$\begin{array}{c} {\rm Algebra~2} \\ {\rm Seconda~prova~parziale,~4~dicembre~2007} \\ {\rm FILA~B} \end{array}$

N.B. Ogni risposta va opportunamente giustificata.

- 1. (a) Determinare il centralizzante in S_6 della permutazione $\sigma = (1, 2, 3, 5, 6)$;
 - (b) Quante classi di coniugio di elementi di ordine 5 ci sono in A_6 ? Per ognuna di queste se ne dia un rappresentante e se ne calcoli l'ordine.
 - (c) Si verifichi che $C_{S_6}((1,2,4)) \not\leq A_6$ e se ne deduca che i 3-cicli formano un unica classe di coniugio in A_6 .
- 2. Sia $GL_2(\mathbb{Q})$ il gruppo delle matrici invertibili 2×2 a coefficienti nel campo razionale \mathbb{Q} e sia G il sottogruppo

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \mid ad \neq 0, \ a, b, d \in \mathbb{Q} \right\}.$$

(a) Si provi che il sottogruppo

$$N = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \mid b \in \mathbb{Q} \right\}$$

è normale in G.

(b) Si provi che il sottogruppo

$$K = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right) \mid ad \neq 0 \ a, d \in \mathbb{Q} \right\}$$

è isomorfo a $\mathbb{Q}^* \times \mathbb{Q}^*$ dove $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$.

- (c) Si provi che $N \cap K = \{1\}$ e G = NK ma G non è il prodotto diretto di N e K.
- 3. Sia dato $u = \sqrt{3} i\sqrt{2} \in \mathbb{C}$.
 - (a) Dimostrare che u è algebrico su \mathbb{Q} .
 - (b) Dimostrare che $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{3}, i\sqrt{2})$.

- (c) Determinare il polinomio minimo m(x) di u su \mathbb{Q} , motivando la risposta.
- (d) Dire se $\mathbb{Q}(u)$ è campo di spezzamento per m(x) su \mathbb{Q} .
- (e) Scrivere $(1-u)^{-1}$ come combinazione lineare di $1, u, u^2, \ldots$ a coefficienti in \mathbb{Q} .
- 4. Supponiamo G sia un gruppo SEMPLICE di ordine 168. Contare i 7-Sylow di G e gli elementi di ordine 7 di G.
- 5. Si consideri il polinomio $f(x) = x^3 + 5$ a coefficienti nel campo $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$.
 - (a) Si provi che f(x) è irriducibile in $\mathbb{F}_7[x]$.
 - (b) Si costruisca un campo della forma $\mathbb{F}_7(a)$ con a zero di f(x).
 - (c) Si determini $|\mathbb{F}_7(a)|$.
 - (d) Dire se f(x) divide in $\mathbb{F}_7[x]$ il polinomio $x^{7^{15}} x$.