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Firstly, we present new sets of nodes for polynomial interpolation on the square

that are asymptotically distributed w.r.t. the Dubiner metrics8. Then, we shall
deal with two particular families which show Lebesgue constants that numerically
grow like log2(n), with n the degree of the interpolating polynomial. In the non-

polynomial case with radial basis functions we also present two families of nearly-
optimal interpolation points which can be determined independently of the radial

function. One of these families can be conceptually described as a Leja sequence

in the bivariate case.

1. Optimal points for polynomial interpolation

The problem of finding “optimal” points for polynomial interpolation in the

one-dimensional case and in higher dimensions, has attracted the attention

of researchers for many years.

In the one-dimensional case and on the canonical interval [−1, 1], those

optimal points are characterized by the Bernstein-Erdös conjecture, proved

by de Boor and Pinkus in the seventies4, saying that degree n optimal

canonical points are a unique and symmetric set. Their positions where

found only in 1989 by J.R. Angelos, E.H. Kaufman et al.1.

If in the one-dimensional case the problem can be considered essentially

solved and every good interpolation point set has asymptotically the ar-

ccosine distribution, in the multivariate setting the problem is still open.

Many attempts were done recently for solving the problem on different

bidimensional domains. As some examples, we remind the following recent

works 4,10,3,15 where different types of near-optimal interpolation sets were
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presented on different bidimensional domains.

Let Ω ⊂ R
d be compact. We call optimal polynomial interpolation

points a set X∗
N ⊂ Ω (N , cardinality), so that the Lebesgue constant

Λn(XN ) = max
x∈Ω

λn(x;XN ), λn(x;XN ) =
N∑

i=1

|`i(x;XN )| , (1)

defined for all sets XN = {x1, . . . ,xN} ⊂ Ω (unisolvent for polynomial

interpolation of degree n), attains its minimum at XN = X∗
N . λn(x;XN )

is the Lebesgue function of XN and the `i are the fundamental Lagrange

polynomials of degree n, and N = dim(Pn(Rd)), N =
(
n+d

d

)
.

In the present paper, we will only consider “good” polynomial interpo-

lation points on the square, that is sets of points whose Lebesgue constant

does not grow geometrically with the degree n. That is why we call them

near-optimal.

As it is well-known, in the one-dimensional case with Ω = [−1, 1], Cheby-

shev, Fekete, Leja as well as the zeros of Jacobi orthogonal polynomials are

near-optimal points for polynomial interpolation. The Lebesgue constants

increase logarithmically in the dimension N of the corresponding polyno-

mial space 2. All these points have asymptotically the arccosine distribu-

tion, that is they are asymptotically equidistributed w.r.t. the arccosine

metrics3,11.

Dubiner8, proposed a metrics which coincides in the one-dimensional

case with the arccosine metrics:

µ[−1,1](x, y) = | cos−1(x) − cos−1(y)|, ∀x, y ∈ [−1, 1] .

By using the van der Corput-Schaake inequality13, we can re-write it as

µ[−1,1](x, y) = sup
‖P‖

∞,[−1,1]≤1

1

degP
| cos−1(P (x)) − cos−1(P (y))| . (2)

Thus, the Dubiner metrics on the compact Ω ⊂ R
d can be defined as follows.

For every x,y ∈ Ω

µΩ(x,y) = sup
‖P‖∞,Ω≤1

1

degP
| cos−1(P (x)) − cos−1(P (y))| . (3)

In view of the properties of such a metrics8, L. Bos stated the follow-

ing conjecture9: nearly-optimal interpolation points on a compact Ω are

asymptotically equidistributed w.r.t. the Dubiner metrics on Ω.

Unfortunately the Dubiner metrics is explicitly known only in very few

cases. For d = 2, the case we are mostly concerned in the paper, with

Ωs = [−1, 1]2 the square and Ωc = {x : |x| ≤ 1} the circle, we have
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• µΩs
(x,y) = max{| cos−1(x1)−cos−1(y1)|, | cos−1(x2)−cos−1(y2)|}

• µΩc
(x,y) =

∣∣∣cos−1
(
x1x2 + y1y2 +

√
1 − x2

1 − y2
1

√
1 − x2

2 − y2
2

)∣∣∣ .
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Figure 1. Left: 496 (i.e. degree 30) quasi-uniform Dubiner points for the square; Right:
496 quasi-uniform Dubiner points for the circle.

Looking at Figure 3 below, the growth n3 for Dubiner points (i.e. N3/2)

is not satisfactory. Indeed, for Fekete points on the square it is well-known

that Λn(FN ) ≤ N 10. This suggests that quasi-uniformity in the Dubiner

metrics is not sufficient for near-optimality of the interpolation points.

1.1. Morrow-Patterson and Padua points

Morrow and Patterson12 proposed for cubature purposes the following set

of points. For n, a positive even integer, consider the points XMP
N =

{(xMP
m , yMP

k )} ⊂ [−1, 1]2 given by

xMP
m = cos

(
mπ

n + 2

)
, yMP

k =





cos

(
2kπ
n+3

)
m odd

cos
(

(2k−1)π
n+3

)
m even

(4)

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n
2 + 1. These are the Morrow-Patterson points

and are exactly equally spaced w.r.t. the Dubiner metrics.

Bos9,3 proved that ΛMP
n = O(n6). From our experiments we showed

that ΛMP
n = O(n2): moreover ΛMP

n can be least-square fitted with the

quadratic polynomial (0.7n + 1)2, which is smaller than N (i.e. the theo-

retical bound for Fekete points).
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We constructed also a new set of points that we called Extended Morrow-

Patterson points (EMP), which correspond to using extended Chebyshev

nodes in (4), i.e. XEMP
N = {(xEMP

m , yEMP
k )} ⊂ [−1, 1]2, so that

xEMP
m =

1

αn
xMP

m , yEMP
k =

1

βn
yMP

k , 1 ≤ m ≤ n+1, 1 ≤ k ≤
n

2
+1 (5)

where the dilation coefficients, αn and βn, have expressions αn = cos(π/(n+

2)) , βn = cos(π/(n + 3)). The growth of the Lebesgue constant is again

quadratic in the degree and numerically we showed λn((x1, x2);X
EMP
N ) 6≤

λn((x1, x2);X
MP
N ), ∀(x1, x2) ∈ [−1, 1]2, while Λn(XEMP

N ) < Λn(XMP
N ).

For n a positive even integer consider the points (xm, yk) ∈ [−1, 1]2

given by

xPD
m = cos

(
(m − 1)π

n

)
, yPD

k =





cos

(
(2k−2)π

n+1

)
m odd

cos
(

(2k−1)π
n+1

)
m even

(6)

1 ≤ m ≤ n+1, 1 ≤ k ≤ n
2 +1. These are modified Morrow-Patterson points

that were firstly discussed in Padua and so we have decided to call them

Padua points (shortly, PD points). They are exactly equispaced w.r.t. the

Dubiner metrics on the square.
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Figure 2. Left:Morrow-Patterson (MP), Extended Morrow-Patterson (EMP) and

Padua (PD) points, for degree n = 4. Right: Padua points for degree n = 30.

In Tables 1-2 we show the interpolation errors in the sup-norm computed

approximating two classical functions: the well-known Franke function and

the function f(x) = |x|.



January 18, 2005 12:37 Proceedings Trim Size: 9in x 6in proceeding

5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
degree n

10

100

1000

L
e

b
e

sg
u

e
 c

o
n

st
a

n
ts

MP

(0.7·n+1.0)
2

EMP

(0.4·n+0.9)
2

PD

(2/π·log(n)+1.1)
2

Figure 3. The behavior of the Lebesgue constants for Morrow-Patterson (MP), Ex-
tended Morrow-Patterson (EMP), Padua (PD) points up to degree 60, and their least-

squares fitting curves.

Table 1. Interpolation errors for the Franke function and the corresponding
Lebesgue constants for MP, EMP and PD points

n = 34 Λ34 n = 48 Λ48 n = 62 Λ62 n = 76 Λ76

MP 1.3 10−3 649 2.6 10−6 1264 1.1 10−9 2082 2.0 10−13 3102

EMP 6.3 10−4 237 1.3 10−6 456 5.0 10−10 746 5.4 10−14 1106

PD 4.3 10−5 11 3.3 10−8 13 5.4 10−12 14 1.9 10−14 15

Table 2. Interpolation errors for the function f(x) = |x|.

n 34 48 62 76

MP on [−1, 1]2 4.4 10−1 4.4 10−1 4.4 10−1 4.4 10−1

MP on [0, 2]2 8.8 10−4 2.8 10−4 2.6 10−4 1.7 10−5

EMP on [−1, 1]2 1.4 10−1 1.4 10−1 1.4 10−1 1.4 10−1

EMP on [0, 2]2 8.3 10−4 2.6 10−4 2.1 10−4 2.1 10−5

PD on [−1, 1]2 3.7 10−2 2.7 10−2 2.1 10−2 1.7 10−2

PD on [0, 2]2 7.3 10−4 3.7 10−4 7.0 10−6 4.6 10−6

Some comments are now necessary. First of all, in both examples Padua

points reveal to be the most reliable both from the interpolation error point

of view that the growth of the Lebesgue constants. Concerning Table 2, it

is worth noting that when the singularity of the function f(x) = |x| is at

the corner of the domain, which is the case when the domain considered is

[0, 2]2 instead of [−1, 1]2, then the approximation error is smaller, due to
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the fact that all points sets accumulate at the corners of the square.

2. Optimal points for radial basis function interpolation

In this section we assume the reader quite confident with the theory and

applications of radial basis functions. For a comprehensive reference we

suggest to see the recent book by Buhmann 5.

Let Ω ⊂ R
d be a non-empty, bounded and open domain. Let X =

{x1, ..., xN} ⊆ Ω, N distinct data sites, the point set. Consider the values

{f1, ..., fN} data values, the interpolation problem with radial basis func-

tions can be formulate as follows. Fix a symmetric function Φ : Ω×Ω → R

and form the interpolant

sf,X =

N∑

j=1

αjΦ(·, xj) (7)

The αj are determined by the interpolation conditions

sf,X(xj) = fj , 1 ≤ j ≤ N .

They are unique if the interpolation matrix AΦ,X := (Φ(xi, xj))1≤i,j≤N is

invertible.

If AΦ,X is positive definite ∀X ⊆ Ω, then Φ is called a positive definite

kernel. It is often radial in the sense Φ(x, y) = φ(‖x−y‖2). In what follows

we confine to the positive definite case since every conditionally positive

definite kernel has an associated normalized positive definite kernel14.

Some useful notations. Take VX = span{Φ(·, x) : x ∈ X}. The in-

terpolant sf,X can be written in terms of cardinal functions uj ∈ VX ,

uj(xi) = δji, i.e. sf,X =
∑N

j=1 f(xj)uj . For the purpose of stability and

error analysis the following quantities are important:

• separation distance: qX = min
xj ,xk∈X,j 6=k

‖xj − xk‖2 ;

• fill-distance: hX,Ω = sup
x∈Ω

min
xj∈X

‖x − xj‖2 ;

• uniformity: ρX,Ω =
qX

hX,Ω
.

Remark. qX and hX,Ω roughly coincide for evenly distributed data sets 7.

Problem: are there any “good” or optimal point sets, X∗, for

the interpolation problem? Our approach is essentially based on two

lines of investigations: power function estimates and geometric arguments.
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2.1. Power function estimates

The kernel Φ defines on the space VΩ = span{Φ(·, x) : x ∈ Ω} an inner

product so that Φ is a reproducing kernel of VΩ. Let clos (VΩ) = NΦ(Ω) be

the native Hilbert space. If f ∈ NΦ(Ω), then

f(x) − sf,X(x) =



f,Φ(·, x) −
N∑

j=1

uj(x)Φ(·, xj)





Φ

, (8)

and by the Cauchy-Schwarz inequality

|f(x) − sf,X(x)| ≤ PΦ,X(x)‖f‖Φ , (9)

PΦ,X(x) is the power function which represents the norm of the point-

wise error functional. There exist error estimates that bound PΦ,X(x) in

terms of the fill distance hX,Ω
16. Moreover, if X ⊆ Y then PΦ,X(x) ≥

PΦ,Y (x), ∀x ∈ Ω. If Φ is translation invariant, integrable and has Fourier

transform such that

cφ(1 + ‖ω‖2
2)

−β ≤ φ̂(ω) ≤ CΦ(1 + ‖ω‖2
2)

−β

with β > d/2, Cφ ≥ cφ > 0, then nΦ(Rd) is norm-equivalent to the space

W β
2 (Rd). Therefore,

‖f − sf,X‖L∞(Ω) ≤ C h
β−d/2
X,Ω ‖f‖W β

2 (Rd),

that is we can bound the error by means of the fill-distance.

Theorem 2.1. 7 Let Ω closed and bounded in R
d, satisfying an interior

cone condition and Φ has Fourier transform as before. Then, for every

α > β there exists a constant Mα > 0 with the following property: if ε > 0

and X = {x1, . . . , xN} ⊆ Ω are given such that

‖f − sf,X‖L∞(Ω) ≤ ε‖f‖Φ, for allf ∈ W β
2 (Rd), (10)

then the fill distance of X satisfies

hX,Ω ≤ Mαε
1

α−
d
2 . (11)

Remark. The previous theorem says that optimally distributed data sites

are sets that cannot have a large region in Ω without centers, i.e. hX,Ω is

sufficiently small. In the next subsections we outline two methods for com-

puting numerically near-optimal distributed centers for radial basis function

interpolation.
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2.2. The greedy and the geometric greedy algorithms

The greedy method produces well-distributed point sets by generating larger

and larger data sets by adding the points where the power function has its

maxima w.r.t. preceding set.

• initial step: X1 = {x1}, xi ∈ Ω, arbitrary.

• iteration step: Xj = Xj−1 ∪ {xj} with PΦ,Xj−1
(xj) =

‖PΦ,Xj−1
‖L∞(Ω), j ≥ 2.

The convergence of the greedy method is guaranteed by the fact that

‖Pj‖L∞(Ω) ≤ C j−
1
d for some C > 0. Thus limj→∞ ‖PΦ,Xj

‖L∞(Ω) = 0

when Ω convex, Φ ∈ C2(Ω × Ω) or Φ ∈ C2(Ω1 × Ω1), Ω ⊆ Ω1 convex.

Practical experiments show that the greedy algorithm fills the currently

largest hole in the point set, close to the center of the hole. Thus, we can try

to see if points suitably extracted from a discretization of Ω can be useful

for our purposes. This is the idea behind the geometric greedy algorithm.

• initial step: X0 = ∅ and define dist(x, ∅) := A, A > diam(Ω).

• iteration step: given Xn ∈ Ω, |Xn| = n pick xn+1 ∈ Ω \ Xn s.t.

xn+1 = maxx∈Ω\Xn
dist(x,Xn). Then, form Xn+1 := Xn∪{xn+1}.

Remark: this geometric algorithm works very well for subsets Xn of Ω, with

small fill-distance hX,Ω and large separation distance qX .

Letting qn and hn the separation and fill distances for the sets Xn, the

convergence of the geometric greedy algorithms reduces to prove that

hn ≥ qn ≥
1

2
hn−1 ≥

1

2
hn, ∀n ≥ 2. (12)

The proof of (12) can be found in the paper 7. Furthermore, one can prove

that the geometric greedy algorithm produces sequences of points uniformly

distributed in a general metrics ν3.

2.3. Examples

Let Ω = [−1, 1] × [−1, 1] be discretized by a regular grid of 71× 71 = 5041

points. The radial functions we consider are the gaussian (with scale 1) and

the compactly supported Wendland function (with scale 15). The greedy

algorithm (shortly, g.a.) has been executed until ‖PN‖2
L∞(Ω) ≤ η, where

η a prescribed threshold. The geometric greedy algorithm (shortly g.g.a.)

builds sets Xn and the corresponding errors in the sup-norm are evaluated

at these points set.
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Figure 4. (Left) N=48 optimal points when η = 2 · 10−5; (Right) the error as function
of N, decays as N−7.2.
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Figure 5. (Left) geometric greedy data X48, (Right) the error is larger by a factor 4
and decays as n−6.1.

2.4. Final remarks

• The g.g.a. is independent on the kernel and generates asymptoti-

cally equidistributed optimal sequences. It still inferior to the g.a.

that considers the power function.

• The (n + 1)th point computed by the g.g.a. is such that hXn,Ω =

maxx∈Ω miny∈Xn
‖x − y‖2 . In the paper3, we proved that they

are quasi-uniform in the Dubiner metrics and connected to Leja

sequences6.
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Figure 6. (Right) 65 points as computed by the g.g.a. with η = 2 · 10−7 (*) and the
G.A.(+), (Left) their separation distances.

0 20 40 60 80
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Gaussian: separation distances

geometric
greedy

0 20 40 60 80
0

0.5

1

1.5

2
Gaussian: fill distances

geometric
greedy

Figure 7. The separation distances qn and the fill distances hn.

• So far, we have no proof of the fact the g.g.a. generates a sequence

with hn ≤ Cn−1/d, as required by asymptotic optimality.
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