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Universit à degli Studi di Verona

Rapporto di ricerca
Research report RR 46/2006

A Study on Premixed Laminar
Flames

Simone Zuccher
Marco Caliari
Gianluca Argentini
Stefano De Marchi





Dipartimento di Informatica
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Abstract

This work has been done in the period March–November 2006 as a collabo-
ration between the Department of Computer Science, University of Verona,
and the Research & Development Department, Riello Burners, in order to
develop a numerical approach for the study of premixed laminar flames.

Keywords: premixed laminar flames, combustion, fluid mechanics, finite
differences
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1 Introduction to premixed laminar flames

Combustion may take place in many different forms and circumstances. De-
pending on the type of flow (laminar or turbulent) and the type of premixing
(premixed or not), it is possible to distinguish different flame structures, each
of which features its own characteristics. All gaseous combustion processes,
however, are based on the same equations, namely the conservation of mass,
species mass fraction, momentum and energy.

Many practical combustors, such as burners or internal combustion en-
gines, rely on premixed flame propagation. Moreover, burner-stabilized lam-
inar premixed flames are very often used to study chemical kinetics in a com-
bustion environment. Such flames are effectively one dimensional and can
be made very steady, thus facilitating detailed experimental measurements
of temperature and species profiles. Also, laminar flame speed is often used
to characterize the combustion of various fuel-oxidizer combinations. There-
fore, the ability to model chemical kinetics and transport processes in these
flames is critical to interpreting flame experiments and to understanding the
combustion process itself.

Among the gaseous flames (premixed or non-premixed, laminar or turbu-
lent), here we concentrate on premixed laminar flames only.

Several laminar flame theories have been proposed in the past, starting
from the end of the nineteenth century [4], with the objective of determining
the fundamental flame attributes. These theories have been based on the de-
gree of realism associated with their assumptions and are carefully described
by classical textbooks [3, 8, 1].

2 Governing equations

We consider a steady, two-dimensional, premixed laminar flame governed by
the following set of partial differential equations

(ρu)x + (ρv)y = 0 (1)

(ρuu)x + (ρuv)y = −R(ρT )x (2)

(ρuv)x + (ρvv)y = −R(ρT )y (3)

(ρ(u + uk)Yk)x + (ρ(v + vk)Yk)y = Ae−
E

RT (4)
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ukYk = −Dk(Yk)x (5)

vkYk = −Dk(Yk)y (6)

cp((ρuT )x+(ρvT )y)−λ(Txx+Tyy)+ρ
K

∑

k=1

Ykcpk(ukTx+vkTy) = −

K
∑

k=1

hkAe−
E

RT

(7)
where symbols denote the following quantities

x spatial coordinate

y spatial coordinate

ρ density of fluid mixture

u x-component of the fluid mixture velocity field U

v y-component of the fluid mixture velocity field U

T temperature of fluid mixture

R normalized gas mixture constant R =
R

W
with

R universal gas constant

W mean molecular weight of the mixture

uk x-component of the diffusion velocity field Vk of k-th species

vk y-component of the diffusion velocity field Vk of k-th species

Yk mass fraction of the k-th species

A reaction factor in the Arrhenius expression

E activation energy in the Arrhenius expression

Dk diffusion coefficient of the k-th species

cp specific heat of gas mixture at constant pressure

cpk specific heat of the k-th species at constant pressure

λ thermal conductivity of the gas mixture
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hk specific enthalpy coefficient of the k-th species

K total number of species

k species index

It should be noted that pressure does not appear in the equations because
it has been replaced by employing the state equation for the mixture, p =
ρRT . The number of unknowns, therefore, reduces to 4 + K × 3, where the
three unknowns that depend on the k-th species are uk, vk and Yk. On the
other hand, the number of equations are 4+K×3, where the three equations
that depend on the k-th species are (4) (5) and (6).

3 Discretization

Second-order, centered, uneven finite differences are employed in the fashion
shown in figure 1.

In order to avoid the typical problems of Navier-Stokes equations when
finite differences are used, a staggered grid in both x and y is introduced
(cf. [6, 5]). More specifically, density ρ, temperature T and mass fraction
of the k-th species Yk are known at the grid points (•), x-velocity compo-
nents u and uk are known at the “staggered” points in x (×), and y-velocity
components v and vk are known at the “staggered” points in y (¤).

Equations are collocated accordingly. Continuity (1), production of k-th
species (4) and energy (7) equations are satisfied at the grid points (•), x-
momentum (2) and x-Fick-law (5) equations are satisfied at the “staggered”
points in x (×), and y-momentum (3) and x-Fick-law (6) equations are sat-
isfied at the “staggered” points in y (¤).

By doing so, the following residue is obtained (in vector notation).

h(u) = 0 (8)

with

u =
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, l = i + J(j − 1), i = 1 . . . I, j = 1 . . . J. (9)
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Figure 1: Finite difference discretization on staggered grid. Density ρ, tem-
perature T and mass fraction of the k-th species Yk are known at the grid
points (•); x-velocity components u and uk are known at the “staggered”
points in x (×); y-velocity components v and vk are known at the “stag-
gered” points in y (¤).

4 Linearization

System (8) is clearly nonlinear in the unknowns [ρl, Tl, ul, vl, ukl, vkl, Ykl]. Dif-
ferent choices are available to linearize and eventually solve it numerically.
Here we prefer to employ Newton’s method, i.e.

h(u) = h(ū) + J(ū)(u − ū) = h̄ + J(u − ū) = 0
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or
u = ū − [J ]−1h̄, (10)

where J = J(ū) denotes the Jacobian J , computed in ū.
The Jacobian is evaluated analytically, but alternatively it could have

been computed numerically using the definition of derivative.

5 Steady solution of a time-dependent prob-

lem

The main drawback of Newton’s method (10) is the strong dependence of its
success on the initial guess. The differential problem is governed by partial
differential equations supplemented by boundary conditions. Therefore, the
initial guess is arbitrary and the algorithm might never converge if the initial
guess is very far from the solution.

This weakness can be overcome by replacing the steady system (8) with
a fake time-dependent, initial-value problem in the form











ε
∂u

∂t
+ h(u) = 0

u(0) = u0

(11)

where ε is a parameter that controls the “steadiness” of the problem. The
solution of (8) is then

u = lim
t→∞

u(t).

If ε = 0 the original system is retrieved, while ε > 0 allows the solution to
be rather independent of the initial condition u0. It goes without saying
that problem (11) might require a long time t to reach the steady solution
that satisfies the steady problem (8) (t → ∞). However, convergence can be
accelerated by increasing ε at the expense of a possible failure of Newton’s
method.

For the solution of problem (11) implicit second-order finite differences
(backward differentiation formulas – BDF methods [2]) are used.

6 Linear-system solver

The linear system to be solved in the Newton iterative algorithm has some
band structure but is clearly very sparse (that is, the number of nonzero
elements of the matrix of dimension n is O(n) instead of O(n2)) due to the
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use of finite differences in two dimensions. Therefore, we used the matrix
CSR (Compressed Storage Row) format, which requires one double array
and one integer array of length equal to the number of non-zero elements
and one integer array of length equal to the dimension of the system.

Being the LU decomposition not affordable in such conditions, we pre-
ferred to used a semi-iterative solver for (nonsymmetric) sparse matrices,
namely the BiCGStab (BiConiugate Gradient Stabilized [9]) method pre-
conditioned by ILU(0) (Incomplete LU factorization with no fill-in), already
tailored to CSR format.

6.1 CSR format

We show with an example the CSR format and the matrix-vector product
(required in the BiCGStab solver) in such a format. Given the matrix

A =





1.0 −2.0 0
1.0 −2.0 1.0
0 1.0 −2.0





the CSR format is

sysmat =
[

1.0 −2.0 1.0 −2.0 1.0 1.0 −2.0
]

ja =
[

1 2 1 2 3 2 3
]

ia =
[

1 3 6 8
]

Given the matrix A and a vector x, the matrix-vector product y = Ax is
performed by the algorithm reported in Table 1.

do i=1,n

i1=ia(i)

i2=ia(i+1)-1

y(i)=0.0

do j=i1,i2

y(i)=y(i)+sysmat(j)*x(ja(j))

end do

end do

Table 1: Matrix-vector product in CSR format.
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7 Discrete equations

By employing the discretization introduced in §3, one gets
Continuity:

2

xi+1,j − xi−1,j

[

ρi+1,j + ρi,j

2
ui,j −

ρi,j + ρi−1,j

2
ui−1,j

]

+

2

yi,j+1 − yi,j−1

[

ρi,j+1 + ρi,j

2
vi,j −

ρi,j + ρi,j−1

2
vi,j−1

]

= 0

(12)

x-momentum:

1

xi+1,j − xi,j

[

ρi+1,j

(

ui+1,j + ui,j

2

)2

− ρi,j

(

ui,j + ui−1,j

2

)2
]

+

2

yi,j+1 − yi,j−1

[(

ρi,j + ρi+1,j + ρi+1,j+1 + ρi,j+1

4

) (

ui,j + ui,j+1

2

) (

vi,j + vi+1,j

2

)

−

(

ρi,j−1 + ρi+1,j−1 + ρi+1,j + ρi,j

4

) (

ui,j−1 + ui,j

2

) (

vi,j−1 + vi+1,j−1

2

)]

=

−R
ρi+1,jTi+1,j − ρi,jTi,j

xi+1,j − xi,j

(13)
y-momentum:

2

xi+1,j − xi−1,j

[(

ρi,j + ρi+1,j + ρi+1,j+1 + ρi,j+1

4

) (

ui,j + ui,j+1

2

) (

vi,j + vi+1,j

2

)

−

(

ρi−1,j + ρi,j + ρi,j+1 + ρi−1,j+1

4

) (

ui−1,j + ui−1,j+1

2

) (

vi−1,j + vi,j

2

)]

+

1

yi,j+1 − yi,j

[

ρi,j+1

(

vi,j+1 + vi,j

2

)2

− ρi,j

(

vi,j + vi,j−1

2

)2
]

=

−R
ρi,j+1Ti,j+1 − ρi,jTi,j

yi,j+1 − yi,j

(14)

8



production of k-th species:

2

xi+1,j − xi−1,j

[

ρi+1,jY
k
i+1,j + ρi,jY

k
i,j

2
(ui,j + uk

i,j) −
ρi,jY

k
i,j + ρi−1,jY

k
i−1,j

2
(ui−1,j + uk

i−1,j)

]

+

2

yi,j+1 − yi,j−1

[

ρi,j+1Y
k
i,j+1 + ρi,jY

k
i,j

2
(vi,j + vk

i,j) −
ρi,jY

k
i,j + ρi,j−1Y

k
i,j−1

2
(vi,j−1 + vk

i,j−1)

]

=

Ae
−

E
RTi,j

(15)
x-Fick-law for the k-th species:

uk
i,j

Y k
i,j + Y k

i+1,j

2
= −Dk

Y k
i+1,j − Y k

i,j

xi+1,j − xi,j

(16)

y-Fick-law for the k-th species:

vk
i,j

Y k
i,j + Y k

i,j+1

2
= −Dk

Y k
i,j+1 − Y k

i,j

yi,j+1 − yi,j

(17)

Energy equation:

2cp

xi+1,j − xi−1,j

[

ρi+1,jTi+1,j + ρi,jTi,j

2
ui,j −

ρi,jTi,j + ρi−1,jTi−1,j

2
ui−1,j

]

+

2cp

yi,j+1 − yi,j−1

[

ρi,j+1Ti,j+1 + ρi,jTi,j

2
vi,j −

ρi,jTi,j + ρi,j−1Ti,j−1

2
vi,j−1

]

+

−λ

[

2

xi+1,j − xi−1,j

(

Ti+1,j − Ti,j

xi+1,j − xi,j
−

Ti,j − Ti−1,j

xi,j − xi−1,j

)]

+

−λ

[

2

yi,j+1 − yi,j−1

(

Ti,j+1 − Ti,j

xi,j+1 − xi,j
−

Ti,j − Ti,j−1

xi,j − xi,j−1

)]

+

ρi,j

K
∑

k=1

Y k
i,jcpk

[(

uk
i−1,j + uk

i,j

2

)

(

Ti+1,j − Ti−1,j

xi+1,j − xi−1,j

)

+

(

vk
i,j−1 + vk

i,j

2

)

(

Ti,j+1 − Ti,j−1

yi,j+1 − yi,j−1

)

]

=

−

K
∑

k=1

hkAe
−

E
RTi,j

(18)

By introducing the following quantities,

D1
x0 =

1

xi+1 − xi−1

; D1
xf =

1

xi+1 − xi

; D1
xb =

1

xi − xi−1

;
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D1
y0 =

1

yj+1 − yj−1

; D1
yf =

1

yj+1 − yj

; D1
yb =

1

yj − yj−1

;

D2
x0 = −2D1

x0

(

D1
xf + D1

xb

)

; D2
xf = 2D1

x0D
1
xf ; D2

xb = 2D1
x0D

1
xb;

the Jacobian can be written as

D1
x0 [(ρi+1,j + ρi,j)ui,j − (ρi,j + ρi−1,j)ui−1,j] +

D1
y0 [(ρi,j+1 + ρi,j)vi,j − (ρi,j + ρi,j−1)vi,j−1] = 0

(19)

x-momentum:

D1
xf

[

ρi+1,j

(

ui+1,j + ui,j

2

)2

− ρi,j

(

ui,j + ui−1,j

2

)2
]

+

D1
y0

[(

ρi,j + ρi+1,j + ρi+1,j+1 + ρi,j+1

2

) (

ui,j + ui,j+1

2

)(

vi,j + vi+1,j

2

)

−

(

ρi,j−1 + ρi+1,j−1 + ρi+1,j + ρi,j

2

) (

ui,j−1 + ui,j

2

)(

vi,j−1 + vi+1,j−1

2

)]

+

RD1
xf(ρi+1,jTi+1,j − ρi,jTi,j) = 0

(20)
y-momentum:

D1
x0

[(

ρi,j + ρi+1,j + ρi+1,j+1 + ρi,j+1

2

)(

ui,j + ui,j+1

2

)(

vi,j + vi+1,j

2

)

−

(

ρi−1,j + ρi,j + ρi,j+1 + ρi−1,j+1

2

) (

ui−1,j + ui−1,j+1

2

)(

vi−1,j + vi,j

2

)]

+

D1
yf

[

ρi,j+1

(

vi,j+1 + vi,j

2

)2

− ρi,j

(

vi,j + vi,j−1

2

)2
]

=

−RD1
yf(ρi,j+1Ti,j+1 − ρi,jTi,j)

(21)
production of k-th species:

D1
x0

[

(ρi+1,jY
k
i+1,j + ρi,jY

k
i,j)(ui,j + uk

i,j) − (ρi,jY
k
i,j + ρi−1,jY

k
i−1,j)(ui−1,j + uk

i−1,j)
]

+

D1
y0

[

(ρi,j+1Y
k
i,j+1 + ρi,jY

k
i,j)(vi,j + vk

i,j) − (ρi,jY
k
i,j + ρi,j−1Y

k
i,j−1)(vi,j−1 + vk

i,j−1)
]

=

Ae
−

E
RTi,j

(22)
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x-Fick-law for the k-th species:

uk
i,j(Y

k
i,j + Y k

i+1,j) = −2D1
xfDk(Y

k
i+1,j − Y k

i,j) (23)

y-Fick-law for the k-th species:

vk
i,j(Y

k
i,j + Y k

i,j+1) = −2D1
yfDk(Y

k
i,j+1 − Y k

i,j) (24)

Energy equation:

cpD
1
x0 [(ρi+1,jTi+1,j + ρi,jTi,j)ui,j − (ρi,jTi,j + ρi−1,jTi−1,j)ui−1,j] +

cpD
1
y0 [(ρi,j+1Ti,j+1 + ρi,jTi,j)vi,j − (ρi,jTi,j + ρi,j−1Ti,j−1)vi,j−1] +

−λ
[

D2
xfTi+1,j + D2

xbTi−1,j + D2
yfTi,j+1 + D2

ybTi,j−1 + (D2
x0 + D2

y0)Ti,j

]

+

ρi,j

K
∑

k=1

Y k
i,jcpk

[

D2
x0

(

uk
i−1,j + uk

i,j

2

)

(Ti+1,j − Ti−1,j)+

D2
y0

(

vk
i,j−1 + vk

i,j

2

)

(Ti,j+1 − Ti,j−1)

]

=

−

K
∑

k=1

hkAe
−

E
RTi,j

(25)

8 Implementation and attempts

We first concentrated on a one-reaction system based on

CH4 + 2O2 → CO2 + 2H2O

where the reacting mixture is made of CH4 and air and the product H2O of
the reaction is first neglected.

After several attempts it was recognized that the discretized equations
derived in §7 lead to a ill-conditioned matrix system. Other staggered grids
were employed but it was not possible to improve the numerical convergence
of the scheme.

In order to reduce the problems due to the nature of the Euler equations,
the full compressible Navier-Stokes equations were solved using finite differ-
ences. This made the code much more complex and, unfortunately, did not
solve completely the convergence problems.
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Therefore, it was decided to follow a different approach by reconsidering
the model and simplifying the governing equations. First of all, the number
of equations was reduced by noting that equations (5) and (6) can easily be
substituted into equations (4) and (7), where they are actually needed. The
number of equations and unknowns thus dropped from 4 + K × 3 to 4 + K,
K being the total number of species. The next attempt was to neglect the
pressure gradient in the x- and y-momentum equations, which is reasonable
because it is mainly a recirculation flow. However, numerical difficulties were
encountered also in this case.

It was then decided to further simplify the model to a 2-dimensional flow
where the velocity field was assigned analytically. In fact, the similarity
solution of a 2D jet is known [7]. This led to the solution of the numerical
difficulties but to unreasonable temperature profiles (constant).

The model was further simplified to a one-dimensional system of equa-
tions. The continuity equation reduced to (ρu)x = 0 ⇒ ρu = ρ0u0, where the
subscript 0 denotes the values at the burner. The x-momentum equation was
replaced by u(x) where x is the distance from the jet exit so that u decades
as x−1/3. The energy equation was simplified too and the following form was
employed: cpρuTx−λTxx +(E1A1 +E2A2)e

−E/(R∗T ) = 0. It is clear that Yk is
not present in this equation and therefore the energy equation is completely
decoupled from the others.

However, since E/R = 2.4358E + 04, the energy equation practically
reduces to ATx + BTxx = 0. If the temperature at the burner (T0) and
far away from it (T∞) are the same, the trivial solution T = T0 = T∞ is
found. On the other hand, if T0 6= T∞, the solution oscillates due to the fact
that A >> B (because of the constants employed) and thus the effect of Tx

prevails on the effect of Txx.
Another problem found with this simple 1D model was that, since ρu =

const and u∞ → 0 then ρ∞ → ∞.

9 Suggestions for future work

Based on the problems experienced so far, possible future developments are
as follows.

• To restart from scratch by reconsidering the model employed for the
description of the phenomenon. The natural evolution should be from
a one-dimensional model to its extension to a two-dimensional case.

• Improvement of the chemistry. Maybe not enought species are used and
the combustion is not properly (physically and realistically) developed.

12



• To try to overcome the numerical difficultied of the general formulation
by using forward or backward (non-centered) finite differences.
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