

Fitting polinomiali e non polinomiali

Stefano De Marchi

Dipartimento di Informatica Università di Verona

Scaletta

1. Fitting polinomiali

- 1.1 Interpolazione polinomiale, forma di Lagrange, fenomeno di Runge, costante di Lebesgue, nodi di Fekete e Leja.
- 1.2 Polinomi continui "a tratti", funzioni splines (polinomiali), Bsplines, interpolazione con splines, smoothing spline.
- 1.3 Approssimazione polinomiale, polinomi di Bernstein.
- 2. Fitting non-polinomiali
 - 2.1 Approssimazione ai minimi quadrati, SVD. Minimi quadrati pesati, interpolanti. Schema di Shepard.
 - 2.2 Radial Basis Functions.

1.1 Interpolazione polinomiale, forma di Lagrange

Teorema 1 Dati n + 1 punti distinti $x_0, \dots, x_n \in n + 1$ valori $w_i, i = 0, \dots, n$ esiste ed è unico il polinomio di grado $n, p_n(x)$, tale che

$$p_n(x_i) = w_i, \ i = 0, ..., n.$$

- Soluzione di un sistema lineare: Va = w con V matrice di Vandermonde.
- Forma di Lagrange: $p_n(x) = \sum_{i=0} w_i l_i(x)$ con $l_i(x)$ polinomi elementari di Lagrange.

n

I punti x_i , i = 0, ..., n sono detti nodi d'interpolazione.

Polinomi elementari di Lagrange

Fenomeno di Runge: I

In [-1, 1] si desideri interpolare la funzione $g(x) = \frac{1}{1 + 25x^2}$ su nodi equispaziati: $x_i = -1 + h \ i, \ i = 0, ..., n, \ h = \frac{2}{n}$. Scegliamo invece nodi di Chebyshev

$$x_i^{(c)} = \cos\left(\frac{(2i-1)\pi}{2n}\right) \ i = 0, ..., n.$$

Problemi con i nodi!!!!

Spiegazione: formula dell'errore d'interpolazione!

$$|p_n(x) - g(x)| \le \frac{1}{(n+1)!} |\omega(x)| \max_{-1 \le x \le 1} |g^{(n+1)}(x)|.$$

con $\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. Nel caso dei nodi

Chebyshev $|\omega(x)| \leq \frac{1}{2^n}$ altrimenti è peggiore!

Fenomeno di Runge: II

Costante di Lebesgue: I

Sia X un insieme di nodi d'interpolazione in [-1,1], $\{l_i\}_{i=0,...,n}$ i polinomi elementari di Lagrange,

$$\Lambda_n = \max_{-1 \le x \le 1} \sum_{i=0}^n |l_i(x)|$$

è la costante di Lebesgue.

È la norma dell'operatore $L_n : C[-1,1] \to \mathbb{P}_n$ e misura la bontà dell'approssimazione di una certa funzione f con il polinomio $L_n f$.

$$T = \{x_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), \ k = 0, 1, ..., n\},\$$

sono le ascisse di Chebyshev.

Costante di Lebesgue: II

Bernstein (1918) aveva provato che asintoticamente

$$\Lambda_n(T) \sim \frac{2}{\pi} \log(n+1), \quad n \to \infty.$$

Lutmann e Rivlin (1965) computazionalmente provarono che $\Lambda_n(T) = \lambda_n(T;1) = \sum_{k=0}^n |l_i(1)|$. Sapendo che $\lambda_n(T;1) = \frac{1}{n+1} \sum_{k=0}^n \cot\left(\frac{(2k+1)\pi}{4(n+1)}\right)$ si stabilì che

$$\lim_{n \to \infty} (\lambda_n(T; 1) - \frac{2}{\pi} \log(n+1)) := a_0 = 0.9625...$$

Infine Ehlich e Zeller (1966) ottennero la stima

$$a_0 + \frac{2}{\pi} \log(n+1) < \Lambda_n(T) \le 1 + \frac{2}{\pi} \log(n+1)$$

Punti di Fekete: I

I punti di Fekete. ^a Il problema da cui si prese spunto è il seguente. Si considerino n masse unitarie $n \ge 2$ nei punti variabili $x_1, ..., x_n$ di [-1,1].

Problema 1 Per quali posizioni di questi punti l'espressione

$$\prod_{i \neq j; i, j=1}^{n} (x_j - x_i) \tag{1}$$

diventa massima?

^aMihály Fekete (1886-1957), determinò questi punti nel 1923.

Punti di Fekete: II

Fejér (1932) provò che i punti di Fekete, si ottengono come soluzione del seguente problema:

Trovare l'insieme F, non necessariamente unico, che minimizza la funzione

$$\Phi_n(X) = \max_{-1 \le x \le 1} \sum_{k=0}^n l_k^2(X; x) \; .$$

Fejér provó che per i punti di Fekete $\sum_k l_k^2(x) \le 1$ da cui

$$\Phi_n(F) = 1, \quad \Lambda_n(F) \le \sqrt{n+1}.$$

Esempio: per n=5 i punti di Fekete sono: $\pm 1, 0, \pm 0.65466$; quelli di Chebyshev sono: $\pm 0.95106, 0, \pm 0.58779$; Corso di dottorato, 20-21 Ottobre 2003 - p.10/6

Punti di Fekete: III

Punti di Fekete: IV

Lutmann e Rivlin numericamente calcolarono $\Lambda_n(F)$ per n=3,...,40 e *congetturarono* le seguenti proprietà (non ancora provate!) per l'insieme *F*.

•
$$\Lambda_n(F) < \Lambda_n(T), \quad n \ge 4.$$

I massimi relativi di $\lambda_n(F;x)$ su $[f_i, f_{i+1}]$ decrescono in
 [0,1] e perciò

$$\Lambda_n(F) \quad in \ x = 0 \quad n \ pari$$
$$\Lambda_n(F) \quad in \ x \approx 0 \quad n \ dispari$$

Infine Sundermann (1983) provò

$$\Lambda_n(F) = \mathcal{O}(\log(n))$$

Punti di Fekete: V

Alcune proprietà dei punti di Fekete

- 1. Sono zeri di $(x^2 1)P'_n(x)$ con $P_n(x)$ pol. di Legendre di grado n.
- 2. Sono definibili su ogni compatto in ogni dimensione.
- 3. Sono i punti che massimizzano il modulo del determinante di Vandermonde.

4.
$$\Lambda_n = \mathcal{O}(\log(n)) \Rightarrow \lim_{n \to \infty} \Lambda_n^{\frac{1}{n}} = 1$$

5. Sia E un insieme compatto, allora

$$\lim_{n \to \infty} |VDM(f_1, ..., f_n)|^{\frac{2}{n(n-1)}} = \rho(E)$$

ove $\rho(E) = \lim_{n \to \infty} (M_n(E))^{\frac{1}{n}}$ con $M_n(E) = \max_E |T_n(x;E)|$ è la costante di Chebyshev detta _____ anche diametro transfinito o capacità di E.

Sequenze di Leja: I

Sia *E* compatto $E \subset \mathbb{C} \approx \mathbb{R}^2$. F. Leja (Ann. Pol. Math. 4, 1957) propose una sequenza di punti estremali . Scelto $\lambda_1 \in E$. λ_2 è tale che $|\lambda_2 - \lambda_1| = \max_{z \in E} |z - \lambda_1|$. Quindi $\lambda_3 |(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)| = \max_{z \in E} |z - \lambda_1| |z - \lambda_2|$ e in generale

$$|(\lambda_{n+1}-\lambda_n)\cdots(\lambda_{n+1}-\lambda_1)|=\max_{z\in E}\prod_{k=1}^n |z-\lambda_k|.$$

Poiché la funzione $\Phi(z) = \prod_{k=1}^{n} (z - \lambda_k)$ è analitica, per il *principio del massimo per funzioni analitiche* tutti i punti $\{\lambda_p\}$ (eccetto λ_1 al più) appartengono al bordo di *E*.

Sequenze di Leja: II

- 1. I punti $\{\lambda_i\}$ possono essere *estratti* da una discretizzzione di [a, b] e anche in modo rapido "fast Leja points" di Baglama & al., ETNA (1998);
- 2. $\{\lambda_i\}$ è una sequenza stabile per l'interpolante in forma di Netwon (cf. Reichel, BIT (1990));
- 3. sequenze di Leja su [a, b], come pure i punti di Chebyshev, Fekete hanno asintoticamente la distribuzione dell' arcocoseno.

Punti di Leja e Fekete

Sono legati dalla massimizzazione di $VDM(X_n)$ su un *fissato* insieme $X_n = \{x_1, ..., x_n\} \in E$.

- $F_n = \{f_1, ..., f_n\}$ sono quelli che globalmente $\max_{X_n \in E} |VDM(X_n)|.$
- $|VDM(X_n)| = \prod_{i=1}^{n-1} |x_n x_i| \cdot |VDM(X_{n-1})|$, l' *n*-esimo punto di Leja risolve (localmente) il problema $\max_{x \in E} \prod_{i=1}^{n-1} |x x_i|$.
- $F_n \in L_n$ permettono di minimizzare la costante di Lebesgue poiché minimizzano il valore dei

$$l_i(x) = \frac{VDM(X_n^{(i)})}{VDM(X_n)} ,$$

 $X^{(i)}$ l'insigma X ova x à considerata al nosto di x.

1.2 Polinomi continui "a tratti"

Idea: Limitare il grado del polinomio di interpolazione aumentando la flessibilità dell'interpolante.

Esempio di polinomi continui a tratti: interpolazione lineare. Dati i valori w_i , i = 0, 1, ..., n, l'interpolante lineare nell' *i*-esimo intervallino $[x_i, x_{i+1}]$ è

$$s(x) = \frac{(x_{i+1} - x)w_i + (x - x_i)w_{i+1}}{x_{i+1} - x_i}$$

Generalizziamo

Definizione 1 *s* è un polinomio continuo a tratti in [a,b] di grado *k* se $s \in C[a, b]$ e se esistono dei punti ξ_i , i = 0, ..., n $a = \xi_0 < \xi_1 < \cdots < \xi_n = b$ cosicché *s* è un polinomio di grado $\leq k$ su ciascun intervallino $[\xi_i, \xi_{i+1}], i = 0, ..., n - 1$.

Funzioni splines: I

Definizione 2 Si dice che *s* è una funzione spline di grado *k* se oltre ad essere un polinomio di grado *k* è $C^{k-1}[a, b]$. In tal caso i punti $\xi, i = 1, ..., n - 1$ vengono detti *nodi* (interni). Notazione: $S(k; \xi_0, \xi_1, ..., \xi_n)$ è lo spazio lineare delle splines di grado *k*.

Una spline si può scrivere

$$s(x) = \sum_{j=0}^{k} c_j x^j + \frac{1}{k!} \sum_{j=1}^{n-1} d_j (x - \xi_j)_+^k, \ x \in [a, b].$$

La funzione $(x - \xi_j)_+^k$ si chiama potenza troncata.

Ci sono k+n parametri ($c_j \in d_j$) che implica che lo spazio delle splines di grado k ha dimensione n+k.

Funzioni splines: II

Esempio: splines cubiche (k = 3) (le più usate). Ordine di approssimazione: se $f \in C^{k+1}[a, b]$ e se n (numero nodi) è variabile, allora si prova che

$$\min_{s \in \mathcal{S}(k;\xi_0,\xi_1,...,\xi_n)} \|f - s\| = \mathcal{O}(h^{k+1})$$

con
$$h = \max_{1 \le 0 \le n-1} |\xi_{i+1} - \xi_i|.$$

Base dello spazio: B-splines.

B-splines: I

Sia $\{x_1, x_2, ..., x_n\}$ (o $\{x_i\}_{i=-\infty}^{+\infty}$) una sequenza finita (o infinita) crescente di numeri reali ($x_i < x_{i+1}$), detti *nodi* che per ora assumiamo distinti.

Definizione 3 La i-esima B-Spline di ordine k, che si indica con $B(x; x_i, ..., x_{i+k})$ (grado k - 1) è la k-esima differenza divisa della funzione $p(t, x) = (t - x)_+^{k-1}$

 $\mathbf{B}(\mathbf{x};\mathbf{x}_i,...,\mathbf{x}_{i+k}) = (\mathbf{x}_{i+k} - \mathbf{x}_i)\mathbf{p}[\mathbf{x}_i,...,\mathbf{x}_{i+k}] \mathbf{x}) \;,$

dove $p[\cdot](x)$ è la $k - esim^a$ differenza divisa su $x_i, x_{i+1}, ..., x_{i+k}$ di $p(\cdot, x)$ vista come funzione di x.

==> Per capire meglio, farsi l'esempio nel caso di k = 2 (B-splines lineari).

B-splines: II

Proposizione 1 Proprietà.

- $B_{i,k}(x) = 0 \text{ se } x \not\in (x_i, x_{i+k}].$
- $B_{i,k} > 0 \text{ nel suo supporto } [x_i, x_{i+k})$
- $\forall x \in \mathbb{R}, \sum_{i=-\infty}^{\infty} B_{i,k}(x) = 1$ o equivalentemente

$$\int_{\mathbb{R}} B_{i,k}(x) dx = 1 \; .$$

Le B-splines sono quindi *a supporto compatto* e *positive* e formano *partizione dell'unità*.

B-Splines: III

Si basa sulla regola di Steffensen per la differenza divisa del prodotto di due funzioni $f \in g$.

Proposizione 2 Siano $f \in g$ due funzioni sufficientemente differenziabili e i punti $x_1 \leq ... \leq x_{n+1}$ siano dati. Allora

$$(f \cdot g)[x_1, \dots, x_{n+1}] = \sum_{j=1}^{n+1} f[x_1, \dots, x_j]g[x_j, \dots, x_{n+1}]$$
(2)

B-splines: IV

Le B-splines soddisfano la ricorrenza (utile ai fini computazionali!):

$$B_{i,l}(x) = \left(\frac{x_i - x}{x_{i+l} - x_i} + 1\right) B_{i+1,l-1}(x) + \left(\frac{x - x_i}{x_{i+l} - x_i}\right) B_{i,l-1}(x) .$$

l indica l'ordine (= grado +1), *i* l'indice di intervallo. La relazione si innesca a partire da $B_{i,1}(x) = 1$ se $x \in [\xi_i, \xi_{i+1}]$.

Bsplines di ordine 3 (quadratiche)

Interpolazione con funzioni spline: I

Sia f(x) una funzione nota su $x = t_1, x = t_2, ..., x = t_m$. Si desideri interpolarla per mezzo di una spline S(x) di ordine n(grado n-1) con prescritti *nodi interni* $x_1, ..., x_{N-1}$. Inoltre $t_1 < t_2 < ... < t_m$ e

$$t_1 < x_1 < x_2 < \dots < x_{N-1} < t_m .$$

I parametri da determinare sono

N+n-1

che verranno determinati dalle condizioni

$$S(t_j) = f(t_j), \quad j = 1, ..., m . \quad (*^*)$$

Per l'unicità della soluzione è necessario che m-N+n-1

Corso di dottorato, 20-21 Ottobre 2003 – p.26/6

Interpolazione con funzioni spline: II

I. J. Schoenberg e A. Whitney (1953) hanno dimostrato che esiste un'unica soluzione del problema se e solo se

 $t_{1} < x_{1} < t_{n+1}$ $t_{2} < x_{2} < t_{n+2}$ $\vdots \qquad (3)$

 $t_{N-1} < x_{N-1} < t_m$

Osservazione. Non sono richieste informazioni circa le derivate finali. In tal caso il problema d'interpolazione è trattato come un normale problema di interpolazione polinomiale.

Possiamo scrivere $S(x) = \sum_{i=1}^{m} c_i B_i(x)$, dove B_i sono B-spline di ordine *n* con nodi interni la sequenza $x_1, ..., x_{N-1}$. Perciò (**) diventa

$$\sum_{i=1}^{m} c_i B_i(t_j) = f(t_j), \quad j = 1, ..., m .$$
(4)

ovvero, in forma matriciale, $A\mathbf{c} = \mathbf{f}$ Costruiamo le B-spline B_i , i = 1, ..., m. Aggiungiamo dapprima 2n nodi addizionali:

 $x_{1-n}, ..., x_0 \le t_1; \quad x_{1-n} < x_{2-n} < \cdots < x_0.$

$$t_m \ge x_N, x_{N+1}, ..., x_{N+n-1};$$

 $x_N > x_{N+1} > \dots > x_{N+n-1}$

Nota. I 2n nodi addizionali possono essere presi coincidenti (Carrasso, Laurent 1969).

Per la proprietà delle B-spline di avere supporto minimo cioè

$$> 0 \quad x_{i-n} \le x < x_i$$
$$B_{i,n}(x) = \bigvee_{i=0}^{n} = 0 \quad altrimenti$$

si ha che la matrice *A* ha *al più n* elementi diversi da zero per ogni riga. Non solo, tale matrice è anche stocastica (somma x righe = somma x colonne = 1)

Interpolazione con funzioni spline: V

Esempio 1 N = 6, n = 4 (spline cubiche) con nodi

$$a = t_1 < t_2 < x_1 < t_3 < x_2 < x_3 < t_4 < t_5 < t_6 < x_4 < t_7 < t_8 < < x_5 < t_9 = b.$$

La matrice A (N+n-1), 9 imes 9 sarà :

Shannon's sampling theory: dato un segnale limitato in banda s(x) esso può essere ricostruito dai suoi campionamenti (Nyquist rate) s_k mediante $\mathbf{s}(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}} \mathbf{s}_{\mathbf{k}} \operatorname{sinc}(\mathbf{x} - \mathbf{k})$. Nota: $\operatorname{sinc}(0) = 1$, $\operatorname{sinc}(k) = 0$, $k \in \mathbb{Z} \setminus \{0\}$. Nel caso discreto tale campionamento da stime poco accurate.

In alternativa, si possono usare spline cardinali e relative Bplines cardinali. Bpline cardinali di ordine n si ottengono facendo la convoluzione n + 1volte di

 $\beta^0(x) = 1, |x| < 1/2, \ \beta^0(x) = 0.5, \ |x| = 1/2 \text{ e altrove } 0.$ $\lim_{n \to \infty} \beta^n(x) = \operatorname{sinc}(x).$

$$\mathbf{s}(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}} \mathbf{s}_{\mathbf{k}} \beta^{\mathbf{n}}(\mathbf{x} - \mathbf{k}) \ .$$

Tale scelta è più smooth e meno costosa computazional-par

Smoothing spline

Smoothing: è l'altro modo di fare data fitting con spline. **Problema 2** Siano dati i punti (x_i, y_i) , i = 1, ..., n con $y_i = f(x_i)$. Trovare la funzione f che minimizza

$$\sum_{i=1}^{n} (y_i - f(x_i))^2 + \alpha \int_{x_1}^{x_n} (f^{(p)}(x))^2 dx \; .$$

La risultante curva è un polinomio continuo a tratti di grado 2p - 1 II primo termine misura la vicinanza della funzione di fitting dai dati. Il secondo penalizza la curvatura della funzione e α il collegamento tra i due termini. Se $0 < \alpha < \infty$, Schoenberg provò che tale f è la spline naturale di grado 2p - 1. Se $\alpha = 0$, f=interpolante polinomiale; Nota: i dati sono assunti del tipo segnale+rumore

$$y_i = f(x_i) + \epsilon_i, \ \epsilon_i \approx N(0, \sigma^2), \ i = 1, ..., n$$

1.3 Approssimazione polinomiale e polinomi di Bernstein

Si consideri l'intervallo [a, b] = [0, 1]. Sia inoltre k (grado) fissato. La base di B-spline sulla sequenza di nodi

$$t_0 = \dots = t_k = 0, \quad t_{k+1} = \dots = t_{2k+1} = 1,$$

 $B_{i,k}, i = 0, 1, ..., k$ sono polinomi di grado k su [0,1] che verificano la ricorrenza:

$$B_{i,k}(x) = x B_{i,k-1}(x) + (1-x) B_{i+1,k-1}(x) ,$$

che è quella delle B-spline con le opportune sostituzioni. Sono detti *Polinomi di Bernstein* di grado k e si denotano con $B_i^k(x)$ o $\beta_i^k(x)$.

Approssimazione polinomiale e polinomi di Bernstein

Teorema 2 (*Teorema di Weierstra* β)

Sia $f \in C[a, b]$. Dato $\epsilon > 0$ è sempre possibile trovare un polinomio $p_n(x)$ (di grado sufficientemente grande) tale che

$$|f(x) - p_n(x)| \le \epsilon, \ \forall x \in [a, b].$$

Definizione 4 Sia f definita su [0, 1]. Il polinomio di Bernstein di grado n associato ad f è

$$B_n(f;x) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k}$$

Nota: $B_n(f;0) = f(0)$, $B_n(f;1) = f(1)$ ("quasi" interpolante). $\beta_k^{(n)} = {n \choose k} x^k (1-x)^{n-k}$ polinomi elementari di Bernstein.

Polinomi di Bernstein di grado 3

Convergenza dell'approssimazione di Bernstein

Teorema 3 (di Bernstein) Sia f(x) limitata in [0,1]. Allora

$$\lim_{n \to \infty} B_n(f; x) = f(x)$$

su ogni punto $x \in [0, 1]$ dove f è continua. Se inoltre $f \in C[0, 1]$ allora il limite vale uniformemente.

Come corollario a questo teorema possiamo ottenere il Teorema di Weierstra β .

Corollario 1 Se $f \in \mathcal{C}[0,1]$, allora per ogni $\epsilon > 0$ e per n

sufficientemente grande

$$|f(x) - B_n(f;x)| \le \epsilon \quad \forall x \in [0,1] .$$

Approssimazione con operatori di Bernstein

Curve Bspline e di Bézier

Sia $t \in [\alpha, \beta] \subset \mathbb{R}$ il parametro di una curve parametrica e $P_0, P_1, ..., P_{n-1}, n$ punti del piano.

1. La curva Bspline di ordine m associata al poligono di controllo individuato dai punti P_i è la curva

$$S(t) = \sum_{i=0}^{n-1} P_i B_{i,m}(t), \ t \in [\alpha, \beta] .$$

2. La curva di Bézier di grado n - 1 associata al poligono di controllo individuato dai punti P_i è la curva

$$S(t) = \sum_{i=0}^{n-1} P_i B_i^{n-1}(t), \ t \in [\alpha, \beta].$$

2.1 Approssimazione ai minimi quadrati e SVD

Problema: Dati n + 1 punti $(x_i, f_i), i = 0, ..., n$ trovare un polinomio di grado $m \le n$ (in generale $m \ll n$) t.c. siano minime le deviazioni (errori) $p(x_i) - f_i$, i = 0, ..., n.

Soluzione: Si consideri il funzionale quadratico

$$E(p) = \sum_{i=0}^{n} |p(x_i) - f_i|^2 = \sum_{i=0}^{n} (p(x_i) - f_i)^2$$
$$= \sum_{i=0}^{n} \{a_0 + a_1 x_i + \dots + a_m x_i^m - f_i\}^2$$

Nota. Il funzionale E(p) dipende dai coefficienti del polinomio p, cioè da $a_0, ..., a_m$: scriveremo perció $E(a_0, ..., a_m)$.

Unicità della soluzione: I

Come noto, condizione necessaria affinchè si raggiunga il minimo è che

$$\frac{\partial E}{\partial a_j} = 0, \quad j = 0, \dots, m. \tag{(*)}$$

Le condizioni (*) si riscrivono sotto forma di sistema detto delle (equazioni normali)

$$B\mathbf{a} = \mathbf{z}$$
,

con $B = (b_{ij})_{i,j=1}^{m+1}$ matrice simmetrica $(m+1) \times (m+1)$ tale che $b_{ij} = \sum_{i=0}^{n} x_i^{i+j-2}$ e il vettore colonna z tale che $z_i = \sum_{j=0}^{n} x_j^{i-1} f_j$. Nota: gli elementi di B dipendono solo dalla base (polinomiale) $\{1, x, x^2, \ldots\}$ e dai nodi x_i ma non di valori f_i .

Unicità della soluzione: II

Teorema 4 Supponiamo $x_0, ..., x_n$ distinti e $m \le n$. Allora esiste ed è unico il polinomio $p, deg(p) \le m$ in cui E(p) è minimo. I coefficienti $a_0, ..., a_m$ sono determinati risolvendo $B\mathbf{a} = \mathbf{z}$.

- Dal teorema segue che le equazioni normali (*) sono anche una condizione sufficiente per l'esistenza della soluzione.
- Considerata la matrice A di elementi $a_{i,j} = x_i^j, \ i = 0, ..., n, \ j = 0, ..., m \text{ e il vettore } \mathbf{f} = (f_0, ..., f_n)$ allora $B = A^T A$, $\mathbf{z} = A^T \mathbf{f}$ e le equazioni normali
 diventano

$$A^T A \mathbf{a} = A^T \mathbf{f}$$

che è sistema simmetrico e semidefinito positivo.

Soluzione ai minimi quadrati di sistemi sovradeterminati con SVD:

Dato il sistema $Ax = b \operatorname{con} A$, $m \times n$, x, $n \times 1 \operatorname{e} b$, $m \times 1 \operatorname{e} b$ m > n. Tale sistema in generale non ha soluzione unica. Una soluzione approssimata si ha cercando quel x tale sia minima

$$||Ax - b||_p, \ p = 1, 2, \infty.$$

Definizione 5 La soluzione x^* di

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2 \tag{5}$$

si chiama la soluzione ai **minimi quadrati del sistema** Ax = b.

Per la soluzione del problema si fa uso della decomposizione ai

valori singolari di A.

Teorema 5 (Decomposizione SVD). Data $A, n \times m$. Ci sono due matrici ortogonali $U \in V$ di ordini $m \in n$ (quadrate), tali che $F = V^T A U$ è una matrice rettangolare "diagonale" $n \times m$

I numeri μ_i , i = 1, ..., r sono detti valori singolari di A che sono numeri positivi e che si possono anche ordinare $\mu_1 \ge \mu_2 \ge \cdots \mu_r > 0$.

Dim: K. E. Atkinson, An introduction to Numerical Analysis, pp. 478-479.

Soluzione ai minimi quadrati di sistemi sovradeterminati con SVD: III

Teorema 6 Data $A, m \times n, m \ge n$ matrice di reali. Definiamo $z = U^T x, c = V^T b$. Allora la soluzione $x^* = U z^*$ del problema di $\min_{x \in \mathbb{R}^n} ||Ax - b||_2$ è data da

$$z_i^* = \frac{c_i}{\mu_i}, \ i = 1, ..., r$$

con $z_{r+1}^*, ..., z_n^*$ arbitrari. Se r = n, x^* è unica. Quando r < n la soluzione ai minimi quadrati è quella con $z_i^* = 0$, i = r + 1, ..., n. In tal caso il minimo vale

$$|Ax^* - b||_2 = \left(\sum_{j=r+1}^m c_i^2\right)^{1/2}$$

Soluzione ai minimi quadrati di sistemi sovradeterminati con SVD: IV

Definiamo la matrice $n \times m$,

$$F^{+} = \begin{bmatrix} \mu_{1}^{-1} & 0 & \dots & 0 \\ & \ddots & & & \\ \vdots & & \mu_{r}^{-1} & & \\ & & & 0 & & \\ & & & 0 & & \\ & & & \ddots & & \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}$$

e quindi $A^+ = UF^+V^T$. Allora

$$x^* = Uz^* = UF^+c = UF^+V^Tb = A^+b$$
.

La matrice A^+ è detta inversa generalizzata di A e produce la soluzione ai *minimi quadrati* del sistema Ax = b.

SVD e equazioni normali

Nota. Usando la SVD abbiamo anche (rg(A) = n):

$$||A||_2 = \sqrt{\rho(A^T A)} = \mu_1, \ \kappa(A)_2 = ||A|| ||A^+|| = \frac{\mu_1}{\mu_n}.$$

Equazioni normali: $A^T A x = A^T b$. SVD: $A = V F U^T$, sostituiamo nelle equzioni normali e abbiamo

$$UF^TFU^Tx = UF^TV^Tb$$

moltiplico per U^T ricordando che $z = U^T x$, $c = V^T b$. Otteniamo

$$F^T F z = F^T c$$

che stabilisce l'equivalenza delle equazioni normali alla minimizzazione di $||Ax - b||_2$.

Minimi quadrati pesati (MLS)

Il funzionale che si considera è:

$$E_x(p) = \sum_{i=0}^{n} w_i(x) \left[p(x_i) - f_i \right]^2$$

dove $w_i(x)$ sono funzioni peso *positive*.

Come scegliere tali funzioni peso?

- Positive e relativamente grandi quando $|x_i x| < \epsilon, \forall \epsilon > 0.$
- Positive e relativamente piccole quando $|x_i x| > \epsilon, \forall \epsilon > 0.$

Il sistema (*) delle equazioni normali ora è tale che $b_{ij} = \sum_{i=0}^{n} w_i(x) x_i^{i+j-2}$ e il vettore colonna z tale che $z_i = \sum_{j=0}^{n} w_j(x) x_j^{i-1} f_j.$

Il corrispondente Teorema di esistenza e unicità è:

Teorema 7 Esiste un unico polinomio $\hat{p} = \sum_{i=0}^{m} \hat{a}_i x^i$ di grado $\leq m$ che minimizza il funzionale $E_x(p)$.

Nota: I coefficienti $\{\hat{a}_i\}$ dipendono da x. Ció implica chedovremo risolvere un sistema di equazioni normali per ogni punto x. Per tale motivo questo metodo si applica solo per valori piccoli di m.

MLS: scelta delle funzioni peso $w_i(x)$

Consideriamo e^{-x^2} . È decrescente per $x \ge 0$. Dato un generico intervallo [a, b] si può considerare $e^{-\frac{x^2}{4(b-a)}}$. Perció possibili scelte sono:

$$w_i(x) = \exp\left\{-\frac{(x-x_i)^2}{4(b-a)}\right\} ,$$

$$w_i(x) = \exp\left\{-\frac{(x-x_i)^2}{50}\right\} ,$$

$$w_i(x) = \exp\left\{-\frac{(x-x_i)^2}{20}\right\} .$$

MLS: minimi quadrati interpolanti

Si desidera che la risultante curva interpoli i punti dati. Ad esempio, se $w_i(x) = \exp\left\{-\frac{(x-x_i)^2}{20}\right\}$ i pesi saranno "grandi" sui punti *x* vicini a x_i e "piccoli" su punti lontani. Perció il trucco è di prendere pesi tali da essere ∞ in x_i . Ciò suggerisce funzioni peso del tipo:

$$w_i(x) = \frac{1}{(x - x_i)^2}, \ w_i(x) = \frac{1}{(x - x_i)^4}$$

oppure

 $x = x_i$

$$w_i(x) = \frac{e^{-(x-x_i)^2}}{(x-x_i)^2} ,$$

e quest'ultima si comporta come $1/(x - x_i)^2$ in un intorno di

Criteri di scelta delle funzioni peso

- in relazione alle ascisse: maggiore o minore rapporto di "attenuazione";
- interpolazione sí o no;
- natura della singolarità in $x = x_i$;
- supporto locale.

L'ultima richiesta (supporto locale) è soddisfatta prendendo

$$w(x) = \begin{cases} \frac{a}{x^k} \left(1 - \frac{|x|}{d}\right)^2 & |x| \le d \\ 0 & |x| > d \end{cases}$$

in tal caso (-d,d) è il supporto e a è un parametro di scalatura.

Schema di Shepard: I

Il supporto deve essere tale da contenere m + 1 punti e la curva approssimante g(x) ristretta a [x-d,x+d] può essere definita come un polinomio di grado m.

Il caso m = 0 è noto come *schema di SHEPARD*. In tal caso le equazioni normali si riducono ad una sola equazione (da risolversi per ogni x!):

$$a_0(x) = \frac{\sum_{i=0}^n w_i(x) f_i}{\sum_{i=0}^n w_i(x)}$$

Schema di Shepard: II

Se $w(x) = 1/x^k$, k > 0 allora Shepard provò che

- (i) 0 < k < 1 la curva interpolante ha una cuspide nei punti di interpolazione fuori è C^{∞} ,
- (ii) k = 1 la curva ha degli angoli nei punti x_i ;
- (iii) k > 1 essa è globalmente C^1 (fenomeno "flat-spot").

Sia g(x) la risultante curva: allora in (i) e (ii) cioè $0 < k \le 1$, g interpola $g(x_i) = f_i$, ma non è differenziabile.

Se infine $w_i(x) \equiv 1$ (cioè k = 0) allora

$$a_0(x) = \frac{\sum_{i=0}^n f_i}{m+1}$$

Shepard

2.2 Radial Basis Functions: RBF I

Sia $\Omega \subset \mathbb{R}^d$ aperto, limitato e non vuoto.

• $X = \{x_1, ..., x_N\} \subseteq \Omega$, N punti distinti (*data sites*, X è detto *point set*).

•
$$\{f_1, ..., f_N\}$$
: i valori.

Problema d'interpolazione con RBF: fissa una funzione di base $\phi: [0, \infty) \to \mathbb{R}$, l'interpolante $s_{f,X}$ to f at X è un elemento dello spazio

$$\mathcal{S}_{\phi,X} = \operatorname{span}\{\phi(\|\cdot - x\|) : x \in X\} + \mathbb{P}_m^d$$

che soddisfa le condizioni

$$s_{f,X}(x_j) = f_j, \ j = 1, ..., N$$
 (*)

RBF II

Una soluzione del problema consiste nel risolvere il sistema lineare

$$\sum_{j=1}^{N} \alpha_j \phi(\|x_k - x_j\|) + \sum_{l=1}^{Q} \beta_l p_l(x_k) = f_k, \ k = 1, ..., N$$

con le ulteriori condizioni $\sum_{j=1}^{N} \alpha_j p_l(x_j) = 0, \quad l = 1, ..., Q$, dove $p_1, ..., p_Q$ sono una base di $\mathbb{P}_m^d, \quad Q = \binom{m-1+d}{d}$. La matrice $(N + Q) \times (N + Q), \quad \begin{pmatrix} A_{\phi,X} & P_X \\ P_X^T & 0 \end{pmatrix}$ con $A_{\phi,X} = (\phi(||x_k - x_j||))$ e $P_X = (p_l(x_k))$ è invertibile sse valgono (cf. Micchelli Const. Approx. 1986) $p(x_k) = 0, \quad k = 1, ..., N \Rightarrow p \equiv 0, \quad \forall p \in \mathbb{P}_m^d$: ϕ è detta essere CPD.

Ancora su: CPD

Definizione Sia $A_{\Phi,X} := (\Phi(x_i, x_j))_{1 \le i,j \le N}$ invertibile. Φ è detta un kernel CPD di ordine *m* su Ω , se e solo se per ogni scelta di $X = \{x_1, ..., x_N\} \subseteq \Omega$ di *N* punti distinti la forma quadratica

$$\alpha^T A_{\Phi,X} \alpha = \sum_{i,j}^N \alpha_j \alpha_k \Phi(x_j, x_k)$$

è positiva (non negativa) e inoltre il vettore $\alpha = (\alpha_1, ..., \alpha_N) \in \mathbb{R}^N \setminus \{0\} \text{ è tale che}$ $\sum_{j=1}^N \alpha_j p(x_j) = 0, \ \forall p \in \mathbb{P}_m^d.$ In generale $\Phi(x, y) = \phi(||x - y||)$, cosicchè $\Phi : \Omega \times \Omega \to \mathbb{R}_+$.

Il caso PD

Se $A_{\Phi,X}$ è *definita positiva* $\forall X \subseteq \Omega$, allora Φ è chiamato kernel PD, cioè CPD di ordine m=0.

⇒ Si noti che *ogni kernel* CPD ha un associato kernel PD normalizzato .←

RBF in 1D e 2D: I

RBF in 1D e 2D: II

RBF in 1D e 2D : III

RBF in 1D e 2D: IV

Gaussian: $\phi(r) = \exp(-\alpha r^2), \ \alpha > 0$ PD su \mathbb{R}^d per ogni $d \ge 1$. (Nei grafici, $\alpha = 1$.)

RBF in 1D e 2D: V

4) Wendland: $\phi(r) = (1 + 4r)(1 - r)_+^4$, PD, a supporto compatto e C^2 per $d \leq 3$.

Errore d'interpolazione con RBF

$$|f(x) - s_{f,X}(x)| \le P_{\Phi,X}(x) ||f||_{\Phi}$$

dove $P_{\Phi,X}(x)$ è detta POWER FUNCTION.

- $P_{\Phi,X}(x)$ è la norma del *funzionale d'errore puntuale*;
- Esistono stime dell'errore che limitano $P_{\Phi,X}(x)$ in termini della *fill distance* (cf. Wu, Schaback: IMA J. Numer. Anal, 1993):

$$h_{X,\Omega} = \sup_{x \in \Omega} \min_{x_j \in X} ||x - x_j||_2;$$

• Se $X \subseteq Y$ allora $P_{\Phi,X}(x) \ge P_{\Phi,Y}(x), \quad \forall x \in \Omega.$

Esistenza di punti ottimali per interpolazione con RBF

THEOREM 1. (De Marchi, Schaback, Wendland 2003). Let Ω closed and bounded in \mathbb{R}^d , satisfying an interior cone condition and Φ has Fourier transform as before. Then, for every $\alpha > \beta$ there exists a constant $M_\alpha > 0$ with the following property: if $\epsilon > 0$ and $X = \{x_1, \ldots, x_N\} \subseteq \Omega$ are given such that

$$||f - s_{f,X}||_{L_{\infty}(\Omega)} \le \epsilon ||f||_{\Phi}, \quad \text{for all } f \in W_2^{\beta}(\mathbb{R}^d),$$

then the fill distance of X satisfies

$$h_{X,\Omega} \le M_{\alpha} \epsilon^{\frac{1}{\alpha - d/2}}$$

Commento: i punti ottimali di interpolazione sono insiemi tali che non può esistere una grande regione in Ω senza centri

Esempio: punti ottimali per la gaussiana l

(Sx) N=48 punti ottimali quando $\eta = 2 \cdot 0^{-5}$; (Dx) l'errorr come funzione di N, decade come $N^{-7.2}$

Esempio: punti ottimali per la gaussiana II

(Sx) N=13 punti ottimali quando $\eta = 0.1$; (Dx) la funzione potenza dove sono assunti i punti di massimo.