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Abstract

The rescaled localized RBF method was introduced in [2] for scattered data inter-
polation. It is a rational approximation method based on interpolation with compactly
supported radial basis functions. It requires the solution of two linear systems with
the same sparse matrix, which has a small condition number, due to the scaling of the
basis function. Hence, it can be computed using an unpreconditioned conjugate gradi-
ent method in linear time. Numerical evidence provided in [2] shows that the method
produces good approximations for many examples but no theoretical results were pro-
vided. In this paper, we discuss the convergence of the rescaled localized RBF method
in the case of quasi-uniform data and stationary scaling. As the method is not only
interpolatory but also reproduces constants exactly, linear convergence is expected. We
can show this linear convergence up to a certain conjecture.

1 Introduction

We start this note by introducing the necessary notations and the motivations that inspired
this work.
Let Φ : Rd → R be a compactly supported radial basis function with support in the unit
ball B1(0), which is a reproducing kernel of Hσ(Rd) for a given σ > d/2, i.e. it has a Fourier
transform behaving like

c1(1 + ‖ω‖22)−σ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖22)−σ, ω ∈ Rd. (1)

For δ > 0, we define the scaled function

Φδ := Φ(·/δ). (2)

Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary and let X = {x1, . . . ,xN} ⊆ Ω
be a discrete subset of distinct points with fill distance and separation radius given, as usual,
by

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2, qX :=
1

2
min
j 6=k
‖xj − xk‖2,



respectively. We will assume that the set is quasi-uniform, i.e. that there is a constant cqu
such that

qX ≤ hX,Ω ≤ cquqX . (3)

We will further assume that there are constants γ, cγ ∈ (0, 1) such that

γcγhX,Ω ≤ δ ≤ cγhX,Ω, (4)

which also means that δ is proportional to qX , as we have

γcγqX ≤ δ ≤ cγcquqX . (5)

With these ingredients, we can define an interpolant sf to a function f ∈ C(Ω) as follows.
Let

sf (x) = sf,X,Φδ(x) =
N∑
j=1

αjΦδ(x− xj), x ∈ Ω, (6)

be the unique interpolant to a function f ∈ C(Ω), i.e. the coefficients αj are determined
by the interpolation condition sf (xi) = f(xi), 1 ≤ i ≤ N . The interpolant or, to be more
precise, the coefficients α = (αj) are determined by α = A−1f |X with the symmetric and
positive definite interpolation matrix A = (Φδ(xi − xj)) ∈ RN×N .
It is well-known that in the stationary situation described above, where the support radius
δ of the basis functions is proportional to the fill distance hX,Ω, the interpolation matrix A
is well-conditioned with a condition number which only depends on the constants γ, cγ , cqu.
To be more precise there is a constant C > 0 such that we have (cf. [5])

‖A−1‖2 ≤ C

(
δ

qX

)2σ−d
≤ C(cγcqu)2σ−d, (7)

cond2(A) ≤ C(cγcqu)2σ−d(1 + cγcqu)dΦ(0). (8)

The matrix A is also a sparse matrix such that the system Aα = f |X can be solved extremely
efficiently. Moreover, the evaluation of sf at a point x ∈ Ω or even x ∈ Rd requires not to
form the entire sum in (6). Instead, we only need to sum over those indices k for which
‖x− xk‖2 ≤ δ. This number is bounded by

#{k : ‖x− xk‖2 ≤ δ} ≤
(δ + qX)d

qdX
≤ (1 + cγcqu)d, (9)

which is also used for deriving (8).
However, it is also well-known that there is no convergence for sf to f with hX,Ω → 0 (cf.
e.g. [6, §11.3])
Because of this trade-off principle, a variation called rescaled localized radial basis function
has been proposed in [2] . The idea is simply to compute the interpolant sf as above, as
well as the interpolant s1 to the constant function 1 and form their quotient. The new
approximation Shf is then

Shf :=
sf
s1

=
sf,X,Φδ
s1,X,Φδ

. (10)

Of course, to make this well-defined, we must assume that s1 does not vanish on Ω. Nu-
merical evidence provided in [2] shows that s1 does indeed not vanish under reasonable
assumptions on γ, cγ , cqu and that Shf converges to f . Moreover, we have the following
obvious observation (see also [4]).
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Lemma 1.1 As long as Shf is well-defined, it interpolates f at the data sites xj ∈ X and
it reproduces constants exactly.

It is the goal of this paper to prove linear convergence of Shf to f . To show this, in Section
2 we rewrite Shf as a quasi-interpolant by using cardinal functions while in Section 3 we
prove the main result. While the result itself is primarily of theoretical nature, it has impact
to applications, as well, as it guarantees linear convergence in the quasi-uniform setting,
indicating how many data sites are required for a desired accuracy. Moreover, as the proof
uses mainly local arguments, it might be possible to extend the result to non-uniform data
sets.

2 Cardinal Functions

Recall that we always have cardinal or Lagrange functions χj ∈ VX,Φδ , i.e. functions
satisfying χj(xi) = δij , where

VX,Φδ = span{Φδ(· − x) : x ∈ X}.

These Lagrange functions can be simultaneously computed via

A

χ1(x)
...

χN (x)

 =

Φδ(x− x1)
...

Φδ(x− xN )


or simply

χj(x) =

N∑
k=1

A−1
jk Φδ(x− xk) =

∑
k:‖x−xk‖2≤δ

A−1
jk Φδ(x− xk), x ∈ Rd, (11)

where A−1
jk denotes the entries of the inverse A−1. With these cardinal functions we can

rewrite Shf as

Shf(x) =

∑N
j=1 f(xj)χj(x)∑N

k=1 χk(x)
=:

N∑
j=1

f(xj)uj(x)

with the new weight functions

uj(x) :=
χj(x)∑N
k=1 χk(x)

, x ∈ Rd.

Hence, to understand this approximation process it is necessary to understand the cardinal
functions χj better. We start by showing that they decay exponentially. To prove this, we
need to recall some material from [1] in the way it was also used in [5]. We start by indexing
the matrix A = (Φδ(xi − xj)) differently. We will index our matrix entries not using pairs
(i, j) ∈ N2

0 but pairs of multi-indices (α,β) ∈ Zd × Zd.
Hence, a multivariate matrix A is a finitely supported function A : Zd × Zd → R. If we
still write A(α,β) = Aα,β, then it is easy to see that concepts like symmetry and positive
definiteness carry easily over to multivariate matrices. We also have the following definition
from [1].
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Definition 2.1 A multivariate matrix A : Zd × Zd → R is called R-banded if R > 0 and if
Aα,β = 0 whenever ‖α− β‖2 > R.

The advantage of this definition over the classical definition of banded matrices is that it
reflects the given geometrical background in a natural way.

Lemma 2.2 [1, Theorem 3.3] Let A : Zd × Zd → R be a symmetric and positive definite
R-banded matrix. Then,

|A−1
α,β| ≤ 2‖A−1‖2µ‖α−β‖2

with

µ =

(√
cond2(A)− 1√
cond2(A) + 1

)1/R

. (12)

To interpret the interpolation matrix A = (Φδ(xi − xj)) as a banded multivariate matrix,
we relabel it such that A can be viewed as a finitely supported function A : Zd × Zd → R.
To do this we uniquely assign a multi-index yi ∈ Zd to each data point xi ∈ X ⊆ Rd with
the property that

A(yj ,yk) = Φδ(xj − xk).

As shown in ([5]) we can achieve this by setting zj :=
√
d

2qX
xj ∈ Rd and defining yj ∈ Zd by

yj =
(
bz1
j c, . . . , bzdj c

)
, 1 ≤ j ≤ N.

Then we have ‖zj − zk‖2 ≥
√
d for j 6= k such that [1, Lemma 3.7] guarantees that all the

yj are pairwise distinct. Moreover, with R := max(cqucγ , 4)
√
d the condition ‖yj − yk‖2 ≥

R ≥ 4
√
d implies ‖zj − zk‖2 ≥ R/2 by the same lemma and this means in our situation

‖xj − xk‖2 ≥
2qX√
d

R

2
=

2qX√
d

cqucγ
√
d

2
= cqucγqX ≥ δ,

Hence, Lemma 2.2 implies

|A−1
jk | = |A

−1
yj ,yk
| ≤ 2‖A−1‖2µ‖yj−yk‖2 ≤ Cµ‖yj−yk‖2 , (13)

where we have used (7). Moreover, using (8) in the definition of µ in (12) and the fact that
the function f(x) := (x − 1)/(x + 1) is monotonically increasing, we see that µ ∈ (0, 1) is
indeed a constant independent of X. This is the basis for the proof of the following result.

Theorem 2.3 Suppose Φ is a compactly supported kernel with Fourier transform satisfying
(1). Let Φδ be defined by (2). Let X ⊆ Rd be quasi-uniform with (3) and let δ be proportional
to hX,Ω as in (4). Then, there is a C > 0 and ν > 0 such that, for 1 ≤ j ≤ N ,

|χj(x)| ≤ Ce−ν‖x−xj‖2/qX , x ∈ Rd.

Proof: As we have for two numbers x, y ∈ R the relation |bxc − byc| ≥ |x− y| − 1, we see
that, with the definitions above,

‖yj − yk‖2 ≥
1√
d
‖yj − yk‖1 ≥

1√
d
‖zj − zk‖2 −

√
d =

1

2qX
‖xj − xk‖2 −

√
d
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Hence, (13) implies

|A−1
jk | ≤ Cµ

1
2

‖xj−xk‖2
qX µ−

√
d ≤ Ce−ν

‖xj−xk‖2
qX

with ν := −1
2 logµ > 0. Using ‖xk − xj‖2 ≥ ‖x− xj‖2 − ‖x− xk‖2 ≥ ‖x− xj‖2 − δ in the

representation (11), together with (9) and (5), this yields

|χj(x)| ≤
∑

‖x−xk‖2≤δ

|A−1
jk ||Φδ(x− xj)| ≤ C‖Φ‖L∞(Rd)

∑
‖x−xk‖2≤δ

e−ν‖xj−xk‖2/qX

≤ C
∑

‖x−xk‖2≤δ

e−ν‖x−xj‖2/qXeδν/qX

≤ C(1 + cγcqu)decγcquνe−ν‖x−xj‖2/qX .

�

This result has several immediate consequences, which we want to list now.

Corollary 2.4 Under the assumptions of Theorem 2.3, the cardinal functions are Lipschitz
continuous, i.e. there is a constant CL > 0 such that

|χj(x)− χj(y)| ≤ CL
‖x− y‖2

qX
, x,y ∈ Rd.

Proof: Differentiating the representation (11), using that Φ ∈ C1(Rd) and using the expo-
nential decay of the Lagrangian shows

|∂iχj(x)| = 1

δ

N∑
k=1

|A−1
jk ||∂iΦ((x− xk)/δ)| ≤

C

δ

∑
k:‖x−xk‖≤δ

e−ν‖xj−xk‖2/qX .

Using again ‖xk −xj‖2 ≥ ‖x−xj‖2−‖x−xk‖2 ≥ ‖x−xj‖2− δ, this yields, together with
(9) and (5),

|∂iχj(x)| ≤ C

qX
e−ν‖x−xj‖2/qX .

With this, the intermediate value theorem finally shows

|χj(x)− χj(y)| ≤ ‖∇χj(ξ)‖2 ‖x− y‖2 ≤ C
‖x− y‖2

qX
e−ν‖ξ−xj‖2 ≤ C ‖x− y‖2

qX
.

�

Another consequence is that the Lebesgue functions are uniformly bounded. We can even
show the following more general result.

Corollary 2.5 Under the assumptions of Theorem 2.3 there is a constant C > 0 such that,
for ` ∈ N0,

N∑
j=1

‖x− xj‖`2|χj(x)| ≤ Ch`X,Ω, x ∈ Rd.
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Proof: Similarly as in the proof of [6, Theorem 12.3], we let En = {y ∈ Rd : nqX ≤
‖x− y‖2 ≤ (n+ 1)qX} for n ∈ N0. Then, a volume comparison argument shows

#(X ∩ En) ≤ 3dnd−1.

Using that the union of all the En contains all the data sites X, and the monotonicity of
the exponential function and the function ‖ · −xj‖`2 allows us to derive

N∑
j=1

‖x− xj‖`2|χj(x)| ≤
∞∑
n=0

∑
xj∈En

‖x− xj‖`2|χj(x)| ≤ C
∞∑
n=0

∑
xj∈En

‖x− xj‖`2e−ν‖x−xj‖2/qX

≤ C

∞∑
n=0

nd−1(n+ 1)`q`Xe
−νn ≤ Ch`X,Ω

∞∑
n=0

(n+ 1)d+`−1e−νn

≤ Ch`X,Ω,

as the final sum is clearly finite. �

3 Convergence of the RL-RBF Method

To show convergence of the RL-RBF method we need one additional auxiliary result.

Lemma 3.1 Under the assumptions of Theorem 2.3, the constant cγ from (4) can be chosen
such that there is a constant c > 0 such that

N∑
j=1

χj(x) ≥ c, x ∈ Ω. (14)

Remark. Unfortunately we are presently not able to prove this Lemma. We can easily
prove it for n = 2 by resorting to the fact that each cardinal is a ratio of two strictly positive
determinants. For n > 2 we checked it numerically in many different instances, even in the
case of standard approximation and in all cases it was confirmed. As an example in Fig. 1
we show the plots of the sum (14) on 20 Halton points. This shows the more stability we
get with the rescaled RBF interpolation as the sum approximates one.

Figure 1: Sum of cardinals on 20 Halton points on [0, 1]2
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We will express convergence using the modulus of continuity defined by

ωf (ε) := sup{|f(x)− f(y)| : x,y ∈ Ω with ‖x− y‖2 ≤ ε}.

for a function f : Ω→ R and with ε > 0.
We need one final assumption on the domain Ω ⊆ Rd. We will, from now on assume, that
there is a constant CΩ ≥ 1 such that any two points x and y in Ω can be joined by a
rectifiable curve Γ in Ω with length |Γ| ≤ CΩ‖x− y‖2.
If Ω satisfies the above assumption, then [3, Lemma 2.2] shows for arbitrary 0 < ε < δ that

ωf (δ) ≤ 2CΩ
δ

ε
ωf (ε). (15)

Theorem 3.2 Under the assumptions of Theorem 2.3 and under the assumption that Lemma
3.1 holds, the RL-RBF method converges linearly for every target function f ∈ C1(Ω), i.e.
there is a constant C > 0 such that

‖f − Shf‖L∞(Ω) ≤ hX,Ω‖f‖C1(Ω).

Proof: We have

Shf =
N∑
j=1

f(xj)uj , uj =
χj∑N
k=1 χk

and hence Sh1 = 1, i.e. constants a reproduced. Moreover, we have the bound

|uj(x)| = |χj(x)|∣∣∣∑N
k=1 χk(x)

∣∣∣ ≤ Ce−ν‖x−xj‖2/qX
using Lemma 3.1 and Theorem 2.3. With h = hX,Ω, (14), (15) and Corollary 2.5 we have

|f(x)− Shf(x)| =

∣∣∣∣∣∣
N∑
j=1

[f(x)− f(xj)]uj(x)

∣∣∣∣∣∣ ≤ 1

c

N∑
j=1

|f(x)− f(xj)| |χj(x)|

≤ 1

c

∑
‖x−xj‖2≤h

|f(x)− f(xj)| |χj(x)|+ 1

c

∑
‖x−xj‖2>h

|f(x)− f(xj)||χj(x)|

≤ 1

c

∑
‖x−xj‖2≤h

ωf (h)|χj(x)|+ 1

c

∑
‖x−xj‖2

ωf (‖x− xj‖2)|χj(x)|

≤ Cωf (h)

1 + 2CΩ
1

h

N∑
j=1

‖x− xj‖2|χj(x)|


≤ Cωf (h),

and the result follows from ωf (h) ≤ h‖f‖C1(Ω) for all f ∈ C1(Ω). �

We cannot expect a better convergence order in general, as the process only reproduces
constants exactly.
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