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Abstract

It is well-known that radial basis function interpolants suffer of bad conditioning if the basis of
translates is used. In the recent work [12], the authors gave a quite general way to build stable
and orthonormal bases for the native space NΦ(Ω) associated to a kernel Φ on a domain Ω ⊂ Rs.
The method is simply based on the factorization of the corresponding kernel matrix.
Starting from that setting we describe a particular basis which turns out to be orthonormal in
NΦ(Ω) and in `2,w(X), where X is a set of data sites of the domain Ω. The basis arises from
a weighted singular value decomposition of the kernel matrix. This basis is also related to a
discretization of the compact operator TΦ : NΦ(Ω)→ NΦ(Ω),

TΦ[f ](x) =

∫
Ω

Φ(x, y)f(y)dy ∀x ∈ Ω

and provides a connection with the continuous basis that arises from an eigen-decomposition of
TΦ. Finally, using the eigenvalues of this operator, we provide convergence estimates and stability
bounds for interpolation and discrete least-squares approximation.

Keywords: Radial basis function interpolation, stability, weighted least-squares approximation.

1. Introduction

The main purpose of approximation theory is the reconstruction of a given function defined
on a set Ω ⊂ Rs from some values sampled at a finite set X ⊂ Ω. This process is required to be
convergent and stable, namely, under suitable conditions, the approximant should reproduce the
original function in a chosen norm.

In this setting, the so-called kernel methods are of growing importance. Altough they are built
to be well-posed for every data distribution, it is also well-known that the interpolation based
on translates of radial basis functions or non-radial kernels is numerically unstable due to the
ill-conditioning of the kernel matrix (cf. e.g. [4, 9]).
Several approaches have been studied to assure a fast convergence and stable computations. They
are mainly based on different aspects of the approximation process by kernels: from the optimiza-
tion of certain parameters and the search of convenient data sets, to the numerical stabilization
of the underlying linear system. Other approaches are based on a change of basis for the relevant
space of approximants, developing also preconditioning schemes [2].
Recently the two papers [11, 12] introduced a new tool, a general way to produce stable bases for
the native space NΦ(Ω) associated with a kernel Φ : Ω×Ω→ R, based on a suitable factorization
of the kernel matrix A := (Φ(xi, xj)). In [11] this process was used to create a Newton basis, which
turns out to be stable, complete, orthonormal and recursively computable. A related approach,
based on a different matrix decomposition, is used also in [6].
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We use these ideas and we refine them in order to build a new stable basis that shares some
properties with the one proposed in [12]. Moreover, the new basis provides a connection with
a “natural” basis for the functional space NΦ(Ω), which arises from an eigendecomposition of a
compact integral operator associated with the kernel Φ, and which brings intrinsic information
about the kernel Φ and the set Ω. In the recent paper [8] this eigenbasis in the case of the Gaus-
sian kernel was also used, altough in a different way, to produce fast and stable interpolants and
least-squares approximants.
From the numerical point of view, the structure of the new basis allows to further stabilize the ap-
proximation by moving from an exact data interpolation to an approximation in the least-squares
sense, with a process that exactly corresponds to a low-rank approximation of the kernel matrix.

The paper is organized as follows. In Section 2 we introduce the so-called eigenbasis while in
Section 3 we describe the techniques introduced in [11, 12], which will be our starting point for
the development of the new basis, which is constructed and analyzed in Section 4. Section 5
presents some numerical examples which test the new basis on various domains and kernels. The
last Section discusses future works that could be done for improving and better understanding our
results.

2. An integral operator and a ”natural” basis

Given a set Ω ⊂ Rs and a positive definite kernel Φ : Ω × Ω → R such that, for all x, y ∈ Ω,
Φ(x, y) = φ(‖x− y‖2), where φ : [0,∞)→ R, we can define an integral operator TΦ associated to
the kernel Φ. The construction and the properties of this operator are discussed in detail in [15,
§10.4]. Here we are mainly interested in a particular basis that arises from an eigendecomposition
of it.
Consider the operator TΦ : L2(Ω)→ NΦ(Ω) ⊂ L2(Ω) defined by

TΦ[f ](x) :=

∫
Ω

Φ(x, y)f(y)dy ∀f ∈ L2(Ω), ∀x ∈ Ω , (1)

that maps L2(Ω) continuously into NΦ(Ω). It is the adjoint of the embedding operator of NΦ(Ω)
into L2(Ω), i.e.

(f, v)L2(Ω) = (f, TΦ[v])Φ ∀f ∈ NΦ(Ω), ∀v ∈ L2(Ω) . (2)

A particular and in some sense “natural“ basis for NΦ(Ω) comes from the famous Mercer’s theorem
(cf. [10]).

Theorem 1. Every continuous positive definite kernel Φ on a bounded domain Ω ⊂ Rs defines an
operator

TΦ : NΦ(Ω)→ NΦ(Ω), TΦ[f ] =

∫
Ω

Φ(x, y)f(y)dy ,

which is bounded, compact and self-adjoint. It has an enumerable set of eigenvalues {λj}j>0 and
eigenvectors {ϕj}j>0, i.e. ∀j > 0

λjϕj(x) =

∫
Ω

Φ(x, y)ϕj(y)dy ∀x ∈ Ω ,

which form an orthonormal basis for NΦ(Ω). In particular

{ϕj}j>0 is orthonormal in NΦ(Ω) ,

{ϕj}j>0 is orthogonal in L2(Ω), ‖ϕj‖2L2(Ω) = λj ,

λj → 0 as j →∞ .
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Moreover, the kernel has a series expansion

Φ(x, y) =

∞∑
j=1

ϕj(x)ϕj(y) ∀x, y ∈ Ω ,

where the {ϕj} are eigenfunctions, which is absolutely and uniformly convergent.

Remark 2. The operator TΦ is a trace-class operator, that is to say∑
j>0

λj =

∫
Ω

Φ(x, x) dx = φ(0) |Ω| ,

where |Ω| := meas(Ω).
This property, together with the fact that the eigenvalues accumulate in 0, will be useful to

estimate the convergence of the truncated series with respect to the whole one. Moreover, as a
consequence of the Property (2), which we point out for later use, for all j > 0

(f, ϕj)L2(Ω) = (f, TΦ[ϕj ])Φ = λj (f, ϕj)Φ = (ϕj , ϕj)L2(Ω) (f, ϕj)Φ ∀f ∈ NΦ(Ω) .

3. General bases

In this section we give a brief account of the tools introduced in [11, 12]. Among the results
discussed in details in those papers, we stress the connection between a change of basis and a
decomposition of the kernel matrix A, together with a characterization of such bases.

Let Ω ⊂ Rs, X = {x1, . . . , xN} ⊂ Ω and let TX = {Φ(·, xi), xi ∈ X} be the standard basis of
translates. Consider another basis U = {ui ∈ NΦ(Ω), i = 1, . . . , N} such that

span(U) = span(TX) =: NΦ(X) . (3)

At x ∈ Ω, TX and U can be expressed as the row vectors

T (x) = [Φ(x, x1), . . . ,Φ(x, xN )] ∈ RN ,
U(x) = [u1(x), . . . , uN (x)] ∈ RN .

The following theorem gives a characterization of the basis U .

Theorem 3. Any basis U arises from a factorization of the kernel matrix A, i.e.

A = VU · CU−1 ,

where VU = (uj(xi))16i,j6N and the coefficient matrix CU is such that U(x) = T (x) · CU .

This factorization allows to express the interpolant of a given function f ∈ NΦ(Ω) in the following
way.

Proposition 4. The interpolant PX [f ] on X ⊂ Ω of a function f ∈ NΦ(Ω) can be rewritten as

PX [f ](x) =
N∑
j=1

Λj(f) uj(x) = U(x) · Λ(f) ∀x ∈ Ω ,

where Λ(f) = [Λ1(f), . . . ,ΛN (f)]T ∈ RN is a column vector of values of linear functionals defined
by

Λ(f) = CU
−1 ·A−1 · EX(f) = VU

−1 · EX(f) ,

while EX(f) is the column vector given by the evaluations of f on X.
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Now we can give a stability estimate, which considers the particular basis used.

Proposition 5. Let GU := ((ui, uj)Φ)16i,j6N , ρ(GU ) the spectral radius and κ2(GU ) the corre-
sponding 2-condition number. Then, ∀x ∈ Ω,

|PX [f ](x)|2 6 ‖U(x)‖22 ‖ΛU (f)‖22 6 κ2(GU ) φ(0) ‖f‖2Φ. (4)

In particular

‖U(x)‖22 6 ρ(GU ) φ(0) ∀x ∈ Ω ,

‖ΛU (f)‖22 6 ρ(G−1
U ) ‖f‖2Φ ∀f ∈ NΦ(Ω) .

The message contained in this Proposition is that orthonormal bases have to be considered for
stability purpose. Indeed, the next corollary shows that they give the best results in terms of
stability.

Corollary 6. If U is a Φ-orthonormal basis, the stability estimate (4) becomes

|PX [f ](x)| 6
√
φ(0) ‖f‖Φ ∀x ∈ Ω . (5)

In particular, for fixed x ∈ Ω and f ∈ NΦ(Ω), the values ‖U(x)‖2 and ‖Λ(f)‖2 are the same for
all Φ-orthonormal bases independently on X

‖U(x)‖2 6
√
φ(0), ‖Λ(f)‖2 6 ‖f‖Φ .

To conclude this section, we recall that in order to build such a basis it is enough to choose a
particular matrix decomposition. This is the idea on which relies the construction of the new
basis.

Theorem 7. Each Φ-orthonormal basis U arises from a decomposition

A = BT ·B,

with BT = VU and B−1 = CU .

A similar result holds for `2(X)-orthonormal bases.

Theorem 8. Each `2(X)-orthonormal basis U arises from a decomposition

A = Q ·B ,

with Q orthonormal, Q = VU and B = CU .

4. Weighted SVD bases

The main idea for the construction of the new basis is to discretize the “natural” basis intro-
duced in Theorem 1. To this aim, consider on Ω a cubature rule (X, W)N , N ∈ N, that is a set
of distinct points X = {xj}Nj=1 ⊂ Ω and a set of positive weights W = {wj}Nj=1 such that

∫
Ω
f(y)dy ≈

N∑
j=1

f(xj)wj ∀f ∈ NΦ(Ω) .
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This allows to approximate the operator (1) for each eigenvalue λj , j > 0, using the symmetric
Nyström method (c.f. e.g [1, §11.4]) based on the above cubature rule.
Thus, the operator TΦ can be evaluated on X as

λjϕj(xi) =

∫
Ω

Φ(xi, y)ϕj(y)dy i = 1, . . . , N, ∀j > 0,

and then discretized using the cubature rule by

λjϕj(xi) ≈
N∑
h=1

Φ(xi, xh)ϕj(xh)wh i, j = 1, . . . , N. (6)

Now, setting W = diag(wj), it suffices to solve the following discrete eigenvalue problem in order
to find the approximation of the eigenvalues and eigenfunctions (evaluated on X) of TΦ[f ]:

λv = (A ·W )v.

This approach does not lead directly to the connection between the discretized version of the basis
of Theorem 1 and a basis of the subspace NΦ(X). In fact it involves a scaled version of the kernel
matrix, that is A ·W , which is no longer symmetric and that cannot be described as a factorization
of A, as required by the construction made in the previous section.
A solution is to rewrite (6) using the fact that the weights are positive as

λj(
√
wiϕj(xi)) =

N∑
h=1

(
√
wiΦ(xi, xh)

√
wh)(
√
whϕj(xh)) ∀i, j = 1, . . . , N ,

and then to consider the corresponding scaled eigenvalue problem

λ
(√

W · v
)

=
(√

W ·A ·
√
W
)(√

W · v
)

which is equivalent to the previous one, now involving the symmetric and positive definite matrix
AW :=

√
W · A ·

√
W . This matrix is normal, then a singular value decomposition of AW is a

unitary diagonalization.

Motivated by this approach we can introduce a weighted SVD basis for NΦ(X), described in
terms of the notation given in Theorem 3.

Definition 9. A weighted SVD basis U is a basis for NΦ(X) characterized by the following ma-
trices:

VU =
√
W−1 ·Q · Σ, CU =

√
W ·Q · Σ−1

where √
W ·A ·

√
W = Q · Σ2 ·QT

is a singular value decomposition (and a unitary diagonalization) of the scaled kernel matrix AW .
To be more precise, Σ is a diagonal matrix with Σjj = σj , j = 1, . . . , N and σ2

1 > · · · > σ2
N > 0

are the singular values of AW , and W is a diagonal matrix where Wjj = wj , j = 1, . . . , N are the
weigths of the cubature rule (X, W)N .

In what follows it is of fundamental importance to require that
N∑
j=1

wj = |Ω|, which is equivalent

to ask that for all N ∈ N the cubature rule (X, W)N is exact at least for the constant functions.
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As expected, the weighted SVD basis preserves some interesting properties of the “natural” one, as
stated in the next Theorem. From now on, we denote as `2,w(X) the `2(X) inner product weighted
with the weights of the cubature rule (X, W)N , which are assumed to be positive.

Theorem 10. Every weighted SVD basis U satisfies:

1. uj(x) =
1

σ2
j

N∑
i=1

wiuj(xi)Φ(x, xi) ≈
1

σ2
j

TΦ[uj ](x), ∀ 1 6 j 6 N, ∀x ∈ Ω;

2. U is Φ-orthonormal;

3. U is `2,w(X)-orthogonal;

4. ‖uj‖2`2,w(X) = σ2
j ∀uj ∈ U ;

5.
∑N

j=1 σ
2
j = φ(0) |Ω|.

Proof: Properties 2. - 3. and 4. can be proved using the expression for the gramians computed
in [12], where in this case the `2(X) products are weighted in the proper way. Indeed,

GU = CU
T ·A · CU = CU

T · VU = Σ−1 ·QT ·
√
W ·
√
W−1 ·Q · Σ = I

ΓU = VU
T ·W · VU = Σ ·QT ·

√
W−1 ·W ·

√
W−1 ·Q · Σ = Σ2

To prove Property 1. it suffices to use the definition of CU and VU . Indeed, from the definition of
VU , denoting by VU j the j-th column of VU , we get

VU =
√
W−1QΣ =

√
W−1[q1σ1, ..., qNσN ]

⇒ EX(uj) = VU j = (
√
W )−1qjσj

⇒ qj/σj = 1/σ2
j

√
WEX(uj) .

Using the last equality we can compute each component of CU as

(CU )i,j = (
√
W ·Q · Σ−1)i,j =

√
wi

qj(i)

σj
=
wi
σ2
j

uj(xi)

and then by the Definition of U

uj(x) =

N∑
i=1

Φ(x, xi) (CU )i,j =

N∑
i=1

Φ(x, xi)
wi
σ2
j

uj(xi) =

=
1

σ2
j

N∑
i=1

wi Φ(x, xi) uj(xi) ,

where the last term is clearly the approximation of TΦ[uj ] given by the cubature rule (X, W)N ,
divided by the corresponding discrete eigenvalue σ2

j .
Finally the Property 5. is proved by linear algebra arguments. Recalling that

√
W ·A ·

√
W = Q · Σ2 ·QT ,

and the fact that the trace of a square matrix is equal to the sum of its eigenvalues, we get

N∑
j=1

σ2
j =

N∑
j=1

wj Φ(xj , xj) = φ(0)

N∑
j=1

wj = φ(0) |Ω| .

6



This concludes the proof.

It is important to notice that in this context, when {wj}Nj=1 are cubature weights, the `2,w(X)-
scalar product is a discretization of the L2(Ω)-scalar product. Indeed

(f, g)2
L2(Ω) =

∫
Ω
f(x)g(x)dx ≈

N∑
j=1

wjf(xj)g(xj) = (f, g)2
`2,w(X) .

Using this, the Property 3. is simply a discretized version of the corresponding property of the
continuous basis. Moreover, Property 5. suggests that

N∑
j=1

σ2
j =

N∑
j=1

wj Φ(xj , xj) =

∫
Ω

Φ(x, x) dx ,

which is exactly the relation of the continuous eigenvalues if N →∞, as pointed out in the Remark
2. In fact, in this case the integral is exactly approximated by the cubature rule (it is supposed to
be exact at least for constant functions).
We point out that to construct the basis we require just that the weigths {wi}Ni=1 are positive and
able to reproduce constants. In principle it is possible to use weights not related to a cubature
rule, but in this way no connection can be expected between U and the eigenbasis {ϕj}j>0, while
remains unchanged the stabilization properties due to the use of a Singular Value Decomposition,
possibly truncated.

Moreover, the basis has some further properties due to its orthonormality in NΦ(Ω), as pointed out
again in [12]. Indeed, it is a complete basis for the full space if the data set X is dense in Ω, and
the norm of the pointwise-error operator, namely the power function PΦ,X(x), can be expressed in
the simpler form

PΦ,X(x)2 = φ(0)−
N∑
j=1

uj(x)2 , (7)

which involves only the basis under consideration. Furthermore, it is possible to give an expansion
of the kernel when it acts on functions of NΦ(X). That is

Φ(x, y) =
N∑
j=1

uj(x)uj(y) ∀x, y ∈ Ω.

This fact is useful when it is required to use a degenerate kernel to approximate the original one.

4.1. Weighted discrete least-squares approximation

Now we can introduce a weighted discrete least-squares operator that turns out to be strictly
related to the weighted basis just introduced. The goal is to project the unknown function f ∈
NΦ(Ω) into a proper subset of NΦ(X). In other words we will use a smaller basis U ′  U . This is
done in order to obtain better results in terms of stability and computational cost, without serious
loss of convergence speed. This kind of approximation is meaningful when the data values are
supposed to be affected by noise, or when the kernel matrix A is seriously ill-conditioned.
The weighted least-squares approximation we are interested in can be so defined.
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Definition 11. Given a function f ∈ NΦ(Ω), a discrete subset X ⊂ Ω, a set of cubature weights
W associated with X, a weighted SVD basis U for NΦ(X) and a natural number M 6 N = |X|, the
weighted discrete least-squares approximation of order M of f is the function ΛM [f ] that satisfies
the condition

ΛM [f ] = arg min
g∈span{u1,...,uM}

‖f − g‖`2,w(X) .

We need a relation between the Φ and `2,w(X)-inner products. The last is again a discretized
version of a property of the continuous basis {ϕj}j>0, stated in Remark 2.

Lemma 12. For all f ∈ NΦ(Ω) and for each uj ∈ U , the following relation between the Φ and
`2,w(X)-inner products holds:

(f, uj)Φ =
1

σ2
j

(f, uj)`2,w(X) =
(f, uj)`2,w(X)

(uj , uj)`2,w(X)

.

Proof: Using the Property 1. of Theorem 10 and by direct calculations we get:

(f, uj)Φ =

(
f,

1

σ2
j

N∑
i=1

wiuj(xi)Φ(·, xi)

)
Φ

=
1

σ2
j

N∑
i=1

wiuj(xi) (f,Φ(·, xi))Φ ,

=
1

σ2
j

N∑
i=1

wiuj(xi)f(xi) =
1

σ2
j

(f, uj)`2,w(X) ,

where, by the Property 4. of Proposition 10, σ2
j = (uj , uj)`2,w(X).

Using this Lemma with the notation of Definition 11, it comes easy to compute the weighted
discrete least-squares approximation of a function f ∈ NΦ(Ω).

Theorem 13. The weighted discrete least-squares approximation of a function f ∈ NΦ(Ω) is given
by

ΛM [f ](x) =
M∑
j=1

(f, uj)`2,w(X)

σ2
j

uj(x) =
M∑
j=1

(f, uj)Φuj(x) , ∀x ∈ Ω , (8)

that is ΛM [f ] is nothing else but a truncation to the first M terms of PX [f ].

Remark 14. We observe that to compute the weighted least-squares approximant ΛM [f ] it suffices
to use the first M elements of the interpolant PX [f ], which correspond to the biggest singular values
σ2
j , j = 1, . . . , N . This is opposite to the case of the standard basis of translates, where the choise

of the elements of the basis to neglect correspond to the choice of a restricted subset Y ⊂ X.
The idea of constructing this weighted discrete least-squares approximant, can be automated when
dealing with very small singular values. In this case, in order to avoid numerical instability, we can
leave out the basis corresponding to singular values less than a pre-assigned tolerance, skipping
automatically from interpolation to discrete least-squares approximation. From a linear algebra
point of view, this corresponds to solve the (weighted) linear system associated to the interpolation
problem using a total least-squares method.

Remark 15. As a result of using an orthonormal basis, the pointwise-evaluation stability can be
bounded using the general estimates introduced in the previous section (relation (4)). We also
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stress that the norm of the pointwise-evaluation operator
∥∥EMx ∥∥NΦ(Ω)∗

related to the approximation

operator, which is the equivalent to the power function, is simply given by

∥∥EMx ∥∥2

NΦ(Ω)∗
= φ(0)−

M∑
j=1

uj(x)2 .

It is clear that it is a simple truncation of the power function. Altough it is an obvious consequence
of Theorem 13, there is no reason in general to expect such a relation if we consider a different kind
of least-squares approximant in an arbitrary basis. Moreover, it is also clear that by replacing an
exact interpolant with a weighted discrete least-squares approximant, we can obtain better results
in terms of stability. In particular, the stability estimate (4) can be also refined for the particular
case of a weighted SVD-basis, as stated in the next Corollary.

Corollary 16. For a weighted SVD basis U and a function f ∈ NΦ(Ω), the following stability
estimate holds:

|ΛM [f ](x)| 6
√
φ(0) ‖f‖Φ , ∀x ∈ Ω

In particular,

|ΛM [f ](x)| 6

√√√√ M∑
j=1

uj(x)2 ‖f‖Φ , ∀x ∈ Ω .

Proof: The result is a direct consequence of the Cauchy-Schwartz inequality applied to the second
equality in (8).

4.2. Error bounds

We can now prove some convergence estimates for these approximants. It is important to
notice that, in the case of interpolation, there is no difference in using a particular basis since the
spanned subspace NΦ(X) defined in (3), in which we project a function f ∈ NΦ(Ω), clearly does
not depend on the chosen basis.
On the other hand, the fact that we are using this kind of basis allows us to connect the bounds to
the continuous eigenvalues and to their eigenfunctions {ϕj}j>0, which are related in a close way to
the kernel Φ. This justifies the choice of sampling the function f on the data set X that, together
with the weights W, form a good cubature rule.
This observation remains valid in the case of the weighted least-squares approximant for which, in
addition, the connection between the discrete and the continuous eigenvalues motivates the use of
a reduced subspace of NΦ(X). This is confirmed by the following theorem.

Theorem 17. Let Ω ⊂ Rs be compact, let Φ ∈ C(Ω × Ω) be a radial positive definite kernel
and X ⊂ Ω. Then, there exist a constant C, depending on Φ, Ω, X and W, such that for each
f ∈ NΦ(Ω)

‖f − PX [f ]‖2L2(Ω) 6

|Ω| · φ(0)−
N∑
j=1

λj + C ·
N∑
j=1

‖uj − ϕj‖L2(Ω)

 ‖f‖2Φ .
Proof: Using the expression (7) for the power function, we can write the standard error bound
for interpolation as

|f(x)− PX [f ](x)|2 6

φ(0)−
N∑
j=1

uj(x)2

 ‖f‖2Φ .
9



From the embedding NΦ(Ω) ↪→ L2(Ω) we know that both sides have finite L2(Ω)-norm. Thus we
can integrate over Ω the bound and get

‖f − PX [f ]‖2L2(Ω) 6

∫
Ω

φ(0)−
N∑
j=1

uj(x)2

 ‖f‖2Φdx ,
=

|Ω| · φ(0)−
N∑
j=1

∫
Ω
uj(x)2dx

 ‖f‖2Φ
=

|Ω| · φ(0)−
N∑
j=1

‖uj(x)‖2L2(Ω)

 ‖f‖2Φ .
Using the relations

‖ϕj‖2L2(Ω) = ‖uj‖2L2(Ω) + ‖ϕj − uj‖2L2(Ω) + 2 (ϕj − uj , uj)L2(Ω)

‖uj‖L2(Ω) 6 ‖ϕj − uj‖L2(Ω) + ‖ϕj‖L2(Ω)

then for all j = 1, . . . , N we can estimate the L2(Ω)-norm as

−‖uj‖2L2(Ω) = −‖ϕj‖2L2(Ω) + ‖ϕj − uj‖2L2(Ω) + 2 (ϕj − uj , uj)L2(Ω)

6 −‖ϕj‖2L2(Ω) + ‖ϕj − uj‖2L2(Ω) + 2 ‖ϕj − uj‖L2(Ω) ‖uj‖L2(Ω)

6 −‖ϕj‖2L2(Ω) + ‖ϕj − uj‖L2(Ω)

(
3 ‖ϕj − uj‖L2(Ω) + ‖ϕj‖L2(Ω)

)
.

From (1) we know that ‖ϕj‖2L2(Ω) = λj ∀j > 0. Then, to conclude we observe that

3 ‖ϕj − uj‖L2(Ω) + ‖ϕj‖L2(Ω) 6 3

(
max

j=1,...,N
‖ϕj − uj‖L2(Ω)

)
+
√
λ1 =: C

since the eigenvalues {λj}j>0 are not increasing.

The same estimate remains valid for the approximant ΛM [f ] if N is replaced by M , as a conse-
quence of the Remark 15.

Remark 18. We point out that these error estimates involve two terms.

• The first one, |Ω| · φ(0) −
∑N

j=1 λj , is related only to the kernel Φ, the domain Ω and the
dimension N ∈ N of the approximation subspaceNΦ(X). From the Remark 2 of the Theorem
1 we know that for N → ∞ the above term vanishes, and the eigenvalues are positive and
orderer in decreasing way. Hence, this term measures how the truncated series approximates
the full one, or in other words, how the degenerate kernel

N∑
j=1

λjϕj(x)ϕj(y), x, y ∈ Ω

approximates the original kernel Φ(x, y).

• The second term, C ·
∑N

j=1 ‖uj − ϕj‖L2(Ω), depends on the cubature rule (X, W)N . It
measures the convergence rate of the Nystöm method based on the rule, and gives information
on how well the discrete basis U approximates the continuous one.
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In this view, it is important to notice what is the effect of an high-order cubature formula. Ob-
viously a higher accuracy will lead to a better approximation of the eigenbasis {ϕj}j>0, so in the
limit we could expect that our basis will be able to reproduce {ϕj}j>0 and each function in NΦ(Ω)
(hopefully in a good way). Nevertheless, at a finite stage with fixed N , also assuming to know
an almost exact cubature formula, we are still approximating f ∈ NΦ(Ω) with a projection into
NΦ(X). This means that even if the second term is reduced by a suitable choice of (X, W)N , the
first one still depends in a strict way on other parameters of the approximation process.

For the weighted least-squares approximant, it make sense to consider also another type of error.
Indeed in this case the data set X ⊂ Ω is not used to interpolate the function f , but only as a set
of samples. So, the pointwise error between f and ΛM [f ] on X is not zero. We can bound this
quantity as well as shown in the next Proposition.

Proposition 19. Let Ω ⊂ Rs, Φ ∈ C(Ω × Ω) a radial positive definite kernel, X ⊂ Ω, |X| = N ,
and M < N . Then, for every f ∈ NΦ(Ω),

‖f − ΛM [f ]‖`2,w(X) 6

 N∑
j=M+1

σ2
j

 1
2

‖f‖Φ (9)

This proposition can be proved as we did in the previous Theorem, replacing in the proper way
the L2(Ω) norm with the discrete `2,w(X) norm.

This result can be interpreted also in another way. In fact, it gives a bound on how much
the weighted least-squares approximant and the interpolant differ on the set X. Indeed, since
f(xi) = PX [f ](xi) ∀xi ∈ X, we can replace f with PX [f ] in the left-hand side of estimate (9).
The well-known trade-off principle between stability and convergence in approximations by radial
basis functions (see e.g. [15, §12.1]) can be viewed in this context as follows. We have ∀f ∈ NΦ(Ω)

|PX [f ](x)|2 6

 N∑
j=1

uj(x)2

 ‖f‖2φ ,
|PX [f ](x)− f(x)|2 6

φ(0)−
N∑
j=1

uj(x)2

 ‖f‖2φ ,
and the same for ΛM [f ] if N is replaced by M < N .
Hence, for convergent approximations, namely for approximations for which the power function
decreases to zero, we have necessarily

N∑
j=1

uj(x)2 → φ(0) .

That is, the stability bound is maximized by φ(0), in accordance with the Proposition 16.

5. Numerical examples

For testing the behavior of the basis we need a set X ⊂ Ω of data sites such that (X, W)N is
a cubature rule. Suitable sets are for example

• the trigonometric gaussian points, recently studied and computed in [3, 14], which can be
obtained for a wide class of domains, such as the disk, circular zones and circular lenses;
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• the product Gauss-Legendre well-known for the cubature on the cube.

Concerning the trigonometric gaussian points, it is worth mentioning that they provide high-
accuracy cubature rules while being sufficiently uniformly distributed in Ω. As a computional
issue, Matlab functions to compute these points can be found in the web site [16]. The code is
mainly Matlab, using in some parts the software from the book [7]. Only some parts, the most
critical from the performance point of view, are written in C++, using the MatlabMEX interface
(cf. [17]) and the linear algebra package Eigen (see [18]).

For further examples we refer the reader to the Master’s thesis [13, Ch. 4], where we compare
also the new basis with the Newton basis introduced in [11]. We observe that the Newton basis
is built by a recursive and adaptive choice of the data sites X. This capability makes difficult a
comparison with the new basis, since it requires to fix a cubature set (X, W)N .
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Figure 1: The domains used in the numerical experiments with an example of the corresponding sample points.
From left to right: the lens Ω1 (trigonometric-gaussian points), the disk Ω2 (trigonometric-gaussian points) and the
square Ω3 (product Gauss-Legendre points).

5.1. Comparison between the interpolant and the weighted least-squares approximant

As pointed out in the Remark 14, we know that we can compute the weighted least-squares
approximant as the truncation of the interpolant. This approach increases the residual, as shown in
Proposition 17 and in the subsequent discussion, but in the cases in which the smaller eigenvalues
are under a certain tolerance, we may expect that a truncation does not affect too much the
approximation properties of the process. Although in Corollary 16 we proved the stability of the
new basis, in some limit situations we could expect that the influence of the smallest eigenvalues
produces numerical instability that could not completely be controlled.
Here we compare the approximation error produced using the full interpolant and some reduced
weighted least-squares approximant starting from 600 trigonometric gaussian centers, and then
truncating the basis for M ∈ {0, 20, . . . , 600}.
We reconstruct the oscillatory function fo(x, y) = cos(20(x + y)) on the disk Ω1 with center
C =

(
1
2 ,

1
2

)
and radius R = 1

2 . The experiment has been repeated for three different kernels: the
gaussian kernel, the inverse multiquadric (IMQ) and the cubic Matérn kernel (3MAT), which is
generated by the univariate function

φ(r) = e−εr(15 + 15εr + 6(εr)2 + (εr)3), r > 0

for a shape parameter ε = 1, 4, 9. This choice is motivated from the different behavior of the eigen-
values {λj}j>0 of the operator TΦ associated with these radial basis functions. Indeed, although
we know from Theorem 1 that the continuous eigenvalues accumulate to zero, the speed to which
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they decay is clearly not the same for the different kernels. Altough depending on the choice of
the shape parameter ε, they present a fast decay to zero (Gaussian), a medium decay (IMQ) and
a slow decay (3MAT).
To measure the accuracy of the reproduction process, we computed the root-mean-square errors
(RMSE) on an equally-spaced grid of evaluation points. The Figure 2 shows the results so obtained.
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Figure 2: RMS errors for the reconstruction of fo on Ω1 using ΛM [f ] for different values of M and different shape
parameters, using the gaussian kernel (top left), the IMQ (top right) and the 3MAT kernel (bottom).

These results reflect the observation made on the eigenvalues. Indeed, we can see that for the
3MAT kernel the interpolant remains stable for each ε (except for the last iterations with ε = 1),
the IMQ becomes unstable for ε = 1, while the gaussian presents some instability also with ε = 4.
When a weighted least-squares approximant ΛM [f ] for some M is used in the unstable cases we
see a clear gain using a truncated version of the interpolant. Table 5.1 shows the index M such
that ΛM [f ] provides the best approximation of fo with weighted least-squares approximation.

ε = 1 ε = 4 ε = 9

Gaussian 100 340 500
IMQ 180 580 580
3MAT 460 560 580

Table 1: Optimal M for the three different kernels and shape parameters ε = 1, 4, 9. These M correspond to the
indexes such that the weighted least-squares approximant ΛM [f ] provides the best approximation to the test function
fo on Ω1.

As expected from the distribution of the eigenvalues of the gaussian kernel with ε = 1, the
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reducing process is not enough to avoid instability. In fact, for this choice of ε, the eigenvalues
are almost all under the machine precision. Moreover, for ε = 1 the gaussian becomes too flat,
and then there is no hope to reconstruct an oscillatory function. This is the typical behavior
well-known in the flat-limit case (cf. [5]).

5.2. Comparison with the standard basis

As a second experiment we compare the approximations obtained by using the standard basis
of translates with respect to the weighted least-squares one. In this example we try to reconstruct
the Franke function fF with the IMQ-kernel on the lens Ω2 defined as the intersection of two disks
with centers C =

(
−
√

2/2, 0
)

and c =
(√

2/2, 0
)

and radii R = r = 1 (see Figure 1).
The test compares the results obtained with the interpolant based on the standard basis and
the new basis, centered on an equally-spaced grid and on a trigonometric-gaussian set of points,
respectively. The reconstruction is then repeated for different shape parameters ε = 1, 4, 9 and
for data sets XN ⊂ Ω2 with N = |XN | < 1000. The corresponding RMSEs are plotted in Figure
3.
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Figure 3: RMS errors for the reconstruction of fF on the lens Ω2 using the IMQ kernel with the standard basis and
the new basis. The plots were made with different shape parameters. Top left: ε = 9. Top right: ε = 4. Bottom
left: ε = 1. Bottom right: test with ε = 1 by using the interpolant based on the standard basis and the weighted
least-squares approximant ΛM [f ] with M such that σM < 1.0e− 17 .

We see that in the stable case, namely for ε = 9, there is only a small difference between the
two bases, although for N > 500 the standard interpolation does not gain in accuracy. For the
values ε = 1, 4, although for small data sets XN the two bases does not behave so differently,
when N becomes bigger the standard basis becomes unstable and growing the data-sites set does
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not lead to a more accurate reconstruction. On the other hand, the interpolant based on the new
basis presents a convergent behavior for each shape parameter, even if the rate of convergence is
influenced by a proper choice of ε. This feature can be useful since, at least in the considered
cases, there is no need to choose a particular ε to guarantee convergence, even if it is slow.
Furthermore, when a small shape parameter influences too much the stability of the interpolant,
we can use instead the reduced weighted least-squares approximant ΛM [f ]. The approximation
process for ε = 1 is repeated using ΛM [f ] instead of PX [f ], with M such that σM < 1.0e − 17.
This threshold is choosen in order to have the best trade-off between convergence and stability.
The result is shown in Figure 3 (bottom right). The approximant is clearly more stable with the
same convergence rate.

As a final example, we repeated a similar comparison trying to improve the stability of the stan-
dard basis. The idea is to use an optimized shape parameter ε∗ which guarantees the best possible
stability. In practice we fixed the data set, the kernel and the test function, trying to find the
parameter that minimizes the residual error. This has been done by the so-called leave-one-out
cross validation strategy (cf. [7, §17.1.3]). The idea is to compute the interpolant PX [f ] on the
full set X ⊂ Ω and the N interpolants P [f ]i on the reduced sets Xi = X \ {xi} ∀ i ∈ {1, . . . , N},
for different shape parameters ε ∈ E, E ⊂ R, and then to choose the optimal ε∗ defined as

ε∗ = arg min
ε∈E

max
i=1,...,N

|PX [f ](xi)− P [f ]i(xi)|

We remark that this optimization is quite expensive in terms of computational time, and can
not be performed once for all, but has to be repeated if the data-sites increase. To check this
optimization approach, on the square Ω3 = [0, 1]2 we considered as test function an element of the
native space of the gaussian kernel Φ4(x, y) := exp(−42‖x− y‖22), namely the function

fN (x) = −2Φ4(x, (0.5, 0.5)) + Φ4(x, (0, 0)) + 3Φ4(x, (0.7, 0.7)) x ∈ Ω3 .

The RMS errors are plotted in Figure 4, using equally-spaced points and Halton points as centers
of the standard basis of translates. As centers for the new basis in both cases we used the product
Gauss-Legendre points. It is clear that a good choice of the shape parameter reduces the instability
of the standard interpolant, altough it does not suffice to avoid it completely.
The stability of the new basis, together with the truncation strategy atM such that σM < 1.0e− 17,
allows to use the “right” shape parameter for each number of centers, and this leads to an ap-
proximant that converges to the sampled function with a tolerance near to the machine precision.
Table 5.2 shows the RMS errors for different numbers of data sites, together with the optimal
parameter ε∗ selected by the leave-one-out cross validation.

N 196 324 529 729 900

Std - e 1.05 · 10−7 5.23 · 10−10 3.17 · 10−12 7.15 · 10−12 1.30 · 10−12

ε∗ 3.75 3.81 3.84 3.87 3.98

Std - H 3.30 · 10−7 9.31 · 10−9 7.12 · 10−11 1.56 · 10−11 1.59 · 10−12

ε∗ 3.75 3.84 3.89 3.92 3.95

W-Svd 7.37 · 10−8 2.23 · 10−11 3.48 · 10−15 6.08 · 10−15 6.37 · 10−15

Table 2: RMS errors for the approximation described in the last example, obtained using the new basis (W-Svd),
the standard basis with optimal ε∗ centered on equally-spaced points (Std - e) and on the Halton points (Std - H).
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Figure 4: RMS errors for the reconstruction of fN on the square Ω3 using the gaussian kernel with the standard
basis of translates with optimal shape parameter ε∗ and the new basis with ε = 4. The standard interpolant is
computed using equally spaced points (on the left) and Halton points (on the right). Our new basis is truncated at
M such that σM < 1.0e− 17

6. Conclusions and further work

We have presented a way to construct a new kind of stable basis for radial basis function
approximation. Inspired by the results presented in [12], the new basis shows properties related to
its Φ-orthonormality. The particular approach used relates the discrete basis with the continuous
“natural” one described in the Theorem 1, allowing to connect some functional properties of the
kernel to the approximant itself.

In this setting, a more deep study could lead to a stronger use of the information provided by
the kernel and its domain of definition. In particular the convergence estimate of Proposition 17
can be refined considering the rate of convergence to zero of the eigenvalues of the operator TΦ

and the property and the convergence rate of the Nyström method based on the definition of the
problem, namely the cubature rule, the kernel Φ, the shape parameter ε and the set Ω.

Concerning the stability, the experiments presented in Section 5 confirm the good behavior
expected from the results of Proposition 16. In particular, the new basis allows to treat approxi-
mations based on a relatively big number of points also for not optimized shape parameters and
on quite general sets. This feature can be enforced thanks to the possibility to compute a weighted
least-squares approximant simply truncating the interpolant. From a numerical point of view this
procedure can be accomplished without thinning the data sites X ⊂ Ω, but simply checking if the
singular values of the weighted kernel matrix decay under a certain tolerance. This corresponds to
solve the linear system related to the kernel matrix with a (weighted) total least-squares algorithm.

The dependence of the basis on the singular value decomposition does not allow to produce
an adaptive algorithm, but forces the computation of a full factorization of the matrix for each
fixed point distribution. In this sense, it would be interesting to adapt our method to work with
approximations based on compactly supported kernels. Indeed, although it is possible to use them
as any other kernel, a more specific implementation could benefit from the compact support struc-
ture (i.e. dealing with sparse matrices). In this setting there are eigenvalue algorithms optimized
for finding only a small subset of the full spectrum of a matrix, so that it would be possible to
compute an approximant based only on eigenvalues up to a certain tolerance.
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