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Abstract

The aim of this work consists of finding a suitable numerical method for the solution of the mathematical
model describing the prostate tumor growth, formulated as a system of time-dependent partial differential
equations (PDEs), which plays a key role in the field of mathematical oncology. In the literature on the
subject, there are a few numerical methods for solving the proposed mathematical model. The localized
prostate cancer growth is known as a moving interface problem, which must be solved in a suitable
stable way. The mathematical model considered in this paper, is a system of time-dependent nonlinear
PDEs that describes the interaction between cancer cells, nutrients and prostate specific antigen (PSA).
Here, we first derive a non-dimensional form of the studied mathematical model using the well-known
non-dimensionalization technique, which it makes easier to implement different numerical techniques.
Afterward, the analysis of the numerical method describing the two-dimensional prostate tumor growth
problem, based on radial basis function-generated finite difference (RBF-FD) scheme, in combination with
a first-order time discretization has been done. The numerical technique we use, does not need the use of
any adaptivity techniques to capture the features in the interface. The discretization leads to solving a
linear system of algebraic equations solved via the biconjugate gradient stabilized (BiCGSTAB) with zero–
fill incomplete lower–upper (ILU) preconditioner. Comparing the results obtained in this investigation
with those reported in the recent literature, the proposed approach confirms the ability of the developed
numerical scheme. Besides, the effect of choosing constant parameters in the mathematical model is
verified by many simulations on rectangular and circular domains.

Keywords: Time-dependent nonlinear partial differential equations, radial basis function-generated
finite difference scheme, non-dimensionalization technique, biconjugate gradient stabilized gradient,
mathematical oncology, prostate tumor growth, moving interface problem.
2010 MSC: 92C17, 35Q35, 35Q92.

∗Corresponding author
Email addresses: v.mohammadi@aut.ac.ir, v.mohammadi.aut@gmail.com (Vahid Mohammadi), mdehghan@aut.ac.ir,

mdehghan.aut@gmail.com (Mehdi Dehghan), demarchi@math.unipd.it (Stefano De Marchi)

Preprint submitted to Elsevier November 29, 2020



1. Introduction

Cancer is the result of abnormal proliferation of any of the different kinds of cells in the body. Accord-
ingly, there are a hundred distinct types of cancer, which are different in responding to treatments and in
behaviors [10]. Aging men may face to genitourinary diseases called Prostate Cancer (PCa) or the Benign
Prostatic Hyperplasia (BPH) [52]. PCa is known as an adenocarcinoma (approximately 95 percentage),
which means a type of cancer (originated in an epithelial tissue) that starts in the glands that lines the
inside of one of the organs. Facts and figures given in [52] show that the second most common cancer
and the fifth leading cause of death from cancer in men worldwide is PCa. Generally, the development
process of PCa is as follows. At the first stage, it grows locally within the prostate. After that, the tumor
tends to invade the surrounding tissues. Finally, it migrates to distant tissues by leaving some malignant
cells from the original tumor and getting into the bloodstream (metastasis) [3, 4, 23, 36, 51].

As mentioned in [50], there are two main reasons for studying PCa in tissue-scale:

1. the prostate is a small organ;

2. the tumor growth can be estimated by measuring a PCa biomarker in blood, called serum Prostate-
Specific Antigen (PSA), and it may enable in vivo model validation [50].

To predict clinical outcomes and design the optimal therapies on a patient, constructing and developing
mathematical models with the simulations of diseases and their treatments, can be useful [50]. The
tumor growth is followed by a complex biological mechanisms, which occurs at different scales, i.e., the
molecular, cellular, and tissue scales [83]. In recent years, there are different types of mathematical
models, which are able to describe the process of the tumor growth in tissue scale at two main stages:
avascular and vascular (see among the many ones: [2, 4, 16, 17, 23, 36, 49, 58]). In some studies the
role of nutrients is also considered in the mathematical model of the process of the tumor growth (for
instance in [34, 35, 40, 46, 79, 80]). In fact, healthy and tumoral cells have a competition to gain nutrients,
proliferate and control cell density in the harsh tumoral environment. To formulate a mathematical model
describing PCa, in [50] the authors have derived a new phenomenological model based on a system of
time-dependent nonlinear PDEs. Besides, they have assumed that the growth of PCa depends only on a
nutrient, which is mainly composed of glucose [50]. More recently, in [52], a new mathematical model in
tissue-scale has been derived, which shows the mechanical interaction of PCa and BPH. As a completion,
the model describing PCa under the effect of therapies (i.e., chemotherapy and antiangiogenic therapy)
has been presented in [9].

Since the exact solution of the model describing PCa is not available, numerical methods play an
important role in simulating the process. There exist few numerical methods to find the approximate
solution of the mathematical model of PCa. For example, the method based on hierarchically refined and
coarsened splines is applied for space discretization and generalized-α method for time discretization in
[51]. An isogeometric discretization based on the Galerkin method has been employed to discretize the
space variables of the PCa model under the effect of therapies, while the generalized-α method is used to
discretize the time variable (cf. [9]).

So far, meshless methods were not applied to find the numerical solution for the mathematical model
of PCa [50]. These methods distinguish them from mesh-dependent methods, such as finite element
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method (FEM) and finite volume method (FVM), for the following properties. Meshless methods do not
need to generate the underlying mesh (or triangulation) for approximation [24, 59, 78]. With this, they
can be easily implemented for finding the numerical solution of high-dimensional PDEs with arbitrary
domain geometry. Overall, these techniques are categorized into strong form, weak form and local weak
form, which are derived by choosing a suitable space of test functionals. Besides, the trial space would be
constructed using an approximation based on scattered data. Method based on Radial Basis Functions
(RBFs) and Moving Least Squares (MLS) approximation are two well-known meshless techniques [24,
59, 78]. The methods based on RBF approximation are known as powerful numerical approaches for
solving problems in high-dimensional spaces [24, 78]. Recently, new techniques based on RBFs, namely
rational RBFs partition of unity (RBFs-PU), RBFs-PU based on variably scaled kernels (VSKs) and
RBFs combined with variably scaled discontinuous kernels (VSDKs) have been developed in [20, 21, 22].
Also, some applications of VSKs method for solving the time-dependent PDEs can be found in [14, 61].
See also [47, 53, 54, 60, 76].

In 1990, Ed Kansa [44] applied the traditional RBF method for finding a new numerical solution of
an elliptical PDE. His technique, based on collocation, gave rise to a linear (nonlinear) system with a full
ill-conditioned matrix [24, 78]. In 2000 Tolstykh introduced the initial idea of the RBF-FD scheme [75].
This approach can also be viewed as the local radial basis function-differential quadrature (LRBF-DQ)
scheme (cf. e.g. [72]) presented in a more general way in [81]. The scheme is known also as a generalization
of the classical finite difference (FD) method because of the fact that instead of using polynomial test
functions, d dimensional RBFs are used (cf. [31, 45, 64]). Hence, the RBF-FD method, is more flexible
since it works on different geometries with unstructured node layouts (cf. [31, 45]). It also benefits of the
possibility of augmenting the stencil with polynomial terms, by adding constraints associated with the
RBF expansion coefficients [6]. By using polyharmonic splines (PHS) kernels, it is argued (analytically
and numerically) that using the RBF interpolant augmented with polynomials overcomes the stagnation
errors, and the order of convergence of the method depends only on the highest augmented polynomial
degree (cf. [6] and see also the last paragraph in Section 4). On the other hand, to improve the accuracy
and rate of convergence of the RBF-FD scheme, it is possible to use more nodes in each stencil (called
also support domain or local sub-domain or local domain of influence) without the need of approximating
the derivatives, as pointed out in [6, 32]. Moreover, applying this method for discretizing the differential
operator of a PDE, gives rise to a sparse matrix and this matrix has smaller condition number than
that originated with traditional global RBF approaches [31, 32, 33]. We recall the role of the choice
of the shape parameter in the stability and convergence of RBF approximation (see Sections 4 and 7)).
Interested readers can refer to [6, 7, 19, 26, 27, 31, 32, 33, 67, 69, 70] and references therein.

As recent results on the RBF-FD approach, in [69] the authors introduced a generalization of the
RBF-FD, called the overlapped RBF-FD scheme. This approach involves an overlap parameter, say δ,
which recovers the standard RBF-FD scheme when δ = 1. In [6], the RBF interpolation augmented
with polynomials (RBF+poly) has been presented as a constrained optimization problem, and has de-
rived the convergence analysis for the local RBF augmented with polynomials (LRBF+poly). Also, the
LRBF+poly method with PHS kernel has been rewritten as a best least squares approximation and
quadratic minimization problem, deriving the convergence order of the method [7]. Recently, author of
[56] have introduced a new local RBF scheme, namely the direct RBF partition of unity (D-RBF-PU)
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which is a new RBF-FD scheme in a PU setting. It also is shown that the method is much faster and, in
some situations more accurate, than the original form of the RBF-FD.

Over the past two decades, the RBF-FD technique has been successfully applied to solve numerically
practical mathematical models defined in high-dimensional spaces. For example, it has been applied
to solve shallow water equations on the sphere [26], reaction-diffusion equations [67], reaction-diffusion
equations on surfaces [68], Navier-Stokes equations [27], high–dimensional nonlinear Schrödinger equations
[15], some PDEs on surfaces [71], the damped Kuramoto-Sivashinsky (KS) equation [18] and Shan-Chen
model [1].

The main contributions to the numerical solution of the model are here summarized as follows:

• The derivation of a non-dimensional form of the mathematical model, introduced in [50], allowing
an easier implementation of different numerical methods.

• The use of the RBF-FD scheme for discretizing the space variables.

In comparison with known numerical methods, such those in [50, 51], the new technique has the
following advantages.

• The implementation of the RBF-FD technique is simpler than the methods in [50, 51].

• Using the RBF-FD technique, we do not need any specific background mesh or triangulation and
any adaptivity algorithms.

• The results are on rectangles and on circular domains, but can be extended to other geometries in
two-dimensions without any further new implementation.

We have then applied a semi-implicit backward differential formula of first-order (SBDF1) to discretize
the time variable. This gives a new fully discrete scheme that is a linear system at any time step, in
which the coefficient matrix is large and sparse. To solve it efficiently, we adopt known techniques, such
those described in [17, 47, 58, 60]. In particular, we use the BiCGSTAB method with zero–fill ILU
preconditioner. As a note, it is possible to use other time discretizations, such as explicit (conditionally
stable) method, implicit-explicit and implicit schemes, for example see [70].

The outline of this manuscript is as follows. In Section 2, we briefly review the mathematical model,
which will be solved numerically by a meshless technique in space and with the SBDF1 in time. In
Section 3, a non-dimensional form of the model is derived. The details of the applied meshless technique
are provided in Section 4. The fully discrete scheme is given in Section 6. In Section 7, some simulation
results, based on parameters given in [51] and also parameters based on clinical data provided in [50], are
presented. Finally, in Section 8 we present some concluding remark.

2. The mathematical model

In this section, the mathematical model of the prostate tumor growth [50, 51] is briefly described.
The interested reader may refer to [50, 51] to find out how the mathematical model is formulated, based
on some required biological facts.
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The PCa growth depends on nutrients, hormones and proteins. In this model, only cancerous and non-
cancerous cells are considered. For describing the dynamics of glucose, a generic nutrient σ is considered.
Furthermore, the model studied here describes the value of PSA (produced by the healthy and tumoral
cells) observed by a blood testing (see [50, 51] for more details). Due to these explanations, a differential
equation, which describes the dynamics of the tissue PSA is formulated: its variable is denoted by p. More
specifically, all unknown space- and time-dependent variables of the mathematical model here considered,
are defined as follows:

• ϕ(x, t): the concentration of the cell microstructure,

• σ(x, t): the concentration of the nutrient,

• p(x, t): the concentration of PSA,

where x ∈ Ω ⊂ Rd (here is d = 2), t ∈ [0, T ] and T is the final time.
The model we are considering has been already studied in [50, 51], consists of a set of three time-

dependent PDEs. The first equation, showing the dynamic of the concentration of the cell microstructure,
is

∂ϕ

∂t
= λ∆ϕ− 1

τ
F ′(ϕ) + χσ −Aϕ, (2.1)

where ϕ =: ϕ(x, t) is a phase field variable or an order parameter aimed to identify one phase from the
other of tumor evolution. It also shows transitions from the value 0 (the healthy host tissue) to 1 (tumor
region) (t ∈ (0, T ]). Besides, ϕ = 0.5 indicates the interface implicitly. This equation is derived based on
the phase field method (cf. [9, 37]). For instance, F (ϕ) := 16ϕ2(1− ϕ)2 is a double–well potential.

In (2.1), the third term χσ, shows the growth due to nutrient. Indeed, the model assumes that tumor
cells grow linearly in the presence of the nutrient at a rate χ. The fourth term, −Aϕ represents apoptosis
(programmed cell death). Following again [50, 51, 52], the tumor volume can be computed as

Vϕ(t) :=

∫
Ω
ϕ dx, t ≥ 0. (2.2)

The second equation, shows the dynamic of the nutrient

∂σ

∂t
= ε∆σ + s− δϕ− γσ, (2.3)

where σ =: σ(x, t), s indicates a constant nutrient supply, δ is the rate of consumption the nutrient by
the tumor cells, and γ is the rate of natural decay. As a note, in (2.3), due to the results given in [8], here
the effect of convection on the nutrient transport is negligible.

The last equation models the dynamic of PSA

∂p

∂t
= η∆p+ αh(1− ϕ) + αcϕ− γpp, (2.4)
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in which p =: p(x, t), αh and αc represent the rates of production of PSA using healthy and tumoral
tissues per unit volume, respectively. The parameter γp is the rate of natural decay PSA that is followed
by the first order kinetics. To obtain the value of serum PSA, we use the formula

Ps(t) =

∫
Ω
p dx, t ≥ 0. (2.5)

Initial and boundary conditions must be considered for three unknowns, i.e., ϕ, σ and p. In this paper,
we use zero-valued Dirichlet boundary conditions for all variables.

3. The non-dimensional form

In [51], equations (2.1)-(2.4) are solved numerically via a method consisting of a hierarchically refined
and coarsened splines, without considering any non-dimensional approach. Here instead, we present a
non-dimensional form of equations (2.1)-(2.4). To do so, we define the new dimensionless variables

σ̃ =
σ

σ∗
, p̃ =

p

p∗
, t̃ =

t

t∗
, x̃ =

x

x∗
, (3.1)

with σ∗ = g/L and p∗ = g/L2 are the units of variables σ and p, respectively, where g and L represent
gram and litre, respectively. The unit of time t∗ corresponds to one year, and the characteristic length
scale x∗ := 0.1cm (cf. [36, 23]). Following [36], the value x∗ corresponds to the maximum invasion
distance at the early stage of tumor. Its value, as firstly studied in [4], should be reasonably taken in the
range [0.1, 1] centimeters. Also, all constant parameters introduced in (2.1)-(2.4) should be written with
their units such that the left-hand side and right-hand side of each equation have the same unit. Then,
these constant parameters are divided by their units, which give dimensionless parameters (cf. [4, 23, 36]).

Hence, replacing (3.1) into (2.1)-(2.4) we get a non-dimensional form of the model,

∂ϕ

∂t̃
= λ̃∆ϕ− 1

τ̃
F ′(ϕ) + χ̃σ̃ − Ãϕ,

∂σ̃

∂t̃
= ε̃∆σ̃ + s̃− δ̃ϕ− γ̃σ̃,

∂p̃

∂t̃
= η̃∆p̃+ α̃h(1− ϕ) + α̃cϕ− γ̃pp̃, (3.2)

in which the quantities indicated with the tilde are now dimensionless. We do not use this notation for ϕ
because it is already dimensionless. Hence, (3.2) is a type of reaction-diffusion system or a quasi-linear
parabolic system. It is worth mentioning that, if 0 ≤ ϕ(x, 0) ≤ 1 a.e. for x ∈ Ω then the solution of the
above system uniquely exists with 0 ≤ ϕ(x, t) ≤ 1 a.e. (x, t) ∈ Ω× [0, T ], as proved in [9, Theorem 3.1].

Remark. There are different reaction-diffusion systems in the literature such as Turing-type models,
namely Gierer-Meinhardt [38], Gray-Scott [39], Lengyel-Epstein [48], Brusselator [42, 57], Selkov [65] and
Schnakenberg [66] . But, the studied mathematical model here is different from those models due to the
nonlinear term F ′.
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The boundary conditions for the unknowns ϕ, σ̃ and p̃ are taken as follows:

ϕ(x, t) = 0, σ̃(x, t) = 0, p̃(x, t) = 0, x ∈ Ω, t ≥ 0. (3.3)

As an example, in Table 1 we report the list of parameters used in [51], with the corresponding units and
their non-dimensional counterparts.

Parameter Value Unit Dimensionless parameter Value

λ 1.6× 105 µm2/year λ̃ 0.16
τ 0.01 years τ̃ 0.01
χ 600 L/(g · year) χ̃ 600

A 600 1/year Ã 600
ε 5× 106 µm2/year ε̃ 5
s 2.7 g/(L · day) s̃ 9.8550× 102

δ 2.75 g/(L · day) δ̃ 1.0038× 103

γ 1000 1/year γ̃ 1000
η 1.6× 105 µm2/year η̃ 0.16
αh 6.25 (ng/mL)/(cm3 · year) α̃h 0.00625
αc 15αh (ng/mL)/(cm3 · year) α̃c 15α̃h
γp 100 1/year γ̃p 100

Table 1: Example of the used constant parameters in the proposed mathematical model [51] with their
non-dimensionalized counterparts.

In the next section, we introduce the numerical method which will be applied to approximate the
unknowns ϕ, σ̃ and p̃ in (3.2), together with the boundary conditions (3.3) for the space variables.

4. The RBF-FD technique

This section is devoted to briefly present the RBF-FD scheme that we are then applying as our dis-
cretization method. As was mentioned earlier, this technique is known also as an example of a generalized
FD scheme [31, 45, 64]. Unlike to the standard FD scheme this method is based on Radial Basis Functions
(RBF) approximation of the differential operators involved.

Just to recall, RBF approximation of functions is a linear combination of functions {φ(|| ·−xj ||2), j =
1, . . . , N}, where xj are (scattered) points, called centers, belonging to some domain Ω ⊂ Rd. The radial
function φ : [0,∞) → R can be considered positive definite or conditionally positive definite (cf. e.g.
[24, 78])

Definition 4.1. [24, 78] A continuous radial function φ is conditionally positive definite of order m on
Rd if

N∑
i=1

N∑
j=1

cicjφ(||xi − xj ||2) > 0,
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for any N pairwise distinct points x1,x2, . . . ,xN ∈ Rd and any non zero vector c = [c1, c2, . . . , cN ]T ∈ RN
satisfying the following condition

N∑
j=1

cjp(xj) = 0, for all p ∈ Pdm−1,

where Pdm−1 is the space of d-variate polynomials of degree at most m−1. Also, φ is called positive definite
if it is conditionally positive definite of order m = 0.

Examples of radial functions φ are provided in Table 2. The parameter ε is called shape parameter
that affects the accuracy and stability of the RBF approximation, i.e., the so called trade-off principle
that can be described as follows (cf. i.e. [24, 78]).

For a fixed shape parameter ε, increasing the number of nodes the error decreases, improving the
accuracy, but on the other hand the interpolation matrix becomes more ill-conditioned. The trade-off
principle suggests to find a suitable ε, say ε∗ that balances the error versus the ill-conditioning of the
approximation matrix. Below, in the Section 7, we briefly show this issue with some numerical results.

Besides, over the past two decades, some strategies have been introduced to overcome the ill-conditioning
of the RBF approximation at small values of the shape parameter ε. Just to mention, the contour-Padé
method was studied for multiquadrics by Fornberg and Wright [28]. The RBF-QR on the sphere [29] is
one of the first attempts to avoid the ill–conditioning when ε→ 0: the so called flat-limit case. So far, this
algorithm has been extended to d ≥ 1 dimensional spaces, only for the Gaussians [25, 30], and also has
been applied in the context of RBF-FD scheme [45]. Furthermore [32] has introduced the RBF-GA algo-
rithm to bypass the ill-conditioning of the RBF-FD method, when the Gaussians are computed at small
shape parameters, to obtain the stencil weights. Recently, the RBF-RA method has been introduced,
which is based on a new method for rational approximation (RA) of vector-valued analytic functions. It
turns out to be more accurate, robust, and easier to implement with respect to the contour Padé approx-
imation [82]. Here, we do not discuss this issue of the ill-conditioning at small values of ε while referring
the interested readers to the quoted references for details.

RBF φ(r) Parameters Order m

Gaussian (GA) exp(−ε2r2) ε > 0 0
Inverse multiquadric(IMQ) (1 + ε2r2)−β β > d/2, ε > 0 0

Multiquadric (MQ) (1 + ε2r2)β β > 0, β /∈ N, ε > 0 dβe
Wendland’s functions φd,k(εr) k ∈ N0, d ∈ N, ε > 0 0

Table 2: Some examples of RBF with r := ||x||2, x ∈ Rd [24, 78].

According to the third row of Table 2, choosing 0 < β < 1 gives an RBF which is conditionally positive
definite of order one [24, 78], but due to [78, Theorem 8.5] or [24, Theorem 9.7], there is no need to add
the constant term to the interpolation problem, and thus the matrix Aφ,X := [φ(||xi − xj ||2)]1≤i,j≤N is
invertible. To find out more details about RBF approximation and its error analysis, we refer to [24, 78]
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and all references related to this subject. For the definition and construction of the Wendland’s functions
φd,k(εr) in the last row of Table 2, refer to [78, Chapter 9].

We now present the details of the RBF-FD technique. To do so, suppose that N scattered points
(nodes) X = {x1, ...,xN} ⊂ Ω ⊂ Rd are chosen. The idea is finding an RBF approximation of ∆u(x) at
the point x1, with u : Ω −→ R the unknown function, solution of a differential problem. We then suppose
that n � N nodes, i.e., P1 = {xj}nj=1 are in a neighborhood of our point, i.e., x1 ∈ X located at the
center of P1 (it also called the stencil). At the first, we define the family of indices

I(x1) =
{
j ∈ {1, 2, ..., N} | ‖xj − x1‖2 ≤ δ

}
, (4.1)

where δ is the radius of influence. Thus, |I(x1)| = n (see Figure 1 which shows a domain of influence of
an interior point), and ∆u(x1) can be approximated by (cf. e.g. [5, 18, 26, 27, 32, 33, 81])

∆u(x1) ≈
n∑
j=1

wL1juj = (wL)Tu|P1 , (4.2)

Figure 1: In orange a small circle representing the local domain of influence of a point inside Ω with ∂Ω
its boundary (this picture is taken from [18]).

where wL = [w11, w12, ..., w1n]T is the stencil weights vector, and u|P1 is the vector of nodal values at
P1. To compute the weights vector wL, it requires the stencil to reproduce all functions spanned by the
translates {φ(||.− xj ||2) : xj ∈ P1} (cf. [45]). Therefore, we have

n∑
j=1

wL1jφ(||xi − xj ||2) = ∆φ(||xi − x1||2), i = 1, 2, ..., n. (4.3)

9



The matrix form of relation (4.3) can be written as follows

Aφ,P1w
L = b, (4.4)

where
Aφ,P1 = [φ(||xi − xj ||2)]1≤i,j≤n, wL = [wL1j ]

T
1≤j≤n, b = [∆φ(||xi − x1||2)]T1≤j≤n.

Then, we repeat the procedure for the other nodes, x2, ...,xN .
Finally, a sparse differentiation matrix, say WL

X , with size N ×N can be constructed, by re-arranging
the computed weights for each node.

Here, we should also mention that, when PHS kernels are considered (which are independent of ε),
the weights can be obtained by employing scalable stencils (see e.g. [13, Section 5], [43, Subsection 6.1]).
These kernels are obtained from the univariate functions

φm,d(r) =

{
r2m−d log(r), 2m− d even
r2m−d, 2m− d odd

(4.5)

which are used by adding polynomials (PHS+poly) of orders ` ≥ bm− d/2c+1 so that we can approximate
the pointwise derivatives of order s in the Sobolev spaces Wm

2 (Rd) by function values at the stencil, with
an optimal convergence rates m − s − d/2, s being the scaling order (or homogeneity order) (cf. [13]).
This order is related to that of the linear functional defined on the scalable spaces, which are Beppo-Levi
spaces (cf. [78, Chapter 10]). Here, we employ a multiquadric (MQ) as radial basis function (see Eq.
(7.1)) with nonscalable stencils and fixed shape parameter ε for obtaining the stencil weights. Of course,
one gets ill-conditioning of the local interpolation matrices for small values of ε and/or small h (the largest
distance between two nodes as the stencil size). To bypass this issue, it is possible to use some strategies
such as the RBF-QR, the RBF-GA and the RBF-RA algorithms in the framework of RBF-FD scheme,
as mentioned at the beginning of this section. As a note, in our implementations below, for solving Eq.
(4.4) in each stencil we have applied the backslash command of MATLAB.

Concerning the convergence analysis of the nodal meshless methods, R. Schaback in [64, Theorem 1]
provided a general form of classical elements of the convergence analysis for which the right-hand side
of the relative error bound contains the product of the stability constant, the consistency bound and a
computational accuracy (related to the linear algebra solver). The stability constant, that can be explicitly
calculated for standard norms, can be numerically handled providing accurate estimates of it, as detailed
in [64, §7].

Later on, D. Mirzaei [55] used the same approach to prove the error analysis of the Generalized
Moving Least Squares (GMLS) approximation for solving a PDE problem on the sphere. O. Davydov
in [11, 12] introduced error bounds for kernel–based numerical differentiation using the idea of growth
functions, while V. Shankar [69] used Davydov’s approach to prove local estimate of the augmented
RBF–FD method. Recently, in [43] the authors have applied Schaback’s theory with Davydov’s extension
to obtain the error bound of the weak–form for the RBF-FD method on each local stencil. In addition, V.
Bayona [7] presented an error analysis based on local polynomial reproduction property, as it was used in
the context of the MLS approximation, with PHS kernel applied in LRBF+poly method, with high degree
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polynomials. In the paper he showed that the order of convergence of the RBF-FD method is O(hl+1) for
the interpolation problem, where h is the average internodal distance within the stencil and l represents
the degree of the polynomial in a d-dimensional space. Besides, he claimed that the size of stencil has
insignificant effect on the accuracy of this method in computing the derivatives of a given function. The
reader should also be aware that the unique stencil obtained by PHS kernels (4.5) by adding polynomials
with order ` ≥ bm− d/2c+ 1 has a convergence rate not better than m− s−d/2 in the Beppo-Levi space
(cf. [13, Corollary 5.2]. For more details on this subject, the interested reader is referred to the above
references.

5. The semi-discrete problem

For this step we use the Method of Lines (MOL). That is, first we derive the semi-discrete problem, by
employing the RBF-FD technique for discretizing the spatial variables (3.2) with the boundary conditions
(3.3), then, we apply a semi-implicit time-stepping scheme to solve the resulting system of ordinary
differential equations (ODEs).

To this aim, let us consider a set of scattered nodes

X = {x1,x2, ...,xN} = {x1,x2, ...,xNI
}
⋃
{xNI+1,xNI+2, ...,xNI+NB

}

as trial points distributed in Ω ⊂ R2, where N := NI +NB, NI and NB stand the number of interior and
boundary nodes, respectively. The approximate solutions ϕ(x, t), σ̃(x, t) and p̃(x, t) at any x ∈ Ω and
t ≥ 0, can then be written by using trial functions wj(x), j ∈ I(x) as follows

ϕ(x, t) ≈
∑
j∈I(x)

wj(x)ϕj(t),

σ̃(x, t) ≈
∑
j∈I(x)

wj(x)σ̃j(t),

p̃(x, t) ≈
∑
j∈I(x)

wj(x)p̃j(t) . (5.1)

By using (5.1), we have

∆ϕ(x, t) ≈
∑
j∈I(x)

∆wj(x)ϕj(t),

∆σ̃(x, t) ≈
∑
j∈I(x)

∆wj(x)σ̃j(t),

∆p̃(x, t) ≈
∑
j∈I(x)

∆wj(x)p̃j(t), (5.2)

where ∆wj(x) := wLj (x).
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Replacing (5.1) and (5.2) into (3.2) at the interior points (test points) xi, i = 1, ..., NI gives

∑
j∈I(xi)

wj(xi)
dϕj(t)

dt
= λ̃

∑
j∈I(xi)

wLj (xi)ϕj(t)−
1

τ̃
F ′

 ∑
j∈I(xi)

wj(xi)ϕj(t)

+ χ̃
∑

j∈I(xi)

wj(xi)σ̃j(t)

−Ã
∑

j∈I(xi)

wj(xi)ϕj(t),

∑
j∈I(xi)

wj(xi)
dσ̃j(t)

dt
= ε̃

∑
j∈I(xi)

wLj (xi)σ̃j(t) + s̃− δ̃
∑

j∈I(xi)

wj(xi)ϕj(t)− γ̃
∑

j∈I(xi)

wj(xi)σ̃j(t),

∑
j∈I(xi)

wj(xi)
d p̃j(t)

dt
= η̃

∑
j∈I(xi)

wLj (xi)p̃j(t) + α̃h

1−
∑

j∈I(xi)

wj(xi)ϕj(t)

+ α̃c
∑

j∈I(xi)

wj(xi)ϕj(t)

−γ̃p
∑

j∈I(xi)

wj(xi)p̃j(t),

(5.3)
where the weights wj(xi) and wLj (xi) are computed by the RBF-FD scheme. In vectorial form (5.3) can
be compactly re-written

dϕI
dt

= λ̃WL
XI
ϕX −

1

τ̃
F ′(ϕI) + χ̃σ̃I − ÃϕI ,

dσ̃I
dt

= ε̃WL
XI
σ̃X + s̃− δ̃ϕI − γ̃σ̃I ,

dp̃I
dt

= η̃WL
XI
p̃X + α̃h(1−ϕI) + α̃cϕI − γ̃pp̃I , (5.4)

in which
ϕI = [ϕj(t)]1≤j≤NI

, σ̃I = [σ̃j(t)]1≤j≤NI
, p̃I = [p̃j(t)]1≤j≤NI

,

and
WL
XI

= [wLj (xi)]1≤i≤NI , 1≤j≤N ,

which is a sparse differentiation matrix thanks to the RBF-FD scheme. The vectors ϕX , σ̃X and p̃X can
be partitioned in ϕX = [ϕI ϕB]T , σ̃X = [σ̃I σ̃B]T and p̃X = [p̃I p̃B]T , where again the indices I and
B show the approximation value of each unknown variable at interior and boundary points, respectively.

Using the fact that the boundary conditions are of Dirichlet type, we can impose them directly in
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equations (5.4). In fact, ϕB = 0, σ̃B = 0 and p̃B = 0. Considering this, we can rewrite (5.4) as follows

dϕI
dt

= λ̃WL,I
XI
ϕI −

1

τ̃
F ′(ϕI) + χ̃σ̃I − ÃϕI ,

dσ̃I
dt

= ε̃WL,I
XI
σ̃I + s̃− δ̃ϕI − γ̃σ̃I ,

dp̃I
dt

= η̃WL,I
XI
p̃I + α̃h(1−ϕI) + α̃cϕI − γ̃pp̃I , (5.5)

with WL,I
XI

= [wLj (xi)]1≤i,j≤NI
.

Finally, (5.5) with the proper initial conditions can be written in matrix form as below

duI
dt

= BuI + F (XI , t,uI),

uI(0) = G(XI , 0), (5.6)

in which uI = [ϕI , σ̃I , p̃I ]
T
3NI×1, B is a sparse matrix with size 3NI ×3NI due to (5.6). F is the nonlinear

term vector with size 3NI × 1 (cf. (5.5)), and G represents the value of the unknown variables at time
t = 0 and at interior points XI . By solving (5.6) at every time step, we can also obtain the approximate
value of each variable at the boundary nodes.

6. The fully discretized scheme

We discuss how to solve (5.6) with respect to t. We recall that different approaches can deal with
the time discretization of MOL. Just to mention the most commonly used, there are explicit integrators,
as the fourth–order Runge-Kutta (RK4) or implicit time integrators, such as the backward differential
formulas (BDFs) or SBDFs (cf. e.g. [26, 27, 33, 57, 70]).

As it is well-known, a necessary condition for stability of the MOL is that all eigenvalues of the
differentiation matrix B in (5.6), lie in the stability region. In [69], an implicit condition for showing all
the eigenvalues of the differentiation matrix (here is called WL

X) obtained via the augmented (overlapped)
RBF–FD method, which lie in the left half complex plane, has been derived. However, until now, there
is no theoretical proof on how to derive an explicit condition for this, but we can numerically verify it,
by computing all the eigenvalues, for instance by using the MATLAB function eigs (which allows a stable
computation of all the eigenvalues at once). As an illustrative example, Figure 2 displays the eigenvalues
of B for n = 13 with ε = 15, 20 and NI = 3969, 16129 and 25281 uniform points (see Section 7). The
results show that all eigenvalues of B belong to the left half complex plane (i.e., they have negative real
parts) even for a low number N of points. Besides, the imaginary part is in magnitude much smaller than
the real part. We also should mention that the choice of n and ε can affect the results. The user should
therefore choose these parameters carefully so that the numerical solution be “acceptable”, that is not too
far from what one expect. In the next section, we show how these two parameters can affect the results
and can properly be chosen.
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Due to this, in this work, we consider a SBDF1 algorithm for discretizing (5.6) in time, so that BuI
and F (XI , t,uI) are considered as the implicit and the explicit terms, respectively.

We now assume that the time interval [0, T ] is divided uniformly into [tk−1, tk], k = 1, . . . ,M (i.e., M
sub-intervals), where t0 = 0, tk = k∆t for k = 1, ...,M and ∆t = T/M , is the time step.

Applying the SBDF1 method to the MOL (5.6) gives

(I −∆tB)Un+1
I = Un

I + ∆tF (XI , t
n,Un

I ), n = 0, 1, ...,M − 1, (6.1)

where I is the identity matrix of order 3NI , U
n+1
I is the vector of approximation values of the unknowns

at t = tk+1 := (k+ 1)∆t and at the XI points. By computing the approximation value of each variable at
XI , by using (6.1), the approximation of ϕ, σ̃ and p̃ can be obtained at XB, at any time step. Using these
values, the approximated solution of ϕ, σ and p will be computed at an arbitrary node x ∈ Ω thanks to
(5.1).

Remark 6.1. The fully discretized scheme (6.1) is a linear system of algebraic equations that has to be
solved at each time step. For this issue, we have applied the BiCGSTAB method with zero–fill ILU as pre-
conditioner [73]. We notice that many authors successfully applied this approach to solve the linear system
of algebraic equations arising from the discretization of time-dependent PDEs via meshless techniques in
space and explicit, implicit, semi-implicit approaches in time (cf. e.g. [17, 58, 47, 60]).

7. Results

We present some simulation of the non-dimensional model (3.2) to show the prostate tumor growth in
two-dimensional domains: in a rectangle and in a circle. For the results presented here, two sets of nodes
are considered: uniform and quasi-uniform. Both sets can easily be generated by MATLAB functions. The
uniform ones by the function meshgrid available in the standard MATLAB distribution, while the quasi-
uniform nodes by the package distmesh (see [62]), which is widely used in solving PDEs problem. The
package is freely available at the website: https://popersson.github.io/distmesh/.

Using the definition (4.1), to find n nearest points (the size of local domain of influence) around each
point of X we use another MATLAB function: knnsearch. With this, we can construct the differentiation
matrix WL,I

XI
by using, for instance, MQ radial basis function with β = 1/2 (see the third row of Table 2)

φ(r) =
√

1 + ε2r2, (7.1)

with r := ‖x − y‖2, x,y ∈ Ω. All figures presented in this section are drawn with the fixed shape
parameter ε = 15. We recall that for finding a proper or optimal shape parameter ε∗, interested readers
can refer, for instance, to [24, 63], but here, we will not discuss this issue.

The sparsity pattern of the matrix WL
X is drawn in Figure 3 for a fixed value of N = 25921 uniform

points and n = 13, 17, 21 and 31. Besides, the approximate percentage of non-zero (nz) elements of the
matrix WL

X are reported in Table 3 for the chosen values of n and N .
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n N = 6561 N = 25921 N = 103041

13 20% 5% 1.3%
17 26% 6.6% 1.6%
21 32% 8.1% 2%
31 47% 12% 3%

Table 3: The approximate percentage of non-zero (nz) elements of the matrix WL
X for different values of

n and N .

The time step is chosen as ∆t = 1e − 4 due to the time discretization proposed here. In order to
apply the BiCGSTAB method for solving the linear system (6.1) at each time step, the tolerance and the
maximum number of iterations are fixed as tol = 1e− 6 and maxit = 100, respectively.

Remark: the results presented here are obtained with iterations ≤ 2 for all chosen N . The numerical
experiments have been done in MATLAB 2017a using standard double precision, on a PC Core i7−2670QM
with 8 GB of RAM.

7.1. Results on rectangular and circular domains

Here we provide some numerical simulations to show the prostate tumor growth in the two-dimensional
space. Due to the non-dimensionalization technique given in Section 3, we have some freedom in the
choice of the domains. We have then taken the rectangular domain Ω = [0, 2]2 and the circular domain
Ω = {(x, y) ∈ Ω : (x− 1)2 + (y − 1)2 ≤ 1}. For these simulations, the constant parameters given in Table
1 are used in non-dimensional form. Following [51], the initial condition function ϕ, is taken to be

ϕ(x, y, 0) =

{
1, (x−1)2

(0.1)2
+ (y−1)2

(0.15)2
≤ 1,

0, otherwise
(7.2)

while the initial conditions for σ̃ and p̃ are set to be zero.
We note that the exact solution of the problem is not known, so to measure the accuracy of the method

we use the following strategy:

• as exact solution we consider the approximate solution at N = 410881 uniform points, n = 60,
ε = 35 and constant time step, i.e., ∆t = 1e− 4;

• the maximum relative error, e∞ is computed for different values of N , where

e∞ :=
‖uex − uapp‖∞
‖uex‖∞

, (7.3)

in which uex and uapp denote the exact and approximate solutions, respectively, which are computed
on 26400 = 220 × 120 evenly spaced point grid of [0, 2]2 and ‖.‖∞ represents the usual maximum
norm.
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In Table 4, we report the maximum relative errors for ϕ, σ̃ and p̃ together with the CPU time at t = 1e−2
via different values of N , for n = 13 and ε = 26.

N e∞,ϕ e∞,σ̃ e∞,p̃ CPU time(s)

6561 1.91e+ 0 5.59e− 1 9.12e− 1 9.041
25921 2.00e− 1 3.56e− 2 1.26e− 1 18.860
103041 1.86e− 2 4.72e− 3 1.19e− 2 97.085

Table 4: The errors e∞,∗,
′∗′ = ϕ, σ̃, p̃, the CPU time at t = 1e− 2, n = 13 ε = 26, for different N .

To show the effect of the choice of the shape parameter on the accuracy and the rate of convergence of
the RBF-FD scheme, we have fixed n = 13 and used ε = 15, 20 and 25. The maximum relative errors are
computed for ϕ, σ̃ and p̃ in Figure 4. From this figure, we can see that by increasing the value of shape
parameter, the accuracy of the RBF-FD method is improving giving almost the same rate of convergence.
Furthermore, the condition number of the matrix WL

X is computed for different values of ε and values are
displayed in Table 5. According to the results of Table 5, it is clear that on different N when the value of

N ε = 10 ε = 15 ε = 20 ε = 25

6561 3.03e+ 7 3.41e+ 5 2.06e+ 5 1.10e+ 5
25921 4.25e+ 9 5.61e+ 7 1.23e+ 8 2.62e+ 6
103041 1.72e+ 11 2.57e+ 10 2.92e+ 10 8.96e+ 8

Table 5: The condition number of the matrix WL
X with different values of ε and N , fixed n = 13.

shape parameter increases the condition number of WL
X decreases, as expected by the trade-off principle.

In addition, we have fixed the shape parameter ε = 25, and we have computed the maximum relative
errors for ϕ, σ̃ and p̃ via n = 17, 21 and 25. The results are reported in Figure 5. This figure also shows
that when the number of points in each stencil has been increased the accuracy of the method is slowly
improving. Of course, it certainly depends on the choice of the shape parameter.

In Figure 6, the initial condition and the numerical solution of the tumor phase field ϕ are provided
at different time steps t = 0.2, 0.4 and 0.6 by using N = 16641 uniform nodes. The same results are
given in Figure 7 with N = 66049 uniform nodes. The results agree with those reported in [50, 51].
To see the steady-state solution of our dimensionless model with the parameters given in Table 1, we
wrote a MATLAB program, supplied in GitHub (available at the link https://github.com/VM-2020-MATH/

MATLAB-codes-for-the-Prostate-Tumor-Growth.git, the program Main_PCa_RBF_FD.m) that has been
run until ‖Φn+1 − Φn‖∞ < 10−6, ‖σ̃n+1 − σ̃n‖∞ < 10−6 and ‖p̃n+1 − p̃n‖∞ < 10−6. The steady-state
solutions of ϕ, σ̃ and p̃ are presented in Figure 8.

To show the capability of our numerical meshless method, we did the same simulations with N = 17799
quasi-uniform nodes generated by distmesh with the boundary nodes distributed uniformly and fixed
shape parameter ε = 10. The results are shown in Figure 9.

On the circular domain, we used the same initial conditions as for the rectangular case. Figure 10
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shows the approximate solution of ϕ at different time steps using N = 11027 uniform nodes (generated
by distmesh) in which the boundary nodes are distributed uniformly. In Figure 11, the results are those
obtained using N = 22999 uniform nodes, with uniformly distributed boundary nodes.

In Figure 12, we report the simulation results of the prostate tumor growth on a circular domain with
N = 21077 quasi-uniform nodes with the boundary nodes distributed uniformly. The numerical solution
of tumor phase field ϕ, is plotted at different time steps t = 0.2, 0.4 and 0.6.

7.2. Results based on parameters seen in clinical practice and experiments

Here we present some simulations, which are obtained using the parameters observed experimentally in
[50]. The diffusion coefficient of the phase field, λ and nutrient diffusivity ε, were measured and their values
are 5 × 10−11 cm2/s and 2 × 10−9 cm2/s, respectively. To show the effect of choosing different values
of the nutrient supply s, the numerical results have been obtained taking the values 2.60 g/(L · day),
2.70 g/(L · day) and 2.80 g/(L · day), as indicated in [50]. Other parameters are fixed as in Table 1.
The number of nodes, uniformly distributed in the rectangular domain, is N = 25921. The numerical
solutions of the prostate tumor growth, the nutrient and PSA are drawn at different time levels with
s = 2.60 g/(L · day) in Figure 13, s = 2.70 g/(L · day) in Figure 14 and s = 2.80 g/(L · day) in Figure 15.
As can be observed the fingered morphology grows with thinner and less branches when s = 2.60 g/(L·day)
(i.e., nutrient supply is reduced). By increasing the value of the nutrient supply to s = 2.80 g/(L · day)),
wider branches have been produced in the fingered morphology of the prostate tumor growth. It also can
be observed that when the value of s is low, the growth of tumor is slow, but by increasing this value up
to 2.80 makes the tumor grows at a faster rate (see also supplementary movies).

In addition, the results obtained here and those reported in [50], show that the tumor initially grows
spherically. If the tumor keeps developing on with this morphology, it consumes more nutrients and thus
the nutrient concentration will be decreased, which makes hypoxia, starvation, and necrosis. Finally, the
tumor reaches a volume such that it changes to the displayed fingered morphology. As pointed out in
[50], the nutrient concentration within the tumor is not important at all, see Figure 15.

Figure 16 shows the values of tumor volume (formula (2.2) in µm3 and serum PSA, (formula (2.5)) in
ng/ml, at different time levels. Furthermore, the steady-state solutions of ϕ, σ̃ and p̃ are given in Figure
17 for s = 2.80 g/(L · day) (see the details given in Subsection 7.1).

To show the simulation results that can support the experimental results in [41], we used s = (2.75 +
c) g/(L ·day) as nutrient supply, where c is a mild heterogeneity (due to vasculature) such that s changes
between 2.55 g/(L · day) (far from the blood vessels) and 2.95 g/(L · day) (near the blood vessels). This
choice is a more realistic distribution in the nutrient supply for a tissue domain, as pointed out in [50].
We then used the following initial conditions for the nutrient and PSA [9].

σ̃(x, y, 0) = c0
σ̃ + c1

σ̃φ(x, y, 0), (7.4)

p̃(x, y, 0) = c0
p̃ + c1

p̃φ(x, y, 0), (7.5)

where c0
σ̃ = 1, c1

σ̃ = −0.8, c0
p̃ = 6.2500 × 10−8, c1

p̃ = 7.9750 × 10−7 are chosen in non-dimensional form.
Figure 18 illustrates the numerical solutions of the prostate tumor growth, the nutrient and PSA using
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N = 25961 uniform nodes. The fingered tumor growth pattern, which was observed in vitro 3D Matrigel
culture of RWPE-1 cells [41], can be seen in this simulation, as well.

8. Conclusion and the future work

A non-dimensional form of the mathematical model for the prostate tumor growth has been derived.
It makes it easy to apply different numerical methods for solving this model which arise in oncology. In
this paper, a meshless technique, namely RBF-FD method in space and a semi-implicit approach based
on SBDF1 formulas in time, have been successfully applied to solve it numerically on rectangular and
circular regions, with uniform and quasi-uniform node distributions. We have shown that the method is
numerically accurate and stable. Some numerical simulations have been done on clinical data borrowed
from the literature, with results in agreement with those reported in the literature. The main advantages
of the proposed numerical scheme are:

• Its implementation is simpler than the mesh-dependent methods. In fact, the differentiation matrix
(which is a sparse matrix) is constructed at the scattered nodes without using a background mesh
or triangulation (as given in Section 4).

• When different types of distribution nodes are used to construct the differentiation matrix in the
rectangular and circular domains no new implementation is needed.

• The meshless nature of our approach allows us to easily implement it on rectangular or circular
regions simply by the use of two different node distributions, uniform, and quasi-uniform.

• All simulations done can also be obtained by increasing the number of nodes in each local domain of
influence, by changing n. Of course, the computational cost will be increased but not significantly.

• Unlike the methods of [50, 51], it is not necessary to use any adaptivity algorithms for solving this
mathematical model.

• As we have mentioned in this paper, it is possible to apply different algorithms for finding a proper
shape parameter.

• Although this method can be implemented in higher dimensions, the computational cost will be
increased dramatically. On the other side, we had no access to fast and powerful computers, so that
we were not able to get, for instance, three-dimensional results. We can access to clusters, or we
can do parallel computing in the future.

Supplementary movies

The process of tumor phase field, nutrient and the prostate specific antigen in two-dimensional tissue
are provided for N = 25961 uniform nodes, with supply nutrient s = 2.80 g/(L · day) in three separate
movies, downloadable at the link
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Figure 2: The eigenvalues of B with n = 13 and uniform points NI = 3969, 16129 and 25281. First row:
for ε = 15. Second row ε = 20.
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Figure 3: The sparsity pattern of the matrix WL
X for N = 25921 uniform points, n = 13, 17, 21 and 31.
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Figure 4: The maximum relative errors for ϕ, σ̃ and p̃ via n = 13 and different values of ε. Top left,
ε = 15; top right, ε = 20 and bottom, ε = 25.
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Figure 5: The maximum relative errors for ϕ, σ̃ and p̃ via ε = 25 and different values of n. Top left,
n = 17; right top, n = 21 and bottom, n = 25.
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Figure 6: The initial condition and numerical solution of tumor phase field ϕ at different time levels
using N = 16641 uniform nodes.
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Figure 7: The initial condition and numerical solution of tumor phase field ϕ at different time levels
using N = 66049 uniform nodes.
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Figure 8: The steady-state solutions of ϕ, σ̃ and p̃ using N = 25921 uniform points.
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Figure 9: The numerical solution of tumor phase field ϕ at different time levels using N = 17799
quasi-uniform nodes.
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Figure 10: The numerical solution of tumor phase field ϕ at different time levels using N = 11027
uniform nodes restricted to the unit disk centered in (1, 1).
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Figure 11: The numerical solution of tumor phase field ϕ at different time levels using N = 22999
uniform nodes.
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Figure 12: The numerical solution of tumor phase field ϕ at different time levels using N = 21077
quasi-uniform nodes with a different central density.
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Figure 13: The numerical solution of tumor phase field ϕ, nutrient σ̃ and PSA p̃ at different time levels
using N = 25921 uniform nodes and s = 2.60 g/(L · day).
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Figure 14: The numerical solution of tumor phase field ϕ, nutrient σ̃ and PSA p̃ at different time levels
using N = 25921 uniform nodes and s = 2.70 g/(L · day).
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Figure 15: The numerical solution of tumor phase field ϕ, nutrient σ̃ and PSA p̃ at different time levels
using N = 25921 uniform nodes and s = 2.80 g/(L · day).
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Figure 16: Tumor volume and serum PSA for different values of s at different time levels.

Figure 17: The steady-state solutions of ϕ, σ̃ and p̃ via N = 25921 uniform points.
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Figure 18: The numerical solution of tumor phase field ϕ, nutrient σ̃ and PSA p̃ at different time levels
using N = 25921 uniform nodes for s = (2.75 + c) g/(L · day) with a mild heterogeneity c.
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Figure 19: The fingered tumor growth patterns as observed in clinical practice and experiments
(λ = 5× 10−11 cm2/s and ε = 2× 10−9 cm2/s). This picture is taken from [50], which authors of [50]

had borrowed from [41].
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