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1. Introduction

This paper is mainly inspired by the results in [3] where the authors discussed the
properties of the Vandermonde determinants associated to point sets on the square that
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Fig. 1. Padua points and their generating curve for n = 4. The grids of odd and even indices are indicated
with different colours and style. (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)

distribute as the Padua points. In order to understand the result of this article, we briefly
recall the definition and the construction of the Padua points.

The Padua points are the first known near-optimal point set for bivariate polyno-
mial interpolation of total degree in the square [—1,1]?, whose Lebesgue constants have
minimal order of growth of O((logn)?), n being the polynomial degree [1,2].

It has been observed that these points have the structure of the union of two (ten-
sor product) grids of Chebyshev—Lobatto points, one square and the other rectangular.
Actually there are four families of Padua points, obtainable one from the other by a
suitable rotation of 90, 180 or 270 degrees. For the sake of simplicity, we consider here
only the construction of the points belonging to the first family, displayed in Fig. 1.

Let start by taking the n + 1 Chebyshev—Lobatto points on [—1, 1]

) — 1
Chy1 = {z?:cos(u)j:l,...,n—l—l}.
n

We then consider two subsets of points with odd and even indices
Coi1 = {z}L,j: 1,...,n—|—1,j0dd},
il = {z]”,j: 1,...,n+1,jeven}.
Then, the Padua points of the first family are the set
P = (C’ZJrl X C»Z+2) U (C’fLH X CfLJrQ) C Chy1 X Chyoa. (1)

These points have cardinality of the space of bivariate polynomials of degree < n, i.e.
N=(n+1)(n+2)/2.

There is another interesting geometric interpretation: Padua points are self-intersec-
tions and boundary contacts of the following (parametric and periodic) generating curve
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v(t) = (= cos((n+ 1)t), —cos(nt)), t€[0,7]

which turns out to be a Lissajous curve [1]. In Fig. 1, we show the two grids and the
generating curve for n = 4. In this case, the square grid has 9 points while the rectangular
one has 6 points.

For more details on Padua points, their properties and applications we refer the inter-
ested reader to the web page http://www.math.unipd.it/-marcov/CAApadua.html that
also contains an up-to-date bibliography on the topic.

In [3] has been conjectured an interesting formula for the Vandermonde determinant of
any set of points with exactly a similar structure like that of Padua points. Surprisingly,
the Vandermonde determinant factors into the product of two univariate functions. The
technical Lemma 1 [3, Lemma 1|, very important in that paper, was conjectured to be
true but up to now a correct proof has not been given. This article provides a general
proof of this (special) factorization that applies to any set of points having a similar
structure.

2. Notation

We denote by R™*™ the space of m x n real matrices, by diag(V') € R™*™ the diagonal
matrix constructed from V € R™, and by I,, € R™"*" the identity matrix. We denote by
R™*"[z] the space of m xn real polynomial matrices, in ¢ variables z = (z1,. .., 24). For a
polynomial matrix P € R™*"[z], we denote by P.; € R™*![z] (resp. P;. € R'*"[z]) the
j-th column (resp. i-th row), and by P. ;.;, € R™*(*=i+1)[z] the submatrix constructed
from the j-th to k-th columns of P. For two univariate polynomial matrices P € R"*"|x]
and @ € R™*"[y], we denote their Hadamard (element-wise) product as Po@) € R™*"[z],
z = (z,y).

For a set of polynomials P = {p1(z),...,pn(z)} and a set of points A = {ai,...,a,},
we denote by VDM(A,P) the Vandermonde matrix VDM(A, P) = [p;(a;)];j-, and
by vdm(A,P) = det VDM(A, P) its determinant. We should note that VDM(A, P)
is defined uniquely only if a specific order of the elements of A and P is fixed.
However, we are mainly interested in the absolute value of vdm(A,P), and there-
fore, the particular order does not matter. For convenience, we also use the notation
vdm(A, P) = vdm(A, {P; ;(2)};52,) and VDM(A, P) = VDM(A, {P, ;(2)};Z2,) for a
polynomial matrix P € R™*"|z].

3. Vandermonde determinants whose variables separate
3.1. The main result

Proposition 1. Assume that m,n > 1 are integers such that n = m orn = m + 1. Let
P e R™"[z], Q € R™*™[y] be two polynomial matrices of the form
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Qy) = 1 q(y) ,
1 ql@) o qna(y) ‘
Ea! 1 1

T S 2
PP e

i.e., the lower triangular block of Q (including the main diagonal) has constant columns,
and the upper triangular block of P (excluding the main diagonal) has constant rows,
and % denote arbitrary (not necessarily equal to each other) polynomials. Also assume
that

all pj,q; are monic, deg(p;) = deg(q;) = J.

Then for X ={x1,...,xm} and Y ={y1,...,yn}, the following equality holds:

vdm(X x Y, PoQ) ==+ ( H vdm(X, P;yj)> . (Hvdm(y, Qz)> . (3)
j=1 i=1

Remark. In (2) we show the matrices for n = m + 1. The matrices for n = m can be
obtained by deleting the last column of each matrix in (2).

Proof. We prove the proposition by induction. First we consider the case m = 1. For
n = 1, (3) is trivial. For n = m + 1 = 2, consider P(x) = [a1(x) a2(x)], Q(y) =
[01(y) b2(y)], X ={z1} and Y = {y1,y2}. Then we have that

vdm(X x Y, Po Q) = a1 (x1)az(x1) det lgigzzi Z;g;;] .

Now we assume that (3) holds for (m,n) = (k, k) and we prove it for (m,n) = (k,k+1).
Although we prove only the induction step (k,k) — (k,k + 1), the same derivations
(almost without changes) hold for the step (k,k+1) — (k+ 1,k +1).

Denote N; = VDM(&, P. ;). Then vdm(X x Y, P o Q) can be written as

vdm(X x Y, Po Q)

Ny NZdiag(Q:,Z(yl)) deiag(@:,n(yl))
Ny N2diag(Q:,2(92)) deiag(@:,n(y2))

= +det

Nl N2 dlag(Q,Q(yn)) e Nm dlag(Q,n(yn))
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I, | No d%ag(Q:,Q(Zh)) - Ny d%ag(Q:,n(%))
. det(Nl) dot Im No dlag(?:,Q(ZD)) -« N, dlag(?:,n(:UQ)) ' (4)
_Im N2 dlag(@ﬂ(yn)) e Nn dlag(Q,n(yn))_

Note that in [3] a different block representation was used. That different representation
was an obstacle to derive the proof of [3, Lemma 1].

By applying the Schur complement formula to the block matrix in (4), we have that

vdm(X x Y, PoQ)

Ny diag(Q. 2(y2) — Q. 2(y1)) -+ Npdiag(Q.n(y2) — Q- n(y1))
= +det(Ny) det : :

No diag(Q.a(5n) — Qra(y1)) -+ Ny iag(Qun(n) — Qn(s))

n m NQdiag(él,l(yZ)) Nndiag(@:,n—l(y2))
:j:det(Nﬂ(H(y —y1)> det : :

Ny diag(Gon () - N ding(@ons ()

= j:vdm X P (H — U ) Vdm(X X j}a-P:,Z:n o @)7 (5)

where Y = {y2,...,yn} and Qe R™*(n=D[y] is the polynomial matrix defined as

5(y) = Lzn(®) = Quan(y)

Yy—un
Note that the matrix @ has the form
[ % * . ... * ]
1 * *
Q)= 1|1 @y *|
L @a(y) o Ga2(y) *
where ¢;(y) := qj“(y;:z/”l“(yl), and hence deg(q;) = j and ¢; is monic. Therefore, we

can interchange the variables x and y, transpose the matrices P. 5., and é and apply
the induction assumption to (5). Formally, for

Pl(r) = Q) eR™F ], Q)= ( Pon(y)) € RMFy],

X' =y Y.



22 S. De Marchi, K. Usevich / Linear Algebra and its Applications 449 (2014) 17-27

the equality (3) takes place by the induction assumption, and we have that

vdm(X x Y, P.om o Q) = + ( H vdm(X, P.-,j)) (Hvdm(j/, @z)) :
i=1

j=2
Hence, from (5) we have that

n

vdm(X x Y, Po Q) = i(Hvdm(X,P;,j)> ( (y; — yl)) (Hvdm(j;, @z))

j=1

7=2

Then the equality (3) will hold if for all i = 1,...,m the following equality holds:
+ ( 11 - y1)> vdm(Y, Q;,.) = vdm(Y, Q; .). (6)
j=2

Consider a row vector polynomial A(y) = [1 a1(y) -+ an—1(y)]. Then,

Llai(y) -+ an—1(y)
vdm(Y, A) = £ det ! al(’y2) - an_1.(y2)
Lai(yn) - an—1(yn) |
[a1(y2) —ai1(y1) -+ an—1(y2) — an—1(y1)
= +det
La1(yn) —a1(y1) - an—1(Yn) — an—1(y1)

= j:(H(yj - Z/l)) vdm(y,g),

where

This proves (6). O
3.2. Discussion

Consider a case which is simpler than that of Proposition 1. Let X = {x1,..., 2}
and YV = {y1,...,yn}. Let P(x) € R™*"[z] and Q(y) € R™*™ be given by
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pi(z) pi(z) ... p(2) ay) @) - wy)
Plz) = pzfx) szw) pzf:ﬂ) | Qy) = cnfy) qQSy) qn(y) ®
pm(®) pm(z) .. pm(z) a(y) @) - ga(y)

Then we have that

and therefore

vdm(X x Y, Po Q) = £det(VDM(X,{p1,...,pm}) @ VDMV, {aq1,---,an})). (9)

By properties of the Kronecker product [4], (9) can be rewritten as

vdm(X x Y, PoQ) = :I:(Vdm(X, {p1,... ,pm}))n(vdm(y, {q1,-. .,qn}))m. (10)

An example of (8) is

1 1 1 y y !
n—1
T T x Y Y
P('I) = . N Y Q(y) - : Y
xm—l xm—l xm—l 1 y yn—l

where

vn(@x v poQ =+ [ w-)) (I w-w)

1<i<j<m 1<i<j<n

It is easy to see, that (10) is an equivalent of (3) for matrices of the form (8). Thus,
Proposition 1 can be interpreted as extension of the factorization property from a special
case of rank-one matrices (8) to a more general class (2).

For the class of matrices (2), any submatrix that is contained in the upper triangle
of P(z) has rank 1. The same holds for any submatrix contained in the lower triangle
of Q(y). Therefore, the matrix P o @ is the Hadamard product of a lower semiseparable
matrix Q(y) and an upper semiseparable matrix P(x) (these matrices are also called
Hessenberg-like matrices in [5, Ch. 8]). However, the relation to semiseparable matrices
was not used in the proof of Proposition 1.
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4. Application to Padua and Padua-like points
4.1. Main definitions

We define a class of points that distribute as the n-degree Padua points (1). For
simplicity, we consider n even (the case n odd is similar). The n-degree Padua-like points
A, are defined as a union of two grids

Ap = A° U A°,

where

N

AD = {($2i+1,yzj+1) ‘0<i ,0<7 <

|3

|

._n .on
Af = {(ﬂﬁzi,yzj)‘1<l\§,1<3<§+1},

n
2

and

N

and {z;}", {y; ?212 are distinct sets of points.

The Padua points (1) are a special case of Padua-like points, with
An = Chi x G s, An = Chi x Ch o,

and {xi}?if = Un41, {?Jj}?if = Cn+2.

We are interested in expressing the Vandermonde determinant vdm(.A,,, BB, ), where
B, ={2y’ |a+B<n;a,B>0}
is the set of all monomials of degree < n. We also define the square set of monomials
Tn = {xay5|0<a,6<n}.

4.2. Vandermonde determinant for Padua-like points

It is easy to show (see [3]) that

vdm(A,, B,) = :I:Vdm(.An,T% U T%e),
where
Ts = (a(x)By 1) U (b(y)By 1),

and a(x), b(y) are the annihilating polynomials of the points A2, that is

. z ol
]

a(z) = (z — w2i41), b(y) = (Y — y2541)-

0 J

A 0
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By construction, all the elements of Te vanish on A9, which allows us to split the
Vandermonde determinant into a product of two determinants:

B VDM(A2, T) 0
vdm(An, Bn) = £ det VDM(AS, Ty)  VDM(AS, T%)
= +vdm(A), Tz ) x vdm(.Afl,T%e). (11)

We consider the computation of the second factor in (11). For this, we define two poly-
nomial matrices of size () x (5 +1)

(1 0(y) ybly) ... yElb(y)]
Qy) = 1 y b‘(y) :
S : yb(y)
1oy yEh by
[ a(z) 1 1
Pa) = xa(x) CL.(.CL’) x x 12)
22 Ya(z) ... za(z) a(x) zz7!

It is easy to see that T§ consists of the entries of P o (), and therefore
Vdm(An,’T%) =vdm(X x Y,PoQ),

for X = {wg; |1 <i< G} and Y = {yo | 1 <i< G+ 1}. Since the matrices P(zr) and
Q(y) satisfy the condition (2), Proposition 1 can be applied.

Corollary 1.

: VI3

241
Vdm(.Af;,'T6 = <H vdm(X, P, )) (

7j=1

vdm(Y, Qi )) (13)

=1

4.83. Possible simplifications for inner determinants

Note that we still need to compute the inner determinants in (13), which have the
form vdm(X, P, ;), with X ={z1,..., 2}, 1 <j<m+1, and

Pj(x):=[1 = ... 27972 a(z) wma(z) ... xm_ja(x)}T

In the extreme cases
j=m+1 P () = [1 T ... :cm_l}T,

j=1 P.(z):=|a(®) =za(z) ... z" la(z)
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the determinant vdm(X, P. ;(x)) can be computed explicitly, as it was done in [3,
Lemma 3|. We will try to exploit (6) to simplify the expression. First, we note that
the successive application of the operation (7) leads to

a(z)—a(z1)  a(zz)—a(zy) CL(.T) _ z(a(z2)—a(x1))—zia(z2)ta(xr )z
D) B (x — x2)(x — 1)

Therefore, the result of ¢ successive applications of (7) to a polynomial a(x) is equal to

a0 (z) = a(x) —plx;z1,...,x0)

[Ty (z—=z)

where p(z;x1,...,x¢) is the (¢ — 1)-th degree interpolating polynomial of a(x) at
{z1,...,2¢}. Then the following proposition holds.

Proposition 2. For 2 < j < (m —1)/2 we have that

j—1 m
vdm(X, P, ;) = & ( H H (x; — xk)> vdm({z;,...,zm}, p(j)),
i=1 k=i+1

where
pU) = {5(j_1)(:1:), . aW (@), alx), za(z),. .. 2" ()}
Proof. Consider a polynomial vector
Az)=[a®P(z) ... aW(z) 1 - 2° a(z) =za(z) ... z%l(z)] € R"M[z],

and apply the operation (7) to it (for the set of points X = {x1,...,xp}):

Alz)=[aetD() ... a@) 7 - z° alx) zalz) --- xda(z)]
Therefore,
N k
P + o
r — I

and for k > 1,

+ xfa(zx).
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Hence,
1 = *
A =ne |1 ] ,
0 0 1
where
B(z) = [a®V(z) ... a®@(z) aW(z) 1 -+ 27! a(z) -+ 27 la(z)].
Therefore,
M
Vdm({xl, . ,xM},A) =+ H(azl — xg) Vdm({xg, N SYa 2 Z)
k]\:/jz
=+ H(azl — zg) | vdm ({22, ..., 20}, B).
k=2

The rest of the proof follows by applying recursively the same argument, since the poly-
nomial vector B is of the same form as the polynomial vector A. O

We note that Proposition 2 can be also extended to handle the case j > (m—1)/2. We
also note that Proposition 2 probably does not simplify much the expressions for the de-
terminants of Padua-like points, since we still need to compute vdm({zj, ..., 2}, PY)).
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