ESERCIZI DI ALGEBRA 2

9 NOVEMBRE

Esercizio 1 Sia $G = \{(a,b) \mid a,b \in \mathbb{R}, a \neq 0\}$ e si defisca su G l'operazione (a,b)(c,d) = (ac,ad+b).

- \bullet Verificare che l'operazione così definita induce una struttura di gruppo su G.
- Si dimostri che $H = \{ (a,0) \mid a \in \mathbb{R}, a \neq 0 \}$ è un sottogruppo di G e che $K = \{ (1,b) \mid b \in \mathbb{R} \}$ è un sottogruppo normale di G.
- Sia N un sottogruppo non banale di H normale in G. Si dimostri che N=K.
- E' vero che G è il prodotto diretto interno di H e K?

Esercizio 2 Nel gruppo moltiplicativo \mathbb{Q}^* dei razionali non nulli si consideri il sottoinsieme

$$D = \{ 2^x 5^y \mid x, y \in \mathbb{Z} \}.$$

Si verifichi che:

- D è un sottogruppo di \mathbb{Q}^* ;
- D è il prodotto diretto interno di $\langle 2 \rangle$ e $\langle 5 \rangle$;
- l'applicazione $\eta: D \to \mathbb{Z}$ definita ponendo $\eta(2^x 5^y) = x y$ è un omomorfismo suriettivo di D sul gruppo additivo degli interi.
- \bullet Si descriva il nucleo di D e si provi che è ciclico.

Esercizio 3 Sia G un gruppo e sia ϕ un'applicazione di G in G. Si considerino il prodotto diretto $\mathcal{G} = G \times G$ e in esso il sottoinsieme $\mathcal{H} = \{ (g, \phi(g)) \mid g \in G \}$. Si mostri che \mathcal{H} è un sottogruppo di \mathcal{G} se e solo se ϕ è un endomorfismo di G. In tal caso di consideri il sottogruppo $\mathcal{L} = \{ (g, 1) \mid g \in G \}$ di \mathcal{G} e si provi che:

- $\mathcal{H} \cap \mathcal{L} = \{ (1,1) \}$ se e solo se ϕ è iniettiva;
- $\mathcal{HL} = \mathcal{G}$ se e solo se ϕ è suriettiva;
- $\mathcal{G} = \mathcal{H} \times \mathcal{L}$ se e solo se G è abeliano e ϕ è un automorfismo.

Esercizio 4 Sia $G = S_4 \times \mathbb{Z}/6\mathbb{Z}$.

- Si scriva esplicitamente chi è il prodotto $(\sigma, a + 6\mathbb{Z})(\tau, b + 6\mathbb{Z})$, chi è l'unità di G e chi è $(\sigma, a + 6\mathbb{Z})^{-1}$.
- $\bullet\,$ Si dica se G è ciclico.
- \bullet Scrivere un elemento di G di ordine 12.
- Quali tra i seguenti elementi di G sono coniugati?

$$a = ((1\ 2\ 3), 2+6\mathbb{Z}), b = ((1\ 3\ 4), 3+6\mathbb{Z}), c = ((1\ 2), 2+6\mathbb{Z}), d = ((1\ 3\ 4), 2+6\mathbb{Z})$$

 $\bullet\,$ Trovare in G il centralizzante di a.

Esercizio 5 Dimostrare che il gruppo diedrale D_n è il prodotto semidiretto di un gruppo ciclico di ordine n e di un gruppo di ordine 2.

Esercizio 6 Sia $G = N \times H$ il prodotto semidiretto di un suo sottogruppo normale N e di un sottogruppo H, siano $\iota\colon N\to G$ l'inclusione e $\pi\colon G\to H$ la proiezione definita da $\pi(nh) = h$. Si dimostri che:

- $Im(\iota) = Ker(\pi)$.
- esiste un omomorfismo $\psi \colon H \to G$ tale che $\pi \psi = id_H$.

Supponiamo adesso invece di avere N, H, G gruppi con $\iota \colon N \to G$ monomorfismo e $\pi\colon G\to H$ epimorfismo, tali che $Im(\iota)=Ker(\pi)$ e che esista un omomorfismo $\psi \colon H \to G$ con $\pi \psi = id_H$. Dimostrare che allora G è il prodotto semidiretto di Ne H.

Esercizio 7 Si dimostrino le seguenti identità tra i commutatori:

- $[x, y]^{-1} = [y, x];$

- $\begin{aligned} \bullet & [xy,y] &= x[y,z]x^{-1}[x,z]; \\ \bullet & [x,yz] &= [x,y]y[x,z]y^{-1}; \\ \bullet & [y^{-1}[[y,x^{-1}],z^{-1}]yz^{-1}[[z,y^{-1}],x^{-1}]zx^{-1}[[x,z^{-1}],y^{-1}]y^{-1} = 1. \end{aligned}$

Esercizio 8 Siano x e y elementi di un gruppo G di ordine rispettivamente me n. Se x e y commutano con [x,y] allora $[x,y]^d=1$, ove d è il massimo comun divisore di m e n.

Esercizio 9

- \bullet Si dimostri che, dato un sottogruppo normale N di un gruppo G,~G è risolubile se e solo se N e G/N sono risolubili.
- Si dimistri che ogni p-gruppo finito è risolubile.

Esercizio 10 Calcolare le serie dei commutatori dei gruppi diedrali D_5 e D_6 .