j≤N = LU (5)

where L = (L0)1≤i,j≤N and U = U0. The polynomial interpolating a function
f at ξ, with the notation f = f(ξ) ∈ CN , can be written as

Lnf(x) = ctp(x) = (V −1f)tp(x) = (U−1L−1f)tp(x) = d
t
φ(x) (6)

where
dt = (L−1f)t , φ(x) = U−tp(x) . (7)

Since U−t is lower triangular, by (4) the basis φ is such that span(φ1, . . . , φNν
) =

Pd
ν , 0 ≤ ν ≤ n, which shows that (6) is a type of Newton interpolation formula.

Moreover, if we consider the Vandermonde matrix at the Discrete Leja Points
in this basis, we get

V (ξ; φ) = V (ξ; p)U−1 = LUU−1 = L ,

a lower triangular matrix. Hence φj(ξj) = 1 and φj vanishes at all the interpola-
tion points from the first to the (j−1)-th for j > 1. In the univariate case, since
φj ∈ P1

j−1 by (4) and (7), this means that φ1 ≡ 1, φj(x) = αj(x − x1) . . . (x −

xj−1) for 2 ≤ j ≤ N = n + 1 with αj = ((xj − x1) . . . (xj − xj−1))
−1. This

is the classical Newton basis up to multiplicative constants, and thus the {dj}
are the classical univariate divided differences up to the multiplicative constants
{1/αj}.

It is therefore reasonable, following de Boor, to say in general that (6) is a
multivariate Newton-like interpolation formula, that φ is a multivariate “New-
ton basis”, and that d is a kind of multivariate “divided difference”. Note that
this would work even if we started from any unisolvent interpolation array η,
computing directly the LU factorization PV = LU . In this case ξ = Pη would
be a Leja reordering of the interpolation points, that in the univariate case is
known to stabilize the Newton interpolation formula, cf. [13].

2.1 Error estimate and numerical results.

Let us write the multivariate Newton interpolation formula (6) as

Lnf(x) = dtφ(x) = δ0(x) + · · · + δn(x) (8)

where the polynomials δν ∈ Pd
ν , 0 ≤ ν ≤ n, are defined as

δν = (d)t
j∈∆ν

(φ)j∈∆ν
, ∆ν = {Nν−1 + 1, . . . , Nν} . (9)

This is clearly a multivariate version of the incremental form of the Newton
interpolation formula, where each new degree comes into play as a block of
summands. In the case of the continuum Leja Points, if f is sufficiently regular
to ensure uniform convergence of the interpolating polynomials, i.e.,

f(x) =
∞∑

k=0

δk(x) ,
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then

f(x) − Lν−1f(x) =

∞∑

k=ν

δk(x)

and we may obtain an estimate, or at least an indication, of the error from the
norm of the first neglected term in the series, i.e.,

‖Lν−1f − f‖K ≈ ‖δν‖K ≤ C‖δν‖An
, ν ≤ n . (10)

By analogy, we may apply (10) also in the case of the Discrete Leja Points.
We caution the reader however that although, for simplicity’s sake we have
written δk, this quantity is related to points extracted from An and hence also
depends on n. The idea is to choose a fixed n sufficiently large so that An is a
sufficiently good model (for all practical purposes) of the underlying compact
set K.

While the first approximation in (10) is quite heuristic, its bound is rigorous,
being based on the fact that the error indicator δν is a polynomial, and that
we have at hand the admissible mesh from which we extract the Discrete Leja
Points (observe that if An is an admissible mesh for degree n on K then property
(1) holds for any degree ν ≤ n). To our knowledge, this is the first time that
admissible meshes are used to numerically estimate polynomial approximation
errors.

In Figures 1-2 below, we show some numerical results concerning the square
K = [−1, 1]2. At each degree, the points are extracted from a (2n+1)×(2n+1)
Chebyshev-Lobatto grid, which is an admissible mesh with C = 2 as proved in
[7], applying algorithm DLP to the corresponding rectangular Vandermonde
matrix in the Chebyshev product basis. The interpolation errors (for two func-
tions of different regularity) have been computed on a 100×100 uniform control
grid. Though the (numerically estimated) Lebesgue constant exhibits an irreg-
ular behavior, as it is usual with Leja-like points, it is below the theoretical
overestimate (2). For both test functions, (10) turns out to be a good estimate
of the interpolation error, especially for higher degrees.
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Figure 1: Left: N = 861 Discrete Leja Points for degree n = 40 on the square,
extracted from an 81 × 81 Chebyshev-Lobatto grid; Right: Lebesgue constants
of Discrete Leja Points on the square for n = 1, . . . , 40.
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Figure 2: Uniform error (circles) and estimate (10) (triangles) of Newton in-
terpolation at Discrete Leja Points on the square for ν = 2, . . . , 40; Left:
f(x1, x2) = cos (5(x1 + x2)); Right: f(x1, x2) = [(x1 − 1/3)2 + (x2 − 1/3)2]5/2.
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