Algebra e Geometria Prima prova parziale - 28 Ottobre 2011 Tema C

Motivare adeguatamente ogni risposta.

- 1. Sia B una matrice $n \times n$.
 - (a) Si provi che se $B^T = -B$ e n è dispari allora det B = 0
 - (b) (difficile) Si dia un controesempio del punto (a) nel caso n pari (esibire una matrice tale che $B^T = -B$ e det $B \neq 0$).
- 2. Sia x_0 una soluzione del sistema lineare Ax = b. Si dimostri che:
 - (a) se x' è una qualsiasi soluzione del sistema omogeneo associato Ax = 0 allora $x_0 + x'$ è soluzione del sistema Ax = b;
 - (b) ogni soluzione del sistema Ax = b ha la forma $x_0 + x'$ dove x' è una soluzione del sistema omogeneo associato.
- 3. Data la matrice

$$A = \begin{bmatrix} s - 1 & 0 & 1 \\ 1 & 0 & 4 \\ 3s - 3 & 1 & 5 \end{bmatrix}$$

- (a) si calcoli il determinante di A;
- (b) si stabilisca per quali valori del parametro $s \in \mathbb{R}$ la matrice A risulta invertibile;
- (c) si calcoli l'inversa di A per s = 1;
- 4. Sia dato il sistema lineare

$$\begin{cases} 2x_1 + 2x_2 + 2tx_3 &= t+1, \\ -2x_1 - 2x_2 + 2x_3 &= 0, \\ -x_1 + (t+1)x_2 &= 0, \end{cases}$$

- (a) Si dica quante soluzioni ammette il sistema al variare di $t \in \mathbb{R}$.
- (b) Si calcolino tutte le soluzioni del sistema per t = -1.

Svolgere su fogli a parte.

5. Si dimostri per induzione che:

$$\begin{bmatrix} 1 & 1 \\ 0 & 5 \end{bmatrix}^n = \begin{bmatrix} 1 & \sum_{j=0}^{n-1} 5^j \\ 0 & 5^n \end{bmatrix}$$

per ogni $n \ge 1$.

6. Siano date le applicazioni

$$g: \mathbb{R} \to \mathbb{R}$$
 $h: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 - 6x + 5$ $x \mapsto 2x - 1$

- (a) Dire se g è iniettiva, motivando la risposta. Determinare l'immagine $g(\mathbb{R})$.
- (b) Determinare $h \circ g$. Dire se $h \circ g$ è iniettiva, motivando la risposta.
- (c) Sia $\mathbb{R}_{\geq 5} = \{r \in \mathbb{R} \mid r \geq 5\}$. Determinare la controimmagine $g^{-1}(\mathbb{R}_{\geq 5})$ di $\mathbb{R}_{\geq 5}$ tramite g.
- (d) Sia ρ la relazione definita su \mathbb{R} da $x\rho y$ se $h(x) \geq h(y)$. Si dica se ρ è un ordinamento parziale.
- 7. Si determini, **mediante l'algoritmo di Euclide**, il massimo comun divisore tra 810 e 165.