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Abstract

Padua points, discovered in 2005 at the University of Padua, are the first set of
points on the square [−1, 1]2 that are explicitly known, unisolvent for total degree
polynomial interpolation and with Lebesgue constant increasing like log2(n) of the
degree. One of the key features of the Padua Points is that they lie on a particular
Lissajous curve. Other important properties of Padua points are

1. In two dimensions, Padua points are a WAM for interpolation and for extracting
Approximate Fekete Points and Discrete Leja sequences.

2. In three dimensions, Padua points can be used for constructing tensor product
WAMs on different compacts.

Unfortunately their extension to higher dimensions is still the biggest open problem.
The concept of mapped bases has been widely studied (cf. e.g. [35] and references

therein), which turns out to be equivalent to map the interpolating nodes and then
construct the approximant in the classical form without the need of resampling. The
mapping technique is general, in the sense that works with any basis and can be applied
to continuous, piecewise or discontinuous functions or even images. All the proposed
methods show convergence to the interpolant provided that the function is resampled
at the mapped nodes. In applications, this is often physically unfeasible. An effective
method for interpolating via mapped bases in the multivariate setting, referred as Fake
Nodes Approach (FNA), has been presented in [38]. In this paper, some interesting
connection of the FNA with Padua points and “families of relatives nodes”, that can
be used as “fake nodes” for multivariate approximation, are presented and we conclude
with some open problems.
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AMS Subject classification: 41A17, 41A63.

1



1 Introduction
Let Pn(R) be the space of the univariate polynomials of total degree ≤ n on R and C(R)
the linear space of continuous functions on R. Further, for the basis of monomials M =
{1, x, x2, . . . , xn} and a set X = {x0, . . . , xn} of n + 1 distinct points, we denote by

Vdm(X;M) =
∏
i< j

(xi − x j) (1)

the corresponding Vandermonde determinant which plays an important role for the unisol-
vency of a given set of points.

The classical univariate interpolation problem of f by polynomials of degree n can be
stated as follows.

Problem 1 Given the set X ⊆ K of n + 1 pairwise distinct points, the values { f (xi), i =
0, . . . , n} and the basis of monomialsM = {1, x, . . . , xn}, find the polynomial pn =

∑n
k=0 akxk,

so that
pn(xi) = f (xi), i = 0, . . . , n.

Being xi , x j, i , j, pn is unique because Vdm(X;M) , 0. Using the Lagrange basis
L = {li, i = 0, ..., n} with

li(x) =
n∏

i=0,i, j

x − x j

xi − x j
=

Vdm(Xi;M)
Vdm(X;M)

where Xi is the set X in which we substitute xi with x, we can then write

pn(x) =
n∑

i=0

li(x) f (xi), x ∈ K (2)

This process generates an interpolation error en(x) = | f (x) − pn(x)|, x ∈ K or in norm
En = ∥ f − pn∥∞. Using the Lagrange form (2) of the interpolant, we can bound this error
by

En ≤ (1 + Λn)E∗n (3)

with Λn = sup
x∈K

n∑
i=0

|li(x)| the Lebesgue constant which depends on n and on the node set

X. As well-known, Λn represents the sup-norm of the linear operator (cf. e.g. [27]) L :

C(R)→ Pn(R), L f =
n∑

i=0

f (xi)li , where, E∗n is the error of best-uniform approximation that

is E∗n := inf
pn∈Pn(R)

En( f ).

In the one dimensional case we know

• Λn ≈ 2n when the set X is made of equally spaced points of K (or even worse when
X are randomly chosen);

• Λn ≈ log(n) when X is made of Chebyshev-like points of K.
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We call Chebyshev-like points, those points that have the so-called arccos-distribution
which characterizes for instance the Chebyshev-Gauss-Lobatto points (or Chebyshev ex-
trema) {

xk = − cos
(
kπ
n

)
, k = 0, ..., n

}
and all zeros of orthogonal polynomials on a finite interval with respect to some positive
measure. All these points are near-optimal in the sense that their Lebesgue constant grows
logaritmically with respect to the degree n. Two other important sets of points are Fekete
points and Leja sequences (cf. e. g. [32]) whose definition and properties will be discussed
later on in the paper.

Question 1 Fundamental question: are there quasi-optimal interpolation nodes explic-
itly known in the multivariate setting for polynomial interpolation of total degree?

The answer is partially negative, except for some known cases and in small dimensions (see
also the seminal paper by L. Bos [5]).

The previous question was the spring which pushed us in studying new families of
near-optimal points, starting from the square [−1, 1]2, being the square a simple domain,
intrinsically tensorial, easy to be mapped to other domains (see [23]).

There are then many other questions and many more open problems, in this paper we
present the answers to the following that were the main reasons why we discovered the
Padua points on the square Ω = [−1, 1]2.

• We looked for well-distributed nodes. We found various nodal sets for polynomial
interpolation of even degree n in the square Ω, which turned out to be equidistributed
with respect to the Dubiner metric [46] and which show near-optimal Lebesgue con-
stant growth [21].

• We also required efficient interpolant evaluation: the interpolant should be con-
structed without solving the Vandermonde system whose complexity is O(N3), for
each pointwise evaluation, with N =

(
n+2

2

)
the dimension of the bivariate polynomials

of total degree ≤. Moreover, we looked for closed formulae.

• We required efficient cubature formulas: in particular a fast computation of cubature
weights for non-tensorial cubature formulae.

The last two points were inspired by the rule of 10 claimed by Nick L. Trefethen in [79]
(also in talk given in 2009 at the Dolomites Workshops in Alba di Canazei): a good im-
plementation should last for 10 seconds, have a 10 digits precision and does not consist of
more than 10 lines of executable code.

In section 2 we start by introducing the Dubiner metric and which is the one we used
for the square. Then, in section 3 we recall the construction of the Padua points, their
properties and outline some open problems.

Section 4 is devoted to the description of the problem of approximating discontinu-
ous functions, which was the main reason of studying the ”fake” nodes. In Section 5 we
then introduce the idea of the ”fake” nodes approach and its equivalence with the mapping
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polynomial basis. Also in this section we outline some open problems and possible future
developments. We finally conclude in Section 6.

As a final note, many of the figures are taken from the papers cited in the bibliography
of which I am a co-author and that can be reproduced with the Matlab codes freely available
online.

2 From Dubiner metric to Padua points
In his seminal paper [46], M. Dubiner introduced what we call the Dubiner metric which
in [−1, 1] corresponds to the arccosine distance between two points:

µ[−1,1](x, y) = | arccos(x) − arccos(y)|, ∀x, y ∈ [−1, 1] . (4)

By using the Van der Corput-Schaake inequality for trigonometric polynomials T (θ) of
degree m and |T (θ)| ≤ 1, that is

|T ′(θ)| ≤ m
√

1 − T 2(θ) (5)

we want to show that the Dubiner metric is

µ[−1,1](x, y) := sup
∥P∥∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))| , (6)

with P ∈ Pn([−1, 1]). Firstly, inequality (5) is equivalent to∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ ≤ m . (7)

The following result then holds.

Lemma 1 Take x, y ∈ [−1, 1] and P ∈ Pm([−1, 1]) then

| arccos(x) − arccos(y)| = sup
∥P∥∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))| .

Proof. Letting T (θ) = P(cos(θ)) and x = cos(θx), y = cos(θy). By using 7, we get

| arccos(T (θx)) − arccos(T (θy))| =
∫ θy

θx

∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ dθ ≤ ∫ θy

θx

m dθ ≤ m |θx − θy| .

But arccos(x) = θx, arccos(y) = θy giving

| arccos(T (θx)) − arccos(T (θy))| ≤ m| arccos(x) − arccos(y)|

and
sup

∥P∥∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))| = | arccos(x) − arccos(y)|
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This concludes the proof. □
This metric generalizes to compact sets Ω ⊂ Rd d > 1 (see e.g. [32]):

µΩ(x, y) := sup
∥P∥∞,Ω≤1

1
m
| arccos(P(x)) − arccos(P(y))| .

This metric is important because there is an interesting unproved conjecture quoted in
[21]:

Conjecture 1 Nearly optimal interpolation points on a compact Ω ⊂ Rd are asymptoti-
cally equidistributed w.r.t. the Dubiner metric on Ω.

Hence, once we know the Dubiner metric on a compact Ω, we have at least a method
for producing ”good” interpolation points.

For d = 2, let x = (x1, x2), y = (y1, y2)

• Dubiner metric on the square, S = [−1, 1]2:

µS (x, y) = max{| arccos(x1) − arccos(y1)|, | arccos(x2) − arccos(y2)|} . (8)

• Dubiner metric on the disk, D = {|x| ≤ 1}:

µD(x, y) =
∣∣∣∣∣arccos

(
x1y1 + x2y2 +

√
1 − x2

1 − x2
2

√
1 − y2

1 − y2
2

)∣∣∣∣∣ . (9)

As an example, by using the previous definition of the Dubiner metric on the square,
we can extract points from a discretization of the square itself. In Fig. 1 we show 496
Dubiner nodes (corresponding on taking n = 30), Random and Euclidean points as well as
their Lebesgue constants. Notice that the Euclidean points, are Leja-like points, given by
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Figure 1: Left: Dubiner points: Right: Lebesgue constants growth

max
x∈Ω

min
y∈Xn
∥x− y∥2 . There is a tight connection with the Morrow-Patterson (MP)-points (see

[63]) which are a set of N =
(
n + 2

2

)
= dim(P2

n) points in the square [−1, 1]2, equidistributed
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w.r.t. the Dubiner metric (8). To be more precise, let n be a positive even integer, the MP-
points are given by the following

xm = cos
( mπ
n + 2

)
, yk =


cos

(
2kπ

n + 3

)
if m odd

cos
(
(2k − 1)π

n + 3

)
if m even

1 ≤ m ≤ n+1, 1 ≤ k ≤ n/2+1 and are unisolvent for the total degree interpolation problem.
The interest of these points where noticed by Len Bos who showed, in an unpublished

note, that their Lebesgue constant grows polynomially in n ΛMP = O(n6). Later on, in [40]
we showed, by using (the reciprocal of) Christoffel functions for estimating the Lebesgue
constant of the hypeinterpolation operator on various 2-dimensional domains, that indeed
ΛMP = O(n3). Numerically we actually found a growth ofO(n2). So this is an open problem
to show that the ΛMP = O(n2).

Brutman introduced the so-called extended Chebyshev points [17].

T̃n =

{
x̃k = −

1
γn

cos
(
(2k − 1)π

2n

)
, k = 1, ..., n

}
where γn = cos

(
π
2n

)
, that is the set of Chebyshev points stretched to the boundary of the

interval.
Similarly, we can define the Extended Morrow-Patterson points (EMP) as the points

xEMP
m =

1
αn

xMP
m , yEMP

k =
1
βn

yMP
k

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).

Note: both MP and the EMP points are equally distributed w.r.t. Dubiner metric on
the square [−1, 1]2 and unisolvent for polynomial interpolation of degree n on the square
[−1, 1]2 [21].

The Padua Points (PD) are modified Morrow-Patterson points and were discovered “mirac-
ulously” in summer 2003, by Len Bos, Shayne Waldron, Marco Vianello and myself. They
are the points in the square [−1, 1]2 with coordinates

xPD
m = cos

(
(m − 1)π

n

)
, yPD

k =


cos

(
(2k − 1)π

n + 1

)
if m odd

cos
(
2(k − 1)π

n + 1

)
if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N =
(
n + 2

2

)
.

We recall here some fundamental properties proved in [8].

• The PD points are equispaced w.r.t. Dubiner metric µS on [−1, 1]2.
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• The interior points are the MP points of degree n − 2 while the boundary points are
“natural” points of the grid. In Fig. 2 to the Left, we show the set of Padua points for
n = 8 as well as the MP and EMP.

• There are 4 families of PD points obtained by taking rotations of 90 degrees: clock-
wise for even degrees and counterclockwise for odd degrees.

• The Lebesgue constant of the Padua points has optimal growth (see Fig. 2, Right).

Λ(PDn) = O((log n)2) (10)
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Figure 2: Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the corre-
sponding Lebesgue constants.

As a final note, their construction can be obtained in this simple way. Consider the n + 1
Chebyshev-Lobatto points on [−1, 1]

Cn+1 =

{
zn

j = cos
(
( j − 1)π

n

)
, j = 1, . . . , n + 1

}
and the two subsets of points with O=odd and E=even indexes

CO
n+1 =

{
zn

j , j = 1, . . . , n + 1, j odd
}

CE
n+1 =

{
zn

j , j = 1, . . . , n + 1, j even
}

Then, the Padua points are the set

PDn = CO
n+1 ×CE

n+2 ∪CE
n+1 ×CO

n+2 ⊂ Cn+1 ×Cn+2

As a nice and interesting observation, the Padua points lie on n concentric squares with
sides at the zeros of Un and Un−1 (the inner) except the external and the center [31]. With
Uk we indicate the classical orthogonal Chebyshev polynomials of second kind, see also
Fig. 3.
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Figure 3: Padua for n = 6 are distributed on n concentric squares with sides at the zeros of
Un and Un−1 (the inner) except the external and the center (just a dot!)

3 Padua points: generating curve, WAMs, applications
and open problems

There exists an alternative construction consisting of the self-intersections and boundary
contacts of the parametric and periodic curve, called generating curve:

γ(t) = (− cos((n + 1)t)︸         ︷︷         ︸
Tn+1(t)

,− cos(nt)︸ ︷︷ ︸
Tn(t)

), t ∈ [0, π].

For instance, in the figure below we display the curve γ(t) for n = 4. The generating

-1
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Figure 4: PD4 on the generating curve and the two grids (with different colors)

curve γ(t) turns out to be a Lissajous curve. In particular it is an algebraic curve such that
Tn+1(x) = Tn(y) (for the first family!). Being a Lissajous curve, we recall some important
properties of these curves

• Their implicit equations can be found by using Chebyshev polynomials. Chebyshev
polynomials are indeed Lissajous curves (cf. [62]).

• Lissajous curves are planar parametric curves studied by the astronomer Nathaniel
Bowditch (1815) and later on by the mathematician Jules A. Lissajous (1857). They
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can be written in a general form as

γ(t) = (Ax cos(ωxt + αx), Ay sin(ωyt + αy)) .

where Ax, Ay are amplitudes, ωx, ωy are pulsations and αx, αy are phases.

In two dimensions, there is an interesting general definition described in [47]

Definition 1
γn
κ,u(t) =

( u1 cos(n2t − κ1π/(2n1))
u2 cos(n1t − κ2π/(2n2))

)
, t ∈ [0, 2π],

with n = (n1, n2) ∈ N2, κ = (κ1, κ2) ∈ R2 and u = (u1, u2) ∈ {−1, 1}2.

The values n1, n2 are called frequencies (like for the pendulum) and u reflection parameter.

It is nice and also quite instructive to see how Lissajous curves can be constructed by
playing with the sand pendulum (see the video https://www.youtube.com/watch?v=
7f16hAs1FB4).

The construction in the square [−1, 1]2 goes as follows. Let n = (n1, n2) with n1, n2 ∈ N
relatively primes. Then, we may consider the curves γn

ϵ : [0, 2π]→ [−1, 1]2

γn
ϵ (t) := γn

(0,ϵ−1),1(t) =
( cos(n2t)

cos(n1t + (ϵ − 1)π/(2n2))

)
(11)

with ϵ ∈ {1, 2} and fixed reflection parameter 1 = (1, 1).

Figure 5: Left: Padua points, Right: Lissajous points. Both sets are relative to degree
n = (6, 7), as used in (11)

Two special cases whose details are discussed in [47] and references therein, allow to
classify Lissajous curves on the square in two main families.

• For ϵ = 1, that is γn
1(t), is called a degenerate curve.

• For ϵ = 2, that is γn
2(t), is called non-degenerate curve.
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The Padua point curve is then a degenerate Lissajous curve, being two points of the curve
at two consecutive corners of the square. Moreover, the degenerate Lissajous curve are
π-periodic, while the non-degenerate are 2π periodic.

In Figure 5 we have displayed PD6 and Lis6,7. In particular the generating curves and
the cardinalities are as follows.

γPD
n,n+1 = (cos(nt), cos((n + 1)t), #PDn = (n + 2)(n + 1)/2

γLis
n1,n2
=

(
cos(n2t), cos(n1t +

π

2n2
)
)
, #Lisn1,n2 = 2n1n2 + n1 + n2

This shows that, the Padua points are a unisolvent set for the total degree interpolation
problem. While the Lissajous points can be used for polynomial interpolation, not of total
degree, and they guarantee stability (slow growth of the Lebegsue constant).

The more general topic of multivariate polynomial approximation on Lissajous Curves
turned out to be of interest in the emerging field of Magnetic Particle Imaging (MPI) (see,
e.g., some recent publications and the activities of the scientific network MathMPI). Lis-
sajous sampling seems to be relevant also in the field of Atomic Force Microscopy (AFM).

3.1 Padua points are WAM (Weakly Admissible Meshes)
In the field of multivariate polynomial approximation, the notion of polynomial mesh has
recently emerged as a significant concept. Originally introduced in the seminal paper [20],
it has been studied in several subsequent papers, from both the theoretical and the com-
putational point of view, interpolation and extracting Fekete points on 2D domains (cf.
[14, 9, 12] and references therein). Moreover, Approximate Fekete-like points extracted
from polynomial meshes have begun to play a role in the framework of high-order methods
for PDEs (cf., e.g., [84]).

We simply recall, that a polynomial Weakly Admissible Mesh (WAM) is a sequence of
discrete subsets {An} of a polynomial determining (i.e. polynomial vanishing there vanish
everywhere) compact set K ⊂ Rd such that the inequality

∥p∥k ≤ C(An)∥p∥An , ∀ p ∈ Pd
n , (12)

holds, where both the card(An) ≥ dim(Pd
n) = O(nd) and C(An) are bounded by nd. No-

tice that ∥ f ∥X is the sup-norm of a function f bounded on the (discrete or continuous) set
X. Properties of WAMs and various examples in one and two dimensional domains, are
described in [42]. Hence, once we know a WAM, the computation of discrete estremal
sets, can be done by numerical linear algebra techniques by using greedy algorithms. The
interested reader can refer to [13, 12].

The following Lemma is the fundamental result for the construction of WAMs by using
tensor product strategies.

Lemma 2 Let p ∈ P1
n be a univariate algebraic polynomial, and Cn, C̃n the Chebyshev

and Chebyshev-Lobatto nodal sets, respectively. Let t ∈ T1
n be a univariate trigonometric

polynomial, and Θn the angular nodal set

Θn(α, β) = ϕω(C̃2n) +
α + β

2
⊂ (α, β), ω =

β − α

2
≤ π,
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where ϕω(r) = 2 arcsin(sin ω2 r), r ∈ [−1, 1]. Then, the following polynomial inequalities
hold

∥p∥[a,b] ≤ cn∥p∥Cn (13)
∥p∥[a,b] ≤ cn∥p∥C̃n

(14)
∥t∥[α,β] ≤ c2n∥t∥Θn (15)

with cn = 1 + 2
π

log(n + 1).

Padua points can be used in 3-dimensional tensor product WAMs on different domains
[44]. Knowing a WAM on a planar compact, sayΩ, we can construct 3-dimensional WAMs
for cones with base Ω and vertex y, which consists of all the segments connecting y with
a point on Ω. Similarly the construction can be done for pyramids (which are cones with
polygonal base) and truncated cones. The last is obtained by cutting the cone with a plane
parallel to the base. We can also construct 3-dimensional WAMs for solid of rotation with
cross sectionΩ and external axis r. The WAMs is then obtained by rotation ofΩ by a given
angle ≤ 2π, around a coplanar line r.

For instance in Fig. 3.1, we show on the left the WAMs for a pyramid obtained by
the tensor product of Padua points of degree 10 on the base and Chebyshev-Lobatto points
along the z-axis, on the right the WAM on a portion of the torus with circular base. In both
sets we have highlighted the Approximate Fekete Points extracted from the WAM by the
greedy algorithm described in [13].

Figure 6: 3-dimensional WAMs obtained by using the Padua points

3.2 Some recent applications of the Padua points
Lagrange interpolation at the Padua points has been recently used in several scientific and
technological applications,

• Computational Chemistry (the Fun2D subroutine of the CP2K simulation package
for Molecular Dynamics, https://www.cp2k.org/).
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• Image Processing (algorithms for image retrieval by colour indexing).

• Materials Science (Modelling of Composite Layered Materials, [69]),

• Mathematical Statistics (Copula Density Estimation, [67]),

• Quantum Physics (Quantum State Tomography [50]);

• Padua points for solving PDEs with radial basis functions methods [60].

Padua points have been included in the Chebfun2 package (whose features have been
described in the book [79]). The Padua points can be obtained simply specifing the degree
n: x=paduapts(n). For more details see the web page http://www.chebfun.org/
examples/geom/Lissajous.html

• Software: www.math.unipd.it/˜marcov/CAApadua.html, J. Burkardt https:
//people.sc.fsu.edu/˜jburkardt/m_src/padua/padua.html

• Scholar citations (to the date): about 7140

3.3 Some open problems
1. We do not know the Padua points on [−1, 1]d, d ≥ 3.

2. The Lebesgue function has its maxima in the corners where there are no Padua points
(see Fig. 7 that displays the Lebegsue function on its maximum at the corner points).

3. The Vandermonde determinant associated to the Padua and Padua-like points has
variables that separate. Using a notation similar to (1), for a point set A = {a1, ..., aN} ∈

[−1, 1]2 and a basis B = {b1, . . . , bN}, we may construct the Vandermonde matrix

V(A;B) = (bi(a j))N
i, j=1

where the i-th of V consists of i-th polynomial of the basis B evaluated at all points.
For Padua-like points N =

(
n+2

2

)
and we denote with Vdm(A;B) the corresponding

determinant. Using the standard monomial basis of Pn(R2),

Bn = {xαyβ, | α + β ≤ n} ,

the tensor product basis

Tn = {xαyβ, | max(α, β) ≤ n}

and the univariate polynomials

a(x) :=
n/2∏
i=0

(x − x2i+1)
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b(y) :=
n/2∏
j=0

(y − y2 j+1)

another basis for Pn(R2) is

B′ = a(x)Bn/2−1 ∪ b(y)Bn/2−1 ∪ Tn (16)

such that Vdm(A;Bn) = ±Vdm(A;B′n) being the transition matrix diagonal with 1
on the diagonal. This construction allowed to manipulate the Vandermonde matrix
splitting it along the even and odd grids of the Padua-like points, providing an un-
expected commutative property of the Vandermonde determinant associated to each
direction. The claim in [11, Lemma 1] had a ”gap”. After some years, the Lemma
was completely proved [43]. Moreover, we noticed that this ”commutative” property
of the Vandermonde determinant associated to Padua-like points, holds for general
functions and general rectangular grids [36].

0 100 200 300 400 500 600 700
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10

Figure 7: Padua points for n = 25 and its Lebesgue function. On the right the profile in 1d
of the function

4 Approximation of discontinuous functions
In this section we deal with an important problem in data analysis, that is the reconstruction
of functions with discontinuities or with jumps. The approach we describe is the mapping
bases technique which turns out to be equivalent to the fake nodes approach [35, 38]. We
recall that general approaches to overtake unavoidable reconstruction instabilities around
the discontinuities are based on a clever choice of interpolation points before and after the
jumps (cf. e. g. [33]), rational approximation (cf. e.g. [56, 4]), sinc-approx , filtering
(cf. e. g. [37]). This list is not complete, but shows the wide interest to the topic. In
particular, in image analysis in medicine (Computerized Tomography (CT), Magnetic Res-
onance (MR), and their variants (SPECT, fMRI) or the above mentioned Magnetic Particle
Imaging (MPI) or in geosciences, where satellite images are used to analyzed ground char-
acteristics (humidity, temperature, water distribution and so on), often the images need to
be geometrically aligned, registered or simply reconstructed by sampling them properly. In
Figg. 8 and 9 we show some images connected to these applications.
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Figure 8: Discontinous functions in 1d and 2d

Figure 9: Left: the Shepp-Logan phantom used in medicine for testing. Center: an MPI
acquisition reconstructed by Gaussian kernels. Right: RBF reconstruction of the soil of
Portugal

• Interpolation by polynomials and rational functions of discontinuous functions is his-
torically well-studied. Two related well-known phenomena are the Runge and Gibbs
effects [71, 53]. In both cases, unwanted oscillations appears near the boundary of
the domain or close to the discontinuities, respectively.

• More recently, interpolation by kernels, mainly radial basis functions has become a
powerful tool for high-dimensional scattered data problems [54, 81, 18] and applica-
tion to the solution of PDES [57], machine learning [72, 49], image registration and
many other more.

5 The Fake Nodes Approach (FNA)
We start observing three facts from which ”fake” nodes ideas originated.

1. In applications samples are given. Resampling, which is often necessary, can be
done at Chebyshev points, or by extracting mock Chebyshev points from the data,
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or finding good interpolation points depending on applications (like Padua points,
Approximate Fekete points, Discrete Leja Sequences, Lissajous points, (P, f , β)-
greedy points, minimal energy points and so on. For more details see [35, 38].

2. When the function has steep gradients, like f (x) = arctan(20x), x ∈ (−0.22, 0.22), its
reconstruction gives rise to oscillations nearby the boundaries. This is a well-known
fact from the Fourier analysis of the coefficients of the corresponding series known
as Gibbs phenomenon.

3. For analytic functions on compact intervals Adcock and Platte [1] investigated weighted
least-squares approximation of mapped polynomial basis via the Kosloff and Tal-
Azer map [59]:

κα(x) =
sin(απx/2)
sin(απ/2)

, x ∈ [−1, 1], α ∈ (0, 1]

giving rise to the α-polynomial space

Pαn = {p ◦ κα, p ∈ Pn}

which corresponds to the space of trigonometric polynomials when α = 1 and the
classical polynomial space when α = 0 (which is excluded).

These observations are the two main ingredients of the FNA which, as we shall see,
is equivalent to a polynomial mapping of the original polynomial space. We need some
notations. Let S : Ω −→ Rd be an injective map. The main idea behind the FNA, is that of
constructing an interpolant R f ∈ B

S
N B span{BS

1 , . . . , B
S
N} of the function f , so that

R f (x) =
N∑

i=1

αS
i BS

i (x) =
N∑

i=1

αS
i Bi(S (x)) = Pg(S (x)), ∀ x ∈ Ω . (17)

The function g has the property that g|S (XN ) = f|XN , that is it assumes the same values of
f at the mapped interpolation points S (XN), cf. [35]. Thus, having the mapped basis BS

N ,
the construction of the interpolant R f is equivalent to build a classical interpolant Pg ∈ BN

at the ”fake” or mapped nodes S (XN). In what follows we will use the words fake nodes,
thinking of this mapping process.

Provided we have a unisolvent set of points for the given basis, XN = {x1, ..., xN}, and the
corresponding values f = { f (x1), . . . , f (xN)}, R f can be constructed by solving the linear
system

ASαS = f , (18)

where αS = (αS
1 , . . . , α

S
N)⊺, and

AS =


BS

1 (x1) . . . BS
1 (xN)

...
. . .

...
BS

N(x1) . . . BS
N(xN)

 .
Concerning the cardinal form of the mapped interpolant we may state the following

proposition.
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Proposition 1 (Cardinal form) Let XN = {xi, i = 1, . . . ,N} ⊆ Ω be a set of pairwise
distinct data points and let ui ∈ BN , i = 1, . . . ,N be the basis functions. Let S : Ω −→ Rd

be an injective map. The functions {u1, . . . , uN} are cardinal on S (Ω) for the fake nodes
S (XN) if and only if the mapped functions {u1 ◦ S , . . . , uN ◦ S } are cardinal for the original
set of nodes XN .

The proof is trivial and comes immediately asking the cardinality property to the functions
uS

i . Hence we can write the interpolant at the fake nodes in cardinal form:

RS
f (x) = f⊺uS (x), x ∈ Ω , (19)

where uS (x) = (uS
1 (x), . . . , uS

N(x))⊺.
The Lebesgue constant of the points mapped via RS

f is equivalent to that of the image
Ω though S (see [38] for details).

Proposition 2 (Equivalence of the Lebesgue constant) Let S : Ω −→ Rd be an injective
map. Let XN ⊆ Ω be a unisolvent set of nodes for the space BN , and uS

i ∈ B
S
N , i = 1, . . . ,N,

be the associated cardinal functions. Then, the Lebesgue constant ΛS (Ω) associated to the
mapped nodes is

ΛS (Ω) = Λ(S (Ω)).

Remark 5.1 The proposition states that the interpolation at the mapped basis BS
N inherits

the Lebesgue constant of the fake nodes S (XN) over the ‘standard’ basis BN .

The Lebesgue constant, as well-known, represents the stability constant of the interpo-
lation process. For analyzing the stability, we thus study an interpolant of perturbed data
f̃ (xi) sampled at xi, i = 1, . . . ,N, i.e. data affected by measurement errors.

Proposition 3 (Stability) Let S : Ω −→ Rd be an injective map and XN ⊆ Ω be a unisol-
vent set of nodes for the space BN . Let f be the associated vector of function values and f̃
be the vector of perturbed values. Let RS

f and RS
f̃

be the interpolant of the function values

f and f̃ respectively. Then,

||RS
f − RS

f̃ ||∞,Ω ≤ Λ
S (Ω) ∥ f − f̃∥∞,XN .

Proof. Taking into account that g|S (XN ) = f|XN and thus also g̃|S (XN ) = f̃|XN , we deduce
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that

||RS
f − RS

f̃ ||∞,Ω = ||Pg − Pg̃||∞,S (Ω) = sup
x∈S (Ω)

∣∣∣∣∣ N∑
i=1

(gi(xi) − g̃i(xi)) ui(x)
∣∣∣∣∣ =

= sup
x∈Ω

∣∣∣∣∣ N∑
i=1

(gi(S (xi)) − g̃i(S (xi))) ui(S (x))
∣∣∣∣∣ ≤

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| |gi(S (xi)) − g̃i(S (xi))| ≤

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| max
i=1,...,N

|gi(S (xi)) − g̃i(S (xi))| =

= Λ(S (Ω)) max
i=1,...,N

∣∣∣ f (xi) − f̃i(xi)
∣∣∣

= ΛS (Ω) ∥ f − f̃∥∞,XN .

This concludes the proof. □
Consistently with Remark 5.1, the FNA approach also inherits the error of the classical

approach, as shown in the following proposition.

Proposition 4 (Error bound inheritance) Letting S , XN , f and RS
f , as above. Then, for

any given function norm, we have

||RS
f − f ||Ω = ||Pg − g||S (Ω),

where g|S (XN ) = f|XN .

Proof. From (17) we know that RS
f = Pg ◦ S . Choosing g such that g ◦ S = f on Ω (this

g exists being S injective), we get

||RS
f − f ||Ω = ||Pg ◦ S − g ◦ S ||Ω = ||Pg − g||S (Ω)

which gives the claimed result. □

5.1 Mapped bases
As discussed above, let S : I → R be a given map. We are interested to the function

RS
n, f (x) := Pn,g(S (x)) =

n∑
i=0

ciS i(x) , (20)

for some g : S (I)→ R ∈ Cr(I) such that

g|S (Xn) = f|Xn .

RS
n, f ∈ span {S i = mi ◦ S , i = 0, . . . , n} is the interpolant at (Xn, Fn), that is no resam-

pling is done.
This mapping construction is equivalent to the fake nodes approach.
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• The mapped bases approach on I ask to “interpolate f on the set Xn via Rs
n, f in the

function space S n.”

• The FNA on S (I) ask to “interpolate g on the set S (Xn) via Pn,g in the polynomial
space Mn.”

Remark 5.2 This approach is rather general, in the sense that we may use any space of
linear independent functions (polynomials, rational function, radial basis functions and so
on). The only point to clarify is the choice of the map S .

Problem 2 How can we find a suitable admissible map S for mitigating the Runge and
Gibbs effects?

The map S should be taken so that the resulting set of fake nodes S (Xn) guarantees a
stable interpolation process. A “natural” choice for a stable interpolation is to map Xn for
example, to the set of Chebyshev-Lobatto (CL) nodes on the interval I.

The following algorithms, S -Runge and S -Gibbs, provide a constructive solution to
Problem 2

Algorithm 1 (S-Runge) Input: Xn,Cn. Note: Xn is ordered left-right, Cn are the CL nodes.

1. Core

• If x ∈ [xi, xi+1], for i ∈ {0, . . . , n − 1}, S is the (piecewise) linear map

S (x) = β1,i(x − xi) + β2,i,

where
β1,i =

ci+1 − ci

xi+1 − xi
, β2,i = ci.

2. Output: S (x).

For S -Gibbs we need to identify the set of discontinuities by an edge-detection algo-
rithm.

Dm :=
{
(ξi, di) | ξi ∈ (a, b), ξi < ξi+1, and di B | f (ξ+i ) − f (ξ−i )|

}
, i = 0, . . . ,m.

This can be done by well-known and stable techniques, such as the the Canny algorithm
described in [26] or, for irregularly samples signals and images, in [2]. When Radial basis
functions are used, the analysis of the coefficients of the interpolant, can give information
on the location of the discontinuities, as described in [70]. Recently we proposed another
approach to extract the location of the discontinuities through a segmentation method based
on a classification algorithm from machine learning (see [39]).

Algorithm 2 (S-Gibbs) Inputs: Xn, Dm, x and k ∈ R+
Core

1. αi B kdi, i = 0, . . . ,m.
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2. Letting Ai =
∑i

j=0 α j, define S as follows:

S (x) =
{

x, for x ∈ [a, ξ0[,
x + Ai, for x ∈ [ξi, ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Output: S (x).

Remarks 5.1 Some comments are in order.

• Our strategy consists in constructing the map S in such a way that it sufficiently
increases the gap between the node right before and the one right after the disconti-
nuities via the real parameters αi.

• About the shifting parameter k > 0. We experimentally observed that its selection
is not critical. The resulting interpolation process is not sensitive to its choice, pro-
vided that it is sufficiently large, i.e. in such a way that in the mapped space the
so-constructed function g has no steep gradients.

• The fake nodes mapping, S-Runge, enables one to obtain an interpolant on equis-
paced points that may converge efficiently while avoiding Runge phenomenon. The
connection worth to be emphasized regards the application of this mapping on a
polynomial basis. In particular, if we consider the Chebychev polynomials of the first
kind, that is

Tk(x) = cos(k arccos(x)), f or x ∈ [−1; 1], k ≥ 0

Then, it appears that applying the fake nodes mapping to Tk on a general interval
[a, b], provides a Fourier basis T̂k:

T̂k(x) = Tk(cos(π(x − a)/(b − a))) = cos(kπ(x − a)/(b − a)) .

In other words, interpolating with the fake nodes mapping is equivalent to a particu-
lar decomposition in Fourier series. It also means that one can make direct connec-
tions with several tricks used e.g. by the software Chebfun [64] and easily find the
series coefficients via an FFT. An application of this idea has recently been explored
in [58].

In Fig. 10 we plot the cardinal functions on 4 nodes (so cubics), at varying the location
of the discontinuity ξ and the shift parameter k. The cardinals become discontinuous at ξ.
When ξ is not at the center of th interval they do not look anymore cubics.

5.2 Examples
5.2.1 Runge phenomenon

The first example of the FNA deals with the interpolation of the Runge function. We take,
I = [−5, 5] , f1(x) = 1/(1 + x2) , Xn: equally spaced. As evaluation points we consider a
set of 100 equally spaced points.

We computed the Relative Max Approximation Error (RMAE), that is

RMAE = max
z∈E

|Rs
n, f (z) − f (z)|

| f (z)|
,
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Figure 10: Left-right, up-down: the original cardinals on 4 nodes, the cardinals around
ξ = 0, k = 0 the cardinals around ξ = 0.2, k = 1,the cardinals around ξ = 0, k = 0.5.
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Figure 11: Interpolation at 13 points of f1. Using equispaced (left), CL (center) and fake
nodes (right). The original and reconstructed functions are plotted with continuous red and
dotted blue lines, respectively.

5.2.2 Gibbs phenomenon

The second example deals with the Gibbs effect. We consider the discontinuous function
below

f2(x) B
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Figure 12: The RMAE for the Runge function varying the number of nodes. The results
with equispaced, CL and fake nodes are represented by black circles, blue stars and red
dots, respectively.
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Figure 13: Lebesgue functions of equispaced (left), CL (center) and fake CL (right) nodes.

In this exampleD = {(−3/2, 1.775), (5/2, 0.479)}. As before, we compare:

a) the interpolating polynomial at equispaced points En and associated function values
f2(En);

b) the interpolating polynomial at the CL nodes Cn in I and resampled function values
f2(Cn);

c) the approximant built upon the polynomial interpolant at the fake nodes, S (En), and
function values related to the equispaced points f2(En). In this setting, we fix k = 50
and the map S of the S -Gibbs algorithm.

5.3 Extensions
The mapped basis approach suggested many interesting applications. Here we enumerate
the most interesting ones and the corresponding references in which interested readers can
refer to.

• Quadrature weights of the ”fake” Chebyshev-Lobatto nodes are those of the compos-
ite trapezoidal rule [34].
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Figure 14: Interpolation at 20 points of the function f2 on [−5, 5], using equispaced (left),
CL nodes (center) and the discontinuous map (right). The nodes are represented by stars,
the original and reconstructed functions are plotted with continuous red and dotted blue
lines, respectively.
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Figure 15: The RMAE for the function f2 varying the number of nodes. The results with
equispaced, CL and fake nodes are represented by black circles, blue stars and red dots
respectively.
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Figure 16: Lebesgue functions of equispaced (left), CL (center) and fake nodes (right).

• In 2d and 3d, as we have already seen, we can extract Approximate Fekete Points
on various domains (disk, sphere, polygons, spherical caps, lunes, ... ). With these
points we can apply the mapped basis approach for least-squares approximation [38].
In the 2d case, we have results on the approximation of discontinuous functions on
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the square, using polynomial approximation at the Padua points or tensor product
meshes, see Figg. 17 and 18. It is interesting to see Fig. 18 where we show how to
extract and map at the Padua points, fake Padua, starting from an original grid.

• In higher dimensions, where Padua points are not known, we may sample the func-
tion at the so-called Lissajous points or in the case of scattered data approximate by
Variably Scaled Discontinuous Kernels [39].

• Extensions to rational interpolation/approximation: Floater-Hormann (FH) and trigono-
metric FH (for periodic signals) interpolants and the AAA-approximation (see [4] and
references therein).

• The original proposed S-Gibbs map suffers of a subtle instability when the inter-
polation is done at equidistant nodes, a consequence of the Runge’s phenomenon.
A new approach, termed Gibbs-Runge-Avoiding Stable Polynomial Approximation
(GRASPA) has been introduced in [33], which allows to mitigate both Runge and
Gibbs phenomena

• In multimodal medical imaging it is a common practice to undersample the anatomically-
derived segmentation images to measure the mean activity of a co-acquired func-
tional image. This avoids the resampling-related Gibbs effect that would occur in
oversampling the functional image. It turns out that the FNA for image resampling it
is designed to reduce the Gibbs effect when oversampling the functional image. This
has been proved by a tight error analysis in [66].

• Links: https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_
algorithm_without_resampling

Figure 17: Left: interpolation with PD60 of a function with a circular jump. Right: the
same by mapping circularly the PD points, and using least-squares fake-Padua
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Figure 18: Here n = 10. On the left the set X66 (represented by blue dots) is extracted from
a 11×12 equispaced grid (represented by both blue dots and red stars). The set X66 (centre)
is then mapped on the set of Padua points Pad66 via the mapping S (right).

5.4 Some open problems
• As mentioned above, S-Runge and S-Gibbs have been improved in [33] via the

GRASPA approach. Extension, at least to two dimensions, is needed.

• Recently two dimensional mock-Chebyshev points plus regression have been inves-
tigated [45]. Is this approach an alternative to the “fake” one?

• Error analysis and tight Lebesgue constant bounds should be investigated.

6 Conclusions
In this paper we have reviewed the most important facts concerning the Padua points and
the mapped bases approach for polynomial approximation of functions and data. We also
outlined some open problems with the hope that some researcher can be interested in these
topics and can propose a solution.
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