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Abstract We propose a novel kernel-based method for image reconstruction
from scattered Radon data. To this end, we employ generalized Hermite-
Birkhoff interpolation by positive definite kernel functions. For radial kernels,
however, a straightforward application of the generalized Hermite-Birkhoff in-
terpolation method fails to work, as we prove in this paper. To obtain a well-
posed reconstruction scheme for scattered Radon data, we introduce a new
class of weighted positive definite kernels, which are symmetric but not radi-
ally symmetric. By our construction, the resulting weighted kernels are com-
binations of radial positive definite kernels and positive weight functions. This
yields very flexible image reconstruction methods, which work for arbitrary dis-
tributions of Radon lines. We develop suitable representations for the weighted
basis functions and the symmetric positive definite kernel matrices that are re-
sulting from the proposed reconstruction scheme. For the relevant special case,
where Gaussian radial kernels are combined with Gaussian weights, explicit
formulae for the weighted Gaussian basis functions and the kernel matrices
are given. Supporting numerical examples are finally presented.
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1 Introduction

Computed Axial Tomography (CAT or CT) is a powerful technique to generate
images from measurements of X-ray scans. One X-ray scan typically consists
of several million of data samples, each of which corresponds to an X-ray
beam passing through the computational domain, travelling from an emitter
to a detector. The sensors of the operational CT scanner (positioned at the
emitter and at the detector) then measures, for each X-ray beam, the loss of
energy, resulting from the X-ray beam passing through the medium. The loss
of energy reflects the ability of the medium to absorb energy, and so it depends
on its specific structure and material properties. The amount of absorption can
be described as a function of the computational domain Ω, termed attenuation
coefficient function, f : Ω → [0,∞).

Medical imaging is only one relevant application for CT, where the pri-
mary goal is to reconstruct the unknown attenuation coefficient function f
from given X-ray scans in order to generate clinically useful medical images.
Other relevant applications are e.g. non-destructive evaluations of materials.
In either case, robust numerical algorithms are required to reconstruct charac-
teristic features of images at sufficiently high accuracy, on the one hand, and
at sufficiently small computational costs, on the other hand. For details con-
cerning the acquisition of X-ray scans, their underlying mathematical models,
and standard computational methods for medical image reconstruction, we
refer to the textbook [5] of Feeman.

To describe the mathematical problem of image reconstruction from X-ray
scans, we regard the Radon transform Rf of f ∈ L1(R2), defined as

Rf(t, θ) =

∫
R
f(t cos θ − s sin θ, t sin θ + s cos θ) ds (1)

for (t, θ) ∈ R× [0, π). Note that for any f ∈ L1(R2) the stability estimate

‖Rf(·, θ)‖L1(R) ≤ ‖f‖L1(R2) (2)

holds uniformly with respect to θ ∈ [0, π), and so we have Rf ∈ L1(R× [0, π))
for all f ∈ L1(R2). Therefore, the Radon transformR : L1(R2)→ L1(R×[0, π))
in (1) is well-defined on L1(R2).

We remark that the Radon transform Rf(t, θ) gives, for any fixed pair
(t, θ) ∈ R× [0, π), a line integral for f over a specific straight line ` ≡ `t,θ. In
order to see this, let `t,θ ⊂ R2 denote the unique straight line, which is per-
pendicular to the unit vector nθ = (cos θ, sin θ) and which passes through the
point p = (t cos θ, t sin θ) = tnθ. In this case, the line `t,θ can be parameterized
as

(x1(s), x2(s)) = (t cos θ − s sin θ, t sin θ + s cos θ) for s ∈ R. (3)

By this specific choice for a parameterization of `t,θ in (3), we see that

Rf(t, θ) =

∫
`t,θ

f(x) dx for (t, θ) ∈ R× [0, π),
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where we let x = (x1, x2), and so the line integral of f over `t,θ coincides with
the Radon transform (1) of f at (t, θ).

On the other hand, any straight line ` in the plane can be described by
a unique pair (t, θ) of a radial parameter t ∈ R and an angular parameter
θ ∈ [0, π) satisfying ` ≡ `t,θ. In this way, the Radon transform Rf of f is a
linear integral transformation, which maps any bivariate function f ∈ L1(R2)
(in Cartesian coordinates) onto a bivariate function Rf ∈ L1(R × [0, π)) (in
polar coordinates), where the image Rf contains all line integrals of f over
the set of straight lines in the plane.

Due the seminal work [14] of Johann Radon, any f ∈ L1(R2) ∩ C (R2) can
be reconstructed from its Radon transform Rf . The inversion of the Radon
transform is given by the filtered back projection (FBP) formula (see [5, Chap-
ter 6]),

f(x) =
1

2
B
{
F−1 [|S|F(Rf)(S, θ)]

}
(x), (4)

where F is, for any fixed angle θ, the univariate Fourier transform w.r.t. the ra-
dial variable t, and so is F−1 the univariate inverse Fourier transform w.r.t. the
frequency variable S. Moreover, the back projection B is, for any function
h ≡ h(t, θ) (in polar coordinates), given by the average

Bh(x) =
1

π

∫ π

0

h(x1 cos θ + x2 sin θ, θ) dθ

of h(t, θ) over the angular variable θ, where we let

t = x1 cos θ + x2 sin θ = x · nθ

according to the one-to-one relation between the polar coordinates (t, θ) and
the Cartesian coordinates x = (x1, x2), as described above along with the pa-
rameterization of the lines `t,θ in (3). For basic details concerning the deriva-
tion of the filtered back projection formula, we refer to [5]. We remark that the
well-posedness of the Radon inverse problem has already been studied in [9].
For a more comprehensive mathematical treatment of the Radon transform
and its inversion, we refer to the textbooks [8,13].

In practical application scenarios, however, only a finite set of Radon data,

RL(f) = {Rf(tk, θk)}mk=1, (5)

given as integrals of f over a finite set of m pairwise distinct lines,

L = {`tk,θk : (tk, θk) ∈ R× [0,∞) for k = 1, . . . ,m},

is available. In this case, an approximate reconstruction of f from Radon data
RLf is sought. In standard techniques of medical imaging, the reconstruction
of f is accomplished by using a suitable discretization of the FBP in (4).
For this class of Fourier-based reconstruction methods, the discrete lines in
L, over which the line integrals of f are known, are usually required to be
regularly spaced in the plane, e.g. by assuming parallel beam geometry or fan
beam geometry (see [5] for particular assumptions on the geometry of L).
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In many realistic scenarios of data acquisition, however, we may face a
limited range of angles (e.g. in mammography), or a limited dosage of X-
ray expositions, so that the Radon data are partly corrupt or incomplete. In
such relevant cases, the Radon data in (5) are scattered, i.e., the distribution
of lines in L is essentially not regular but scattered, in which case standard
Fourier methods, such as the Fourier-based FBP discretization in (4), do no
longer apply. This requires more flexible approximation methods which work
for arbitrary geometries of (scattered) Radon lines L.

To approximate f from scattered Radon dataRLf , algebraic reconstruction
techniques (ART) [6] can be applied. The concept of ART is essentially different
from that of Fourier-based reconstructions: in the setting of ART one fixes a
set {gj}nj=1 of basis functions beforehand to solve the reconstruction problem

RL(g) = RL(f) (6)

by using a linear combination

g =

n∑
j=1

cjgj

of the basis functions. According to our problem formulation at the outset of
this introduction, we require gj ∈ L1(R2), for all 1 ≤ j ≤ n, so that the Radon
transform Rgj , as in (1), is for any basis function gj well-defined. This then
amounts to solving the linear system

Ac = b (7)

for the unknown coefficients c = (c1, . . . , cn)T ∈ Rn of g, where the m × n
matrix A has the form

A = (Rgj(tk, θk))k=1,...,m;j=1,...,n ∈ Rm×n (8)

and where b = (b1, . . . , bm)T ∈ Rm is given by the m Radon observations
bk = Rf(tk, θk), for k = 1, . . . ,m. But for the well-posedness of the resulting
ART reconstruction scheme, we require that all matrix entries akj = gj(tk, θk)
of A in (8) and all entries bk = Rf(tk, θk) are finite. We will be more specific
on this assumption in the following discussion of this paper.

Unless the number m of Radon samples coincides with the number n of
coefficients, the linear system in (7) is either overdetermined, for m > n, or
underdetermined, for n > m. In case of an overdetermined system, the classical
method of linear least squares approximation [2] is applied to minimize the
residual (Euclidean) norm ‖Ac − b‖, whereas for an underdetermined system
the iterative method of Kaczmarz [5, Section 9.3] is a standard tool to compute
an approximate solution c satisfying Ac ≈ b. We remark that in either case
the linear system in (7) is not guaranteed to have a unique solution, not even
when m = n. In fact, the latter is due to the Mairhuber-Curtis theorem [17,
Section 2.1] from multivariate approximation theory.
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A first kernel-based approach for scattered data interpolation from Radon
data was developed in [1]. The resulting kernel method in [1] transfers the
reconstruction problem (6) into one for suitable projective spaces, on which
positive definite zonal functions are utilized to accomplish the recovery step.
We remark that the straightforward approach taken in this paper is essentially
different from that in [1], although [1] relies on positive definite kernels, too.

In previous work [4], we considered using radially symmetric kernels in
combination with regularizations of the Radon transform. The approach taken
in [4], however, leads to linear systems (7) with unsymmetric matrices A. In
this paper, we propose a well-posed kernel-based reconstruction method, whose
resulting kernel matrices A ∈ Rn×n are symmetric and positive definite. Our
proposed reconstruction scheme relies on the theory of kernel-based multi-
variate interpolation from generalized Hermite-Birkhoff data [11]. We adapt
this particular interpolation scheme to the special case of image reconstruc-
tion from scattered Radon data. In this case, the basis functions in {gj}nj=1

must essentially depend on the given Radon functionals RL. We show that
an uncustomized application of generalized Hermite-Birkhoff reconstruction
fails to work for radially symmetric kernels. To guarantee the well-posedness
of the reconstruction scheme, particularly to obtain well-defined entries in A,
we develop a general concept for the construction of weighted positive definite
kernels. The resulting kernels are symmetric but not radially symmetric. We
give examples for suitable pairs of radial weights and radial positive definite
functions. This yields a new class of flexible reconstruction schemes, which
work for arbitrary distributions of scattered Radon lines.

The outline of this paper is as follows. In Section 2, we briefly review
generalized Hermite-Birkhoff interpolation, where we show how to adapt this
particular reconstruction method to scattered Radon data. In Section 3, we in-
troduce weighted radial kernels, where we explain how they are used to obtain
a well-posed reconstruction method. Moreover, we develop suitable represen-
tations for the resulting basis functions gj and the matrix entries for A in (8).
This is followed by a discussion concerning one special case, where standard
Gaussian kernels are combined with Gaussian weights. For this prototypical
case, covered in Section 4, we give explicit formulae for the resulting Gaussian
basis functions gj and the Gaussian matrix entries akj . For the purpose of
illustration, numerical results are finally provided in Section 5.

2 Generalized Hermite-Birkhoff Interpolation

To solve the reconstruction problem (6), we consider applying Hermite-Birkhoff
interpolation [11]. Let us first explain the general framework of Hermite-
Birkhoff interpolation, before we apply Hermite-Birkhoff interpolation to the
special case of reconstruction from scattered Radon data. According to the
generic formulation of the Hermite-Birkhoff reconstruction problem, we first
fix a linear function space F . Moreover, we assume a finite set Λ = {λ1, . . . , λn}
of linearly independent linear functionals λj : F → R to be given, so that for
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any f ∈ F , the action of any functional λj ∈ Λ on f is well-defined, for
1 ≤ j ≤ n. This yields, for any f ∈ F a data vector of samples

fΛ = (λ1(f), . . . , λn(f))T ∈ Rn.

Now the solution of the Hermite-Birkhoff reconstruction problem requires
finding a function g satisfying the interpolation conditions gΛ = fΛ, i.e.,

λk(g) = λk(f) for all k = 1, . . . , n. (9)

To this end, a finite set {gj}nj=1 of suitable linearly independent functions
gj ∈ F is selected. This gives the finite-dimensional linear reconstruction space

G := span{g1, . . . , gn} ⊂ F , (10)

from which a solution g ∈ G of the Hermite-Birkhoff interpolation problem (9)
is to be determined.

Note that the general framework of Hermite-Birkhoff interpolation can be
applied to the reconstruction problem (6). In this particular case, the linear
functionals λk : F → R are defined via the Radon functionals

λk(f) := Rkf ≡ Rf(tk, θk) for k = 1, . . . , n,

where we let F = L1(R2) according to our setup from the introduction.
By the interpolation conditions in (9), we obtain n linear equations,

n∑
j=1

cjλk(gj) = λk(f) for k = 1, . . . , n,

corresponding to the linear system in (7). By the choice of the Hermite-Birkhoff
reconstruction space G in (10) the number of equations, n, matches the num-
ber of basis functions in {gj}nj=1. In other words, the number of interpolation
conditions coincides with the dimension of the reconstruction space G. There-
fore, we have n = m by construction, and so the linear system in (7) is n-by-n,
with a square matrix A ∈ Rn×n in (8).

Now let us address the selection of suitable basis functions gj ∈ F . Accord-
ing to the general framework of the Hermite-Birkhoff interpolation scheme, we
need to fix a suitable function K : R2 × R2 → R, whose properties we explain
in the following discussion. Then, the basis functions gj in (10) are assumed
to have the form

gj(x) = λyjK(x,y) for j = 1, . . . , n, (11)

where λyjK(x,y) denotes the action of the functional λj on K w.r.t. y ∈ R2.

Recall that gj ∈ F , which leads to the requirement λyjK(·,y) ∈ F for K.
Moreover we require K to be symmetric, i.e.,

K(x,y) = K(y,x) for all x,y ∈ R2,
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and positive definite. Rather than dwelling much on explaining positive definite
functions, we remark that for the purposes of this paper it is sufficient to say
that a symmetric function K ≡ K(x,y) is positive definite, iff the matrix

AK,Λ =
(
λxj λ

y
kK(x,y)

)
1≤j,k≤n ∈ Rn×n (12)

is symmetric positive definite for any set Λ = {λj}nj=1 of linearly independent
functionals λj . For a more comprehensive account to the construction and
characterization of positive definite functions, we refer the reader to [12,15].
We remark that positive definite functions K lead to Hilbert spaces F with
reproducing kernel K. Therefore, we call K a positive definite kernel function.
For a recent account to reproducing kernels in data science we refer to [7].

Before we make concrete examples for suitable (symmetric and positive
definite) kernels K, the following remarks are in order.

Remark 1 For the special case of plain Lagrange interpolation, i.e., interpola-
tion from point values, commonly used kernels K are continuous and radially
symmetric, i.e., K has the form

Kφ(x,y) = φ(‖x− y‖2) for x,y ∈ R2,

for a continuous function φ : [0,∞)→ R of the Euclidean norm ‖·‖ on R2. ut

Among the most prominent examples for radially symmetric kernels are
the Gaussians

φα(‖x‖2) = e−α‖x‖
2

for x ∈ R2

that are for any α > 0 positive definite, i.e.,

K(x,y) = exp(−α‖x− y‖2)

is positive definite. Other popular examples are the inverse multiquadrics,

φα(‖x‖2) =
1

(1 + α‖x‖2)
β

for x ∈ R2 and α > 0,

which are positive definite for any β ∈ (0, 1).

Remark 2 For the special case of Radon data, however, the selection of a
suitable kernel requires particular care. To further explain this, note that the
reconstruction method can only work, if the basis functions gj in (11) are
well-defined, and, moreover, all entries in matrix A in (12) are well-defined.
To guarantee well-defined basis functions gj , we merely require

φ(‖x− ·‖2) ∈ L1(R2) for all x ∈ R2,

i.e., φ(‖ · ‖2) ∈ L1(R2), in which case the stability estimate (2) holds for
gj(x) = Ry

jKφ(x,y). Note that this property is satisfied by the Gaussians,
but not by the inverse multiquadrics, and so one could argue this is only a
minor problem. The other point concerning well-defined entries in A is, indeed,
more severe. ut
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To further explain this problem, let us provide the following negative result.

Proposition 1 Let φ(‖ · ‖2) ∈ L1(R2) and let ` ⊂ R2 be a straight line in the
plane. Then the integral ∫

`

∫
`

φ(‖x− y‖2) dx dy (13)

is divergent.

Proof Note that the line integral

I(y) =

∫
`

φ(‖x− y‖2) dx for y ∈ `

is constant on `. Therefore, the double integral in (13) cannot be finite. ut

In conclusion, the above proposition states that for any radially symmetric
kernel Kφ(x,y) = φ(‖x−y‖2), the diagonal entries of the matrix AK,Λ in (12)
are (for the case of Radon functionals) singular, as they are given by

Rx
kR

y
kφ(‖x− y‖2) =

∫
`k

∫
`k

φ(‖x− y‖2) dx dy

for straight lines `k ⊂ R2, 1 ≤ k ≤ n. In this case, an uncustomized application
of generalized Hermite-Birkhoff interpolation is therefore doomed to fail.

3 Weighted Positive Definite Kernels

In standard applications of kernel-based approximation, the utilized kernel

Kφ(x,y) = φ(‖x− y‖2) for φ ∈ PD(Rd) (14)

is radially symmetric (i.e., invariant under rotations of the coordinate system)
and shift-invariant (i.e., invariant under translations of the coordinates).

Now we prefer to work with weighted kernels of the form

Kφ,w(x,y) = φ(‖x− y‖2)w(‖x‖2)w(‖y‖2) for x,y ∈ R2, (15)

where w : [0,∞) → (0,∞) is a weight function. Note that for w ≡ 1 we have
Kφ,1 ≡ Kφ, and so the set of weighted kernels Kφ,w in (15) is an extension to
the set of kernels Kφ in (14). Moreover, note that any weighted kernel Kφ,w

of the form (15) is symmetric, but (for the case of non-constant weights w)
neither radially symmetric nor shift-invariant, unlike Kφ in (14).

We remark that the choice of Kφ,w in (15) will, for suitable combinations
of kernels φ and weights w, guarantee both well-defined basis functions gj
in (11) and well-defined matrix entries in (12). This, in fact, is the purpose of
our proposed extension from the kernels Kφ in (14) to the weighted kernels
Kφ,w in (15). The required conditions on φ and w will be detailed in Theorem 1
and in Proposition 4.
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Next we show that any weighted kernel Kφ,w in (15) is positive definite
w.r.t. the Schwartz space

S :=
{
γ ∈ C∞(Rd;R) :Dpγ(x)xq → 0 for all p, q ∈ Nd0

}
of all rapidly decaying C∞ functions [10,11].

Definition 1 A continuous and symmetric function K : Rd ×Rd → R is said
to be positive definite on S, K ∈ PD(S), iff the double integral∫

Rd

∫
Rd
K(x,y)γ(x)γ(y) dx dy (16)

is positive for all γ ∈ S \ {0}. ut

The following observation will be important for our subsequent analysis.

Proposition 2 Let K ≡ KΦ : Rd × Rd → R be of the form

KΦ(x,y) = Φ(x− y) for x,y ∈ Rd, (17)

for an even function Φ ∈ L1(Rd,R)∩C (Rd,R). If KΦ is positive definite on S,
KΦ ∈ PD(S), then the Fourier transform

Φ̂(z) =

∫
Rd
Φ(x) e−ix

T z dx for z ∈ Rd

is positive on Rd, i.e., Φ̂(z) > 0 for all z ∈ Rd.

Proof By our assumptions on Φ, we can rely on the Fourier inversion theorem,

Φ(x− y) = (2π)−d
∫
Rd
Φ̂(z)ei(x−y)

T z dz ,

so that, for any γ ∈ S, we find the representation∫
Rd

∫
Rd
KΦ(x,y)γ(x)γ(y) dx dy =

∫
Rd

∫
Rd
Φ(x− y)γ(x)γ(y) dx dy

= (2π)−d
∫
Rd
Φ̂(z)

(∫
Rd
γ(x)e−ix

T z dx

)2

dz

= (2π)−d
∫
Rd
Φ̂(z) |γ̂(z)|2 dz.

From this we see that Φ̂ is positive on Rd, since the double integral in (16) is
assumed to be positive for all γ ∈ S \ {0}. ut

From now we will say that Φ in (17) is positive definite on S, Φ ∈ PD(S),
iff KΦ ∈ PD(S). We can draw the following conclusion from Proposition 2.
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Corollary 1 Let Φ ∈ L1(Rd,R)∩C (Rd,R) be even and positive definite on S.
Moreover, let w : Rd → (0,∞) be a continuous function of at most polynomial
growth around infinity. Then, the function

KΦ,w(x,y) = Φ(x− y)w(x)w(y) for x,y ∈ Rd

is symmetric and positive definite on S.

Proof Like in the proof of Proposition 2, we can establish the representation∫
Rd

∫
Rd
KΦ,w(x,y)γ(x)γ(y) dx dy =

∫
Rd

∫
Rd
Φ(x− y)w(x)γ(x)w(y)γ(y) dx dy

= (2π)−d
∫
Rd
Φ̂(z) |ŵγ(z)|2 dz. (18)

Recall Φ̂ > 0 from Proposition 2. Moreover, since w is positive on Rd, the
integral in (18) is positive for all γ ∈ S \ {0}, and so KΦ,w ∈ PD(S). ut

We remark that any positive definite function K on S, K ∈ PD(S), is also
positive definite on Rd, K ∈ PD(Rd). In other words, K ∈ PD(S) generates,
for any set X = {x1, . . . ,xn} ⊂ Rd of pairwise distinct points, a symmetric
positive definite kernel matrix

AK,X = (K(xj ,xk))1≤j,k≤n ∈ Rn×n,

by point evaluations of K(x,y) at X×X, and so we have

PD(S) ⊂ PD(Rd).

As shown in [10,11], the above inclusion is a rather straightforward conse-
quence from the celebrated Bochner theorem [3], several of whose variants were
used to construct positive definite radial kernels — ”radial basis functions” —
for the purpose of multivariate approximation from Lagrange data [15].

In the situation of this paper, we wish to work with positive definite kernels
K ∈ PD(S), all of whose kernel matrices

AK,L =
(
Rx
`jR

y
`k
K(x,y)

)
∈ Rn×n, (19)

generated by integrals along a set of pairwise distinct Radon lines,

L = {`1, . . . , `n} ⊂ R2 ,

are symmetric positive definite. We call such kernels K positive definite with
respect to the Radon transform R, or, in short, K ∈ PD(R). As shown in
Proposition 1, the class PD(R) contains no radially symmetric function K.

Therefore, we use weighted positive definite kernels Kφ,w of the form (15).
Now the well-posedness of the resulting reconstruction scheme follows from [11].
For the reader’s convenience, we summarize our discussion as follows.
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Theorem 1 Let Kφ(x,y) = φ(‖x−y‖2) be a positive definite function on S,
Kφ ∈ PD(S), and let w : [0,∞) → (0,∞) be continuous and positive. More-
over, suppose

(φw)(| · |2) ∈ L1([0,∞),R).

Then, Kφ,w in (15) is positive definite w.r.t. R, i.e., Kφ,w ∈ PD(R). ut

In the remainder of this section, we develop for weighted kernels Kφ,w of
the form (15) suitable representations for their associated basis functions

gt,θ(x) = Ry
`t,θ
Kφ,w(x,y) for `t,θ ∈ L (20)

and for their matrix entries

akj = Rx
`jR

y
`k
Kφ,w(x,y) for `j , `k ∈ L. (21)

3.1 Representation of the Weighted Basis Functions

In this section, we compute suitable representations for the weighted basis
functions gt,θ in (20). For Kφ,w in (15), any gt,θ in (20) can be written as

gt,θ(x) = Ry
t,θ

[
φ(‖x− y‖2)w(‖y‖2)

]
· w(‖x‖2) , (22)

where Rt,θ is the Radon transform on line ` ≡ `t,θ for (t, θ) ∈ R× [0, π).
To compute gt,θ(x) = ht,θ(x) · w(‖x‖2), we represent its major part as

ht,θ(x) = Ry
t,θ

[
φ(‖x− y‖2)w(‖y‖2)

]
=

∫
`t,θ

φ(‖x− y‖2)w(‖y‖2) dy

=

∫
`t,0

φ(‖x−Qθy‖2)w(‖Qθy‖2) dy

=

∫
`t,0

φ(‖Q−1θ x− y‖2)w(‖y‖2) dy

=

∫
`t,0

φ(‖xθ − y‖2)w(‖y‖2) dy,

with the rotation matrix

Qθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=
[
nθ|n⊥θ

]
for θ ∈ [0, π),

and perpendicular vectors

nθ =

[
cos(θ)
sin(θ)

]
and n⊥θ =

[
− sin(θ)
cos(θ)

]
,

where we let xθ = Q−1θ x = QTθ x, so that xθ = [xTnθ,x
Tn⊥θ ]T ∈ R2.
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Note that any y ∈ `t,0 has the form y = [t, s]T ∈ R2 for parameter s ∈ R.
In the following, it will be convenient to let vt,s := [t, s]T = y for t, s ∈ R.
This way, we obtain the representation

ht,θ(x) =

∫
`t,0

φ(‖xθ − y‖2)w(‖y‖2) dy

=

∫
R
φ(‖xθ‖2 − 2xTθ vt,s + ‖vt,s‖2)w(‖vt,s‖2) ds

=

∫
R
φ(‖x‖2 − 2xTθ vt,s + ‖vt,s‖2)w(‖vt,s‖2) ds

=

∫
R
φ
(
(xTnθ − t)2 + (xTn⊥θ − s)2

)
w(‖vt,s‖2) ds, (23)

where we have used the identity

‖x‖2 − 2xTθ vt,s + ‖vt,s‖2

= ‖x‖2 ± (xTnθ)
2 − 2xTnθt+ t2 ± (xTn⊥θ )2 − 2xTn⊥θ s+ s2

= ‖x‖2 +
(
xTnθ − t

)2
+
(
xTn⊥θ − s

)2 − [(xTnθ)
2 + (xTn⊥θ )2

]
=
(
xTnθ − t

)2
+
(
xTn⊥θ − s

)2
.

Now we finally combine the representation for the weighted basis functions
gt,θ in (22) and that of their major part ht,θ in (23). To this end, note that
under the assumption (φw)(| · |2) ∈ L1([0,∞),R), the integral in (23) is finite
for any x ∈ R2. We conclude the discussion of this subsection as follows.

Proposition 3 The weighted basis functions gt,θ : R2 → R in (22) can be
represented as

gt,θ(x) =

∫
R
φ
(
(xTnθ − t)2 + (xTn⊥θ − s)2

)
w(‖vt,s‖2) ds · w(‖x‖2).

For (φw)(| · |2) ∈ L1([0,∞),R), gt,θ(x) is for any x ∈ R2 well-defined. ut

3.2 Representation of the Matrix Entries

To solve the reconstruction problem

RL(g) = RL(f) for L = {`1, . . . , `n} ⊂ R2 ,

this requires solving the linear system (7) with matrix entries akj as in (21),
i.e.,

akj = Rx
`j

[
Ry
`k

[
φ(‖x− y‖2)w(‖y‖2)

]
· w(‖x‖2)

]
. (24)

In our following computations, we let `k := `t,θ and `j := `r,ϕ to indi-
cate the dependence on the Radon lines’ parameters (t, θ), (r, ϕ) ∈ R× [0, π).
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Therefore, by using the representation of the weighted basis functions gt,θ in
Proposition 3, any matrix entry akj in (24) has the form

akj = Rx
`r,ϕ [gt,θ(x)] (25)

=

∫
`r,ϕ

[∫
R
φ
(
(xTnθ − t)2 + (xTn⊥θ − s)2

)
w(‖vt,s‖2) ds

]
w(‖x‖2) dx.

Now the line integral of gt,θ over `r,ϕ can be transformed into a line integral
over `r,0, so that we obtain for akj in (25) the representation∫
`r,ϕ

[∫
R
φ
(
(xTnθ − t)2 + (xTn⊥θ − s)2

)
w(‖vt,s‖2) ds

]
w(‖x‖2) dx

=

∫
`r,0

[∫
R
φ
(
(xTQTϕnθ − t)2 + (xTQTϕn⊥θ − s)2

)
w(‖vt,s‖2) ds

]
w(‖x‖2) dx

=

∫
`r,0

[∫
R
φ
(
(xTnθ−ϕ − t)2 + (xTn⊥θ−ϕ − s)2

)
w(‖vt,s‖2) ds

]
w(‖x‖2) dx

=

∫
R

[∫
R
φ
(
(vTr,s̃nθ−ϕ − t)2 + (vTr,s̃n

⊥
θ−ϕ − s)2

)
w(‖vt,s‖2) ds

]
w(‖vr,s̃‖2) ds̃,

where we let x = (r, s̃)T = vr,s̃.
Now, since

(vTr,s̃nθ−ϕ − t)2 + (vTr,s̃n
⊥
θ−ϕ − s)2

= (vTr,s̃nθ−ϕ)2 + (vTr,s̃n
⊥
θ−ϕ)2 − 2vTr,s̃(nθ−ϕt+ n⊥θ−ϕs) + t2 + s2

= ‖vr,s̃‖2 − 2vTr,s̃Qθ−ϕvt,s + ‖vt,s‖2

= ‖Qϕvr,s̃‖2 − 2(Qϕvr,s̃)
T (Qθvt,s) + ‖Qθvt,s‖2

= ‖Qϕvr,s̃ −Qθvt,s‖2. (26)

Now we finally combine the representation for the matrix entries akj in (25)
with that in (26). Note that under the assumption (φw)(| · |2) ∈ L1([0,∞),R),
the double integral in the representation for akj in (25) is finite. We conclude
the discussion of this subsection as follows.

Proposition 4 Let Kφ,w(x,y) be a weighted kernel of the form (15), where
(φw)(| · |2) ∈ L1(R). Then, all entries of the symmetric positive definite kernel
matrix AK,L = (akj)1≤k,j≤n ∈ Rn×n in (19) are well-defined, where the matrix

entry akj in (21) is given as

akj =

∫
R

∫
R
φ
(
‖Qϕvr,s̃ −Qθvt,s‖2

)
w(‖vt,s‖2)w(‖vr,s̃‖2) dsds̃.

In particular, we have the representation

akk =

∫
R

∫
R
φ
(
(s̃− s)2

)
w(t2 + s2)w(s̃2 + r2) dsds̃

for the diagonal entries of the matrix AK,L. ut
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4 Special Case: Gaussian Kernel and Gaussian Weight

In our numerical experiments, we considered using the special case, where
Kφ,w(x,y) in (15) is given by a combination of the Gaussian kernel

φα(‖x− y‖2) = e−α‖x−y‖
2

for x,y ∈ R2 and α > 0

and the Gaussian weight function

wβ(‖x‖2) = e−β‖x‖
2

for x ∈ R2 and β > 0.

For the purposes of this paper, it is quite instructive to show how we
computed the weighted Gaussian basis functions gt,θ in Proposition 3 and the
Gaussian matrix entries akj in Proposition 4 for this prototypical case. For
other special cases, explicit representations for weighted basis functions gt,θ
and matrix entries akj should be elaborated by following along the lines of our
following computations.

4.1 Weighted Gaussian Basis Functions

Starting from the representation of gt,θ(x) in Proposition 3, we obtain

gt,θ(x)

=

∫
R

e−α[(xTnθ−t)2+(xTn⊥θ −s)
2] e−β(t

2+s2) ds · e−β‖x‖
2

= e−α[(xTnθ−t)2+(xTn⊥θ )2]−β(t2+‖x‖2)
∫
R

e−α[−2(xTn⊥θ )s+s2]−βs2 ds

= e−[(α+β)t2+α((xTnθ)2+(xTn⊥θ )2−2(xTnθ)t)+β‖x‖2]
∫
R

e−[(α+β)s2−2α(xTn⊥θ )s] ds

= e−[(α+β)(t2+‖x‖2)−2α(xTnθ)t]
∫
R

e
−
[
(α+β)s2−2α(xTn⊥θ )s± α2

α+β (x
Tn⊥θ )2

]
ds

= e
−
[
(α+β)(t2+‖x‖2)−2α(xTnθ)t− α2

α+β (x
Tn⊥θ )2

] ∫
R

e
−
[√
α+βs− α√

α+β
(xTn⊥θ )

]2
ds,

so that we can draw the following conclusion.

Proposition 5 For (t, θ) ∈ R× [0, π), the weighted Gaussian basis functions
are given as

gt,θ(x) =

√
π

α+ β
· e−

[
(α+β)(t2+‖x‖2)−2α(xTnθ)t− α2

α+β (x
Tn⊥θ )2

]
for x ∈ R2,

where α, β > 0. ut
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4.2 Gaussian Matrix Entries

To compute the entries akj of the Gaussian kernel matrix, we can rely on the
following standard result from basic calculus.

Lemma 1 For c0, c1 ∈ R and c2 > 0, we have∫
R

e−[c0+c1s+c2s2] ds =

√
π

c2
e
c21
4c2
−c0 .

Proof By completion of the square in the exponent of the integrand, we get∫
R

e−[c0+c1s+c2s2] ds =

∫
R

e
−
[
c0+

(
c1

2
√
c2

+
√
c2s
)2
− c21

4c2

]
ds =

√
π

c2
e
c21
4c2
−c0 ,

where we have used the substitution u = c1
2
√
c2

+
√
c2s. ut

Now we are in a position where we can compute the entries akj of the
Gaussian matrix by using their representation in Proposition 4. To this end,
we use similar calculations as in the outset of Section 3.2. We recall the rep-
resentation vr,s = (r, s)T ∈ R2 for a point on line `r,0. Moreover, recall that
for two perpendicular unit vectors nθ and n⊥θ their rotation about angle −ϕ
is given by QTϕnθ = nθ−ϕ and QTϕn⊥θ = n⊥θ−ϕ, respectively. This then yields

akj =

∫
`r,ϕ

√
π

α+ β
e
−
[
(α+β)(t2+‖x‖2)−2α(xTnθ)t− α2

α+β (x
Tn⊥θ )2

]
dx

=

√
π

α+ β

∫
`r,0

e
−
[
(α+β)(t2+‖x‖2)−2α((Qϕx)Tnθ)t− α2

α+β ((Qϕx)
Tn⊥θ )2

]
dx

=

√
π

α+ β

∫
R

e
−
[
(α+β)(t2+r2+s2)−2αt(vTr,snθ−ϕ)− α2

α+β (v
T
rsn
⊥
θ−ϕ)

2
]

ds. (27)

With letting η = θ − ϕ, and by using

vTr,snη = r cos(η) + s sin(η) and vTr,sn
⊥
η = s cos(η)− r sin(η),

we can rewrite the exponent in the integrand in (27) as

c0 + c1s+ c2s
2,

where we let

c0 ≡ c0(r, t, η) = (α+ β)(r2 + t2)− 2αrt cos(η)− α2

α+ β
r2 sin2(η)

c1 ≡ c1(r, t, η) = 2α sin(η)

(
α

α+ β
r cos(η)− t

)
c2 ≡ c2(η) = α+ β − α2

α+ β
cos2(η).
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Now note that c2 is positive for any η ∈ R,

c2 = α+ β − α2

α+ β
cos2(η) ≥ α+ β − α2

α+ β
=
β(β + 2α)

α+ β
> 0,

so that we can rely on Lemma 1 to obtain the representation

akj =
π√

(α+ β)c2
e
c21
4c2
−c0 . (28)

For the purpose of implementation, the following representation for the
matrix entries is quite convenient.

Proposition 6 The entries of the Gaussian matrix AK,L in (19) are given as

akj =
π√

qα,β(η)
exp

(
−β(2α+ β) · pα,β(t, r, η)

qα,β(η)

)
, (29)

where η = θ − ϕ and where

pα,β(t, r, η) = (α+ β)(r2 + t2)− 2αrt cos(η)

qα,β(η) = (α+ β)2 − α2 cos2(η).

Moreover, the matrix AK,L is symmetric positive definite with diagonal entries

akk =
π√

β(2α+ β)
e−2βt

2

> 0 for any (t, θ) ∈ R× [0, π). (30)

Proof Starting from the representation in (28), first note that

qα,β(η) = (α+ β)c2.

Therefore, it remains to show the identity

c21
4c2
− c0 = −β(2α+ β) · pα,β(t, r, η)

qα,β(η)
,

or, equivalently,

qα,β(η)

(
c21
4c2
− c0

)
= −β(2α+ β) · pα,β(t, r, η). (31)

To establish (31), we first represent the right hand side in (31) by

−β(2α+ β) · pα,β(t, r, η)

= −β(2α+ β)
[
(α+ β)(r2 + t2)− 2αrt cos(η)

]
= 2αβ(2α+ β) cos(η)rt− β(2α+ β)(α+ β)(r2 + t2). (32)
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Now let us turn to the left hand side of (31). Note that

c21
4

= α2 sin2(η)

[
α2

(α+ β)2
cos2(η)r2 − 2

α

α+ β
cos(η)rt+ t2

]
=

α4

(α+ β)2
cos2(η) sin2(η)r2 − 2

α3

α+ β
cos(η) sin2(η)rt+ α2 sin2(η)t2.

This in combination with qα,β(η)/c2 = α+ β yields

qα,β(η)

c2

c21
4

=
α4 cos2(η) sin2(η)

α+ β
r2 − 2α3 cos(η) sin2(η)rt+ α2(α+ β) sin2(η)t2.

Moreover, we find

qα,β(η) · c0

=
[
(α+ β)2 − α2 cos2(η)

] [
(α+ β)(r2 + t2)− 2α cos(η)rt− α2

α+ β
sin2(η)r2

]
= (α+ β)3(r2 + t2)− 2α(α+ β)2 cos(η)rt− α2(α+ β) sin2(η)r2

− α2(α+ β) cos2(η)(r2 + t2) + 2α3 cos3(η)rt+
α4

α+ β
cos2(η) sin2(η)r2

=

[
(α+ β)3 − α2(α+ β) +

α4

α+ β
cos2(η) sin2(η)

]
r2

+ 2α cos(η)
[
α2 cos2(η)− (α+ β)2

]
rt+

[
(α+ β)3 − α2(α+ β) cos2(η)

]
t2.

This leads us to the representation

qα,β(η) ·
(
c21
4c2
− c0

)
=

[
α4

α+ β
cos2(η) sin2(η)− (α+ β)3 + α2(α+ β)− α4

α+ β
cos2(η) sin2(η)

]
r2

+ 2α cos(η)
[
(α+ β)2 − α2 sin2(η)− α2 cos2(η)

]
rt

+
[
α2(α+ β) sin2(η)− (α+ β)3 + α2(α+ β) cos2(η)

]
t2

=
[
α2(α+ β)− (α+ β)3

]
(r2 + t2) + 2α cos(η)

[
(α+ β)2 − α2

]
rt

= 2αβ(2α+ β) cos(η)rt− β(2α+ β)(α+ β)(r2 + t2)

for the left hand side in (31), which coincides with the right hand side in (32).

The stated symmetry of the Gaussian matrix AK,L is due to the symmetry
of the functions qα,β and pα,β in (29), where we can in particular rely on

qα,β(η) = qα,β(−η) for all η ∈ R
pα,β(t, r, η) = pα,β(t, r,−η) for all r, t, η ∈ R
pα,β(t, r, η) = pα,β(r, t, η) for all r, t, η ∈ R,
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so that, by using representation (29), we get

akj =
π√

qα,β(η)
exp

(
−β(2α+ β) · pα,β(t, r, η)

qα,β(η)

)
=

π√
qα,β(−η)

exp

(
−β(2α+ β) · pα,β(r, t,−η)

qα,β(−η)

)
= ajk.

Let us finally turn to the diagonal entries akk. In this case, η = θ − ϕ = 0
and r = t, so that due to

qα,β(0) = β(2α+ 1)

pα,β(t, t, 0) = 2βt2.

we obtain the stated representation (30). ut

5 Numerical Examples

We have implemented the proposed kernel-based reconstruction scheme for
the weighted Gaussian kernel

Kφ,w(x,y) = φα
(
‖x− y‖2

)
· wβ(‖x‖2) · wβ(‖y‖2) for α, β > 0

by using the Gaussian kernel

φα(‖x− y‖2) = e−α‖x−y‖
2

for α > 0

in combination with the Gaussian weight function

wβ(‖x‖2) = e−β‖x‖
2

for β > 0.

For the purpose of illustration, we considered applying the proposed kernel-
based reconstruction method to two popular phantoms:

(a) The phantom bull’s eye, fBE : [−1, 1]2 → R, given as a linear combina-
tion

fBE(x) = χB3/4
(x)− 3

4
χB1/2

(x) +
1

4
χB1/4

(x) for x ∈ [−1, 1]2 (33)

of three indicator functions χBr on the disks (each centred at the origin 0)

Br =
{
x ∈ R2 : ‖x‖ ≤ r

}
for r = 3/4, 1/2, 1/4.

The phantom bull’s eye is shown in Figure 1 (top left).
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phantom bull’s eye fBE crescent-shaped phantom fCS

kernel-based reconstruction of fBE kernel-based reconstruction of fCS

Fig. 1 Reconstruction of two phantoms by weighted Gaussian kernel functions.
(a) bull’s eye, as defined by fBE in (33); (b) crescent-shaped, given as fCS in (34). The
reconstruction quality is further evaluated by MSE, PSNR, SSIM, cf. our results in Table 1.

(b) The crescent-shaped phantom fCS : [−1, 1]2 → R is defined as

fCS(x) = χB1/2
(x)− 1

2
χB3/8(1/8,0)(x) for x ∈ [−1, 1]2, (34)

where

B3/8(1/8, 0) =
{
x = (x, y) ∈ R2 : (x− 1/8)2 + y2 ≤ 9/64

}
is the disk of radius 3/8 centred at (1/8, 0). The crescent-shaped phantom
is shown in Figure 1 (top right). Note that fCS is not radially symmetric,
unlike fBE.

In our numerical experiments we work with both scattered Radon data
(see Subsection 5.1) and regular Radon data on parallel beam geometry (see
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Subsection 5.2). Recall that for the case of scattered Radon data, standard
Fourier-based reconstruction methods do not apply, as this is already explained
in the introduction. Fourier-based FBP discretizations of the Radon transform
usually rely on parallel beam geometry, see [5, Chapter 8]. Therefore, we have
included numerical comparisons with FBP methods only in Subsection 5.2.

5.1 Reconstruction from Scattered Radon Data

For each test case, we acquired scattered Radon data {(Rf)(tk, θk)}1≤k≤n by
line integrals of f over n = 16, 384 scattered Radon lines {`tk,θk}1≤k≤n. To
this end, we randomly chose line parameters (tk, θk) ∈ [−

√
2,
√

2]× [0, π), for
1 ≤ k ≤ n.

We measured the quality of our reconstruction g by the mean square error

MSE =
1

J

J∑
j=1

(fj − gj)2,

where J is the size of the input image (i.e., the number of pixels), and where
f ≡ {fj}Jj=1 and g ≡ {gj}Jj=1 are the greyscale values at the pixels of the
target image f and of the reconstructed image g, respectively. In our numerical
experiments, the image size is J = 256 × 256 = 65, 536. We remark that the
MSE is by

PSNR = 10× log10

(
(2r − 1)× (2r − 1)

MSE

)
related to the peak signal-to-noise ratio (PSNR). In our numerical experiments,
we have r = 8, giving the number of bits required for the representation of
one luminance value.

Finally, we also recorded the structural similarity index (SSIM) to better
measure the ”similarity” between f and g. We remark that SSIM was designed
in [16] to improve on the quality measures PSNR and MSE, particularly to
obtain an enhanced consistency with human visual perception.

Our numerical results are shown in Figure 1 and in Table 1.

Table 1 Reconstruction of two phantoms by weighted Gaussian kernel functions.

phantom α β MSE PSNR SSIM
bull’s eye 7.0711 1.5166 0.0151 66.3314 0.3338

crescent-shaped 7.0711 1.0954 0.0054 70.8376 0.4752

We can conclude that the key features of the two test images are captured
quite well by the proposed kernel-based reconstruction scheme. However, both
their visual quality and their indicators MSE, PSNR, and SSIM may further
be improved by fine-tuning the Gaussian shape parameters α and β. This,
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however, is far beyond the aims of this paper, and therefore we decided to
refrain from optimizing the method parameters α and β.

5.2 Reconstruction from Regular Radon Data on Parallel Beam Geometry

In this section, we assume that the input Radon data (Rf)(t, θ) are regular on
parallel beam geometry (see [5, Section 8.4]). In this case, the angular variable
θ ∈ [0, π) is discretized as

θk =
kπ

N
for k = 0, . . . , N − 1

for some N ∈ N. Moreover, for each of the N angles θk, k = 0, . . . , N − 1,
M Radon lines `tj ,θk , for j = 1, . . . ,M , are placed equispaced and parallel,
such that they are orthogonal to the unit vector nθk = (cos(θk), sin(θk)). This
gives N ×M Radon data (Rf)(tj , θk). In our numerical experiments, we let
N = M = 128, and tj ∈ [−

√
2,
√

2], for j = 1, . . . ,M , i.e., the set of Radon
data contains N ×M = 16, 384 Radon lines.

We have applied the proposed kernel-based method to reconstruct the two
phantoms fBE in (33) and fCS in (34). For comparison, we have also applied
the Fourier-based filtered back projection (FBP) method. To this end, we
considered using the Matlab function iradon, where we selected the option of
interpolation by linear splines (for the back projection) in combination with
the Ram-Lak low-pass filter. For details concerning the implementation of the
FBP method we refer to [5].

Our numerical results are shown in Table 2 and in Figure 2, where the size
of the output reconstructions is 90× 90 each.

Table 2 Reconstruction of phantoms fBE and fCS on parallel beam geometry
by kernel-based reconstruction versus Fourier-based reconstruction. The table shows the
Gaussian shape parameters α, β of the kernel-based reconstruction, along with the resulting
quality indicators PSNR(k) and SSIM(k). The quality indicators PSNR(f) and SSIM(f) of
the Fourier-based method are shown for comparison. The obtained reconstructions of the
phantoms fBE and fCS are displayed in Figure 2.

phantom α β PSNR(k) PSNR(f) SSIM(k) SSIM(f)
bull’s eye 6.8863 1.0613 54.3 54.1 0.452 0.447

crescent-shaped 7.0711 1.2397 58.0 57.9 0.730 0.726

Given our numerical results, we can conclude that the proposed kernel-
based reconstruction scheme is quite competitive. But we remark that the
focus of this paper is on scattered data rather than on regular data.
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kernel-based reconstruction of fBE Fourier-based reconstruction of fBE

kernel-based reconstruction of fCS Fourier-based reconstruction of fCS

Fig. 2 Reconstruction of phantoms fBE and fCS on parallel beam geometry. The
reconstruction quality is further evaluated by PSNR and SSIM, cf. our results in Table 2.
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