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A.C., Francesca Dalla Volta e Massimiliano Sala

Abelian regular subgroups of the affine group and
radical rings

Publ. Math. Debrecen, volume in memoria di Edit Szabé
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S, € isomorfo al gruppo affine sullo spazio vettoriale
V(2,2) di dimensione 2 sul campo con 2 elementi.

Il gruppo delle traslazioni & il sottogruppo di Klein
V ={1,(12)(34),(13)(24),(14)(23) }.
Come tale € un sottogruppo abeliano regolare di S,.

Ma anche i tre sottogruppi ciclici di ordine 4 sono
abeliani e regolari:

((1234)) = {1, (1234), (13)(24), (1432) } , . ..
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Regolari Un esemplo
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e S, e isomorfo al gruppo affine sullo spazio vettoriale
V(2,2) di dimensione 2 sul campo con 2 elementi.
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Regolari Un esemplo

Caranti

S, e isomorfo al gruppo affine sullo spazio vettoriale
V(2,2) di dimensione 2 sul campo con 2 elementi.

Il gruppo delle traslazioni & il sottogruppo di Klein

V ={1,(12)(34),(13)(24),(14)(23) }.

Come tale é un sottogruppo abeliano regolare di S,.

Ma anche i tre sottogruppi ciclici di ordine 4 sono
abeliani e regolari:

((1234)) = {1,(1234), (13)(24), (1432) }, ...



Cai Heng Li
The finite primitive permutation groups containing an
abelian regular subgroup.
Proc. London Math. Soc. (3) 87 (2003), no. 3, 725-747.

e Risolve il problema di classificare i gruppi di
permutazioni finiti e primitivi che contengono un

sottogruppo abeliano regolare. Uno studio iniziato da
Burnside.

e Li nota piu in generale che nel gruppo affine ci sono

altri sottogruppi abeliani regolari oltre a quello delle
traslazioni.
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[§ Pal Hegedis
Regular subgroups of the affine group.
J. Algebra 225 (2000), no. 2, 740-742.

e Un esempio di un sottogruppo regolare nonabeliano di
un gruppo affine finito che interseca nell’identita il
sottogruppo delle traslazioni N.

¢ Nel caso finito, un sottogruppo abeliano regolare T del

gruppo affine avra sempre intersezione non banale con
N.
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Regolari Heged US

Caranti

[§ Pal Hegedils
Regular subgroups of the affine group.
J. Algebra 225 (2000), no. 2, 740-742.

e Un esempio di un sottogruppo regolare nonabeliano di
un gruppo affine finito che interseca nell'identita il
sottogruppo delle traslazioni N.

¢ Nel caso finito, un sottogruppo abeliano regolare T del
gruppo affine avra sempre intersezione non banale con
N. InfattiZ = NN Z(NT) # 1, e contenuto anche in T,
perché NZ é abeliano, e N é transitivo.
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Sia V uno spazio vettoriale su un campo F. Sia Aff(V) il
gruppo affinesuVv oo
gruppo delle traslazioni

N={v(x):xeV},
ove v(X):z+— z+X. Siaora

T={7(x):xeV}

un altro sottogruppo abeliano regolare, ove 7(x) &
quell’'unico elemento di T che porta 0 in X.
Scriviamo

7(X) = v(X)v(x),

ove y(x) € GL(V), e introduciamo la mappa lineare

o(x) =

v(X) —1 € End(V)
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Regokr Un sottogruppo abeliano regolare qualsiasi

Caranti

Sia V uno spazio vettoriale su un campo F. Sia Aff(V) il
gruppo affine su V, dunque Aff(V) = GL(V )N, ove N &l
gruppo delle traslazioni

rs:tg:grr‘upplabeham N = {V(X) X € V } y

ove v(X):Z — z +X.
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Regokr Un sottogruppo abeliano regolare qualsiasi

Caranti

Sia V uno spazio vettoriale su un campo F. Sia Aff(V) il
gruppo affine su V, dunque Aff(V) = GL(V )N, ove N &l
gruppo delle traslazioni

rs:tg:grr‘upplabeham N = {V(X) X € V },
ove v(x):z — z +x. Siaora
T={r(x):xeV}

un altro sottogruppo abeliano regolare, ove 7(x) &
quell’'unico elemento di T che porta O in x.
Scriviamo

7(x) = y(X)v(x),
ove 7(x) € GL(V), e introduciamo la mappa lineare

5(x) = v(x) — 1 € End(V)



(v(x) =1+4(x).)

T(X)rly) oo
V(X)) (Y )r(x)Vu(y)
Y)Y )v(xv(y))v(y)
Y)Y )v(X +y +Xx0(y)).

Ma T e abeliano, dunque 7(x)7(y) = 7(y)7(x). Dunque
Y)Y (X +y +x5(y)) = Ay v (X)v(y +x +yd(x))

e in particolare

Fatto

xd(y) = ydé(x) perognix,y € V.

o

o}
i
[

DA



(v(x) =1+4(x).)

T()7(y) = 1 )r () (y)v(y)
=) (y)r(x)Vu(y)
= 1) (Y)r(xy(y))v(y)
)y(y)w(

= (X v(X +y +x6(y)).

Ma T e abeliano, dunque 7(x)7(y) = 7(y)7(x). Dunque

— A

Y)Y (Y)v(X +y +X6(Y)) = v(y)v(x)v(y + X +Yd(x))

e in particolare
Fatto

xd(y) = ydé(x) perognix,y € V.
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(v(x) =1+4(x).)

T()7(y) = 1 )r () (y)v(y)
= 1)y )r(x)Vu(y)
=70y v (x(y))w(y)
= 70ONY)Iv(X +y +X4(y)).
Ma T e abeliano, dunque 7(x)7(y) = 7(y)7(x). Dunque

YN (Y)v(X +y +x5(y)) = (Y)y(X)v(y + X +yd(x))
e in particolare
Fatto

Xdo(y) = yo(x) perognix,y € V.
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(v(x) =1+4(x).)

TOOT(Y) = () () (y)v(y)

= (x)(y)v(x)Wu(y)
= () (y)v(xy(y))v(y)
=YX (Y)v(X +y +Xx5(y))-

Ma T e abeliano, dunque 7(x)7(y) =

r(y)7(x). Dunque
Y)Y (X +y +x5(y)) = 1Y)y (X)v(y +Xx +yd(x))
e in particolare

Fatto

Xdo(y) = yo(x) perognix,y € V.
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= (x)(y)v(x)Wu(y)
= () (y)v(xy(y))v(y)

=) (y)v(x +y +x0(y)).
Ma T e abeliano, dunque 7(x)7(y) =

r(y)7(x). Dunque
Y)Y (X +y +x5(y)) = 1Y)y (X)v(y +Xx +yd(x))
e in particolare

Fatto
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(v(x) =1+4(x).)

TOOT(Y) = () () (y)v(y)

= 1)y (x)Vu(y)

=70 () )r(x v (y))v(y)

=10 (Y)v(x +y +x5(y))-

Ma T é abeliano, dunque 7(x)7(y) = 7(y)r(x).

()v(Y)v(x +y +x5(y)) = v(y)y(X)v(y +Xx +yd(x))
e in particolare
Fatto

Xdo(y) = yo(x) perognix,y € V.
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Regolag T e abeliano

I (y)v(y )
J(x) W (y)
Jv(xv(y))v(y)
(X +y + X8(y)).

T)7(y) = v (v (x)y(y)v
O (
O (
O (

X)y

y
y
y

I
=2 2 2

Ma T e abeliano, dunque 7(x)7(y) = 7(y)7(x). Dunque

YV (Y)v(X +y +X6(Y)) = v(y)v(X)v(y + X +Yi(x))
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T e abeliano
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X

I (y)v(y )
J(x) W (y)
Jv(xv(y))v(y)
(X +y + X8(y)).

v(x)y(y)v
X )y

()w(
Oy
() (y
) (y
Ma T e abeliano, dunque 7(x)7(y) = 7(y)7(x). Dunque

YN (Y)v(X +y +x5(y)) = (Y)y(X)r(y + X +yd(x))
e in particolare

Fatto
xo(y) =yd(x) perogni x,y € V.



Da

xdo(y) = yd(x) per ogni x,y € V.
otteniamo
Fatto

d:V — End(V) & F-lineare.
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Da

xdo(y) = yd(x) per ogni x,y € V.
otteniamo
d:V — End(V) é F-lineare.
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Datoche T éungruppo

(X (y)v(x +y +x6(y))

Dunque, ricordando v(x) = 1 + §(x),

YX)(Y) =14 6(x) +6(y) + 6(x)d(y)

=y(X +y +x5(y))
=14+0(x+y+xi(y))
=14 6(x)+d(y) + d(xdé(y)),
dato che ¢ e lineare. Dunque
Fatto

d(xd(y)) = d(x)d(y) per ogni x,y € V.
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Dato che T & un gruppo, abbiamo
T(X)7(y) = 1O Y)Iv(x +y +x6(y))

=7(X+Yy +x5(y)) =v(X +y +x(y))v(x +y + xdé(y))
Dunque, ricordando v(x) = 1 4 §(x),

YY) =1+ 6(x) +6(y) + o(x)a(y)

=y(x+y +x6(y))
=14+0(x+y+xi(y))
=14 6(x)+d(y) + d(xdé(y)),
dato che 4 e lineare. Dunque
Fatto

d(xd(y)) = d(x)d(y) per ogni x,y € V.
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Dato che T & un gruppo, abbiamo

T(X)T(y) = (X)) (Y)v(x +y +Xxd(y)) =

=7(X+y+xd(y)
Dunque, ricordando v(x) = 1 + §(x),

Y(X)Y(y) =1+ §(X) + d(y) + 6(x)d(y)

=y(x +y +x4(y))
=14+0(x+y+xi(y))
=1+ 8(x)+46(y) + d(xd(y)),
dato che ¢ e lineare. Dunque
Fatto

d(xd(y)) = d(x)d(y) per ogni x,y € V.
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Dato che T & un gruppo, abbiamo

T(X)T(y) = (X)) (Y)v(x +y +Xxd(y)) =

=T(X+Y +X5(y)) = v(Xx +y +x(y))v(x +y +x5(y))
Dunque, ricordando v(x) = 1 + §(x),

Y(X)Y(y) =1+ §(X) + d(y) + 6(x)d(y)

=y(x +y +x4(y))
=14+0(X+Yy+x3(y))
=1+4+5(X)+d(y) + o(xd(y)),
dato che ¢ e lineare. Dunque
Fatto

d(xd(y)) = d(x)d(y) per ogni x,y € V.
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Dato che T & un gruppo, abbiamo

T(X)T(y) = (X)) (Y)v(x +y +Xxd(y)) =

=7(X+Y +x3(y)) = v(X +y +Xx5(y))v(x +y +x(y))
Dunque, ricordando y(x) = 1 + 4(x),

Y(X)(y) =1+ §(X) + d(y) + 6(x)d(y)

=y(x +y +x4(y))
=14+5X+y+xi(y))
=1+ (5(X) + (i(y) —+ (S(x(ﬁ(y)).
dato che ¢ e lineare. Dunque
Fatto

5(xd(y)) = 6

(x)é(y) per ognix,y € V.

«O>r «Fr «

DA



Dato che T & un gruppo, abbiamo

T(X)T(y) = (X)) (Y)v(x +y +Xxd(y)) =

=7(X+Y +x3(y)) = v(X +y +Xx5(y))v(x +y +x(y))
Dunque, ricordando y(x) = 1 + 4(x),

YOOY(Y) Lo Faly ) obaoly)

=y(x +y +x4(y))
=14+5X+y+xi(y))
=1+ (5(X) + (i(y) —+ (S(x(ﬁ(y)).
dato che 4 e lineare. Dunque
Fatto

5(xd(y)) = 6

(x)é(y) per ognix,y € V.

«O>r «Fr «

DA



Dato che T & un gruppo, abbiamo
T(X)7(y) = 1 (y)v(x +y +x4(y)) =

=7(X+Y +x3(y)) = v(X +y +Xx5(y))v(x +y +x(y))
Dunque, ricordando y(x) = 1 + 4(x),

YY) =1 +6(x) +a(y) +3(x)d(y)
=y(X +y +x4(y))
=1+dx+y+x6i(y))

=1+ (5(X) + (i(y) + (5(X(§(y))
dato che ¢ e lineare. Dunque

y(X)d(y) per ogni X,y € V.
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Dato che T & un gruppo, abbiamo
T(X)7(y) = 1 (y)v(x +y +x4(y)) =

=7(X+Y +x3(y)) = v(X +y +Xx5(y))v(x +y +x(y))
Dunque, ricordando y(x) = 1 + 4(x),

7()(y) =1 +3(x) +d(y) +(x)a(y)
=(x+y +x4(y))
=14+0(x+y+xi(y))

=1+ (5(X) + (i(y) + (5(X(§(y))
dato che 4 e lineare. Dunque

y(X)d(y) per ogni X,y € V.

[m]
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Regolari T € un gruppo

Caranti

Dato che T & un gruppo, abbiamo

T(X)T(y) Y)Y )v(X +y +x0(y)) =
=7(X+y +x0(y)) = v(X +y +X5(y))v(X +y +x3(y)).

Dunque, ricordando y(x) = 1 + 4(x),

Y(X)v(Y) =1 +6(x) 4+ o(y) + d(x)d(y)
=(x +y +x4(y))
=14+06(X+Yy+x3i(y))



Regolari T € un gruppo

Caranti

Dato che T & un gruppo, abbiamo

T(X)T(y) YN Y)r(x +y +x3(y)) =
s = T(XTY HXO(Y)) = (X Ay +X3(y))p(x +y +Xx3(y))-

Dunque, ricordando y(x) = 1 + 4(x),

Y(X)v(y) =1 +6(x) +5(y) + 0(x)d(y)
= (X +y +x4(y))
=14+06(X+Yy+x3i(y))
=1+46(x) +46(y) +6(xé(y)),



Regolari T € un gruppo

Caranti

Dato che T & un gruppo, abbiamo

T(X)T(y) YN Y)r(x +y +x3(y)) =
s = T(XTY HXO(Y)) = (X Ay +X3(y))p(x +y +Xx3(y))-

Dunque, ricordando y(x) = 1 + 4(x),
YY) =1 +6(x) +0(y) + (x)a(y)
=X +y +x4(y))

=1+6(X+y +x3(y))
=14 6(x)+6(y) + 6(xd(y)),

dato che ¢ € lineare.



Regolari T € un gruppo

Caranti

Dato che T & un gruppo, abbiamo

T(X)T(y) Y)Y Ir(x +y +xd(y)) =
s = T(XTY HXO(Y)) = (X Ay +X3(y))p(x +y +Xx3(y))-

Dunque, ricordando y(x) = 1 + 4(x),
YY) =1 +6(x) +0(y) + (x)a(y)
=X +y +x4(y))

=1+6(X+y +x3(y))
=14 6(x)+6(y) + 6(xd(y)),

dato che ¢ € lineare. Dunque

Fatto
d(xd(y)) = d(x)o(y) per ognix,y € V.



e Definiamo su V un’operazione

Xy =Xxo(y).

e E’ commutativa, dato che xd(y) = yd(x)

e E’lineare in entrambe le variabili.
e E’ associativa

e Dunque (V,+,-) & una F-algebra.
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e Definiamo su V un’operazione
Xy =Xo(y).

e E’ commutativa, dato che x4d(y) = yd(x)
e E’ associativa

e E’lineare in entrambe le variabili

e Dunque (V,+,-) & una F-algebra.
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e Definiamo su V un’operazione

Xy =Xo(y).

e E’ commutativa, dato che xd(y) = yd(x).

e E’lineare in entrambe le variabili.
e E’ associativa

e Dunque (V,+,-) & una F-algebra.
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e Definiamo su V un’operazione

Xy =Xo(y).

e E’ commutativa, dato che xd(y) = yd(x).
e E’lineare in entrambe le variabili.

e E’associativa

(xy)z = (x3(y))z = x5(y)3(2) =

= Xx0(yo(z)) = xd(yz) = x(yz).
e Dunque (V,+,-) & una F-algebra.
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Definiamo su V un’operazione
Xy =x4(y).
E’ commutativa, dato che xd(y) = yd(x).

E’ lineare in entrambe le variabili.
E’ associativa, perché da 6(xd(y)) = 6(x)d(y) si ottiene

(xy)z = (xd(y))z = x4(y)é(z)
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Definiamo su V un’operazione

Xy =x4(y).

E’ commutativa, dato che xd(y) = yd(x).
E’ lineare in entrambe le variabili.
E’ associativa, perché da 6(xd(y)) = 6(x)d(y) si ottiene

(xy)z = (xd(y))z = xd(y)d(z) =
=x4(yd(z)) = xd(yz) = x(yz).

Dunque (V,+, ) € una F-algebra.



Definiamo su V l'operazione pallino

Xoy =X+Y+Xy.

T .

Abbiamo visto che 7(x)7(y) = 7(X oy).
Dunque (V, o) € un gruppo, isomorfo a T sotto
(V,0) = T < Aff(V).

Abbiamo appena mostrato che l'anello (V,+,-) &
radicale.
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Definiamo su V l'operazione pallino

Xoy =X+Y +Xy.

Abbiamo visto che 7(x)7(y) = 7(x o y).

Dunque (V, o) & un gruppo, isomorfo a T sotto
T:(V,0) = T <Aff(V).

Abbiamo appena mostrato che I'anello (V,+,) &
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e Un anello é radicale se coincide con il proprio radicale
di Jacobson.

¢ In modo equivalente, un anello € radicale se € un
gruppo rispetto all’operazione

e ['elemento neutro e 0.
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e Un anello é radicale se coincide con il proprio radicale
di Jacobson.

¢ In modo equivalente, un anello é radicale se & un
gruppo rispetto all'operazione

Xoy =X+Y +Xy.

Lelemento neutro e 0.
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e Un anello é radicale se coincide con il proprio radicale
di Jacobson.

¢ In modo equivalente, un anello é radicale se & un
gruppo rispetto all'operazione

Xoy =X+Y+Xxy.

Lelemento neutro e 0.
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n collaborazione con

Sottogruppi abeliani

. - e Un anello e radicale se coincide con il proprio radicale
ottogruppi abeliani .
e di Jacobson.

¢ In modo equivalente, un anello e radicale se & un
gruppo rispetto all'operazione

Xoy =X+Yy+Xy.

e 'elemento neutro € 0.
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Sia F un campo, e (V, +) uno spazio vettoriale su F.
C’e una corrispondenza biunivoca fra

@ sottogruppi abeliani regolari di Aff(V), e

® strutture di F-algebra associative e commutative

AFf(V).

Classi di isomorfismo di F-algebre corrispondono a classi di
coniugio sotto GL(V) dei sottogruppi abeliani regolari di

(V,+,-) che si possono sovrapporre a (V, +), in modo
che I'anello risultante sia radicale.
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Regola Corrispondenza
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Fissata una struttura di F-algebra (V,+,-) =

U=ker(d)={xeV:x.-y=0forally eV }.
E’ facile scegliere la struttura di algebra su un fissato (V, +)

(di dimensione finita) in modo che U abbia dimensione
arbitraria.

Inoltre
NNT ={v(x):7(x) =v(x)}
={v(x):6(x)=0}
={v(x):xeU}.

Dunque ritrovo

Lemma

NNT =Cn(T) = Cr(N).
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Fissata una struttura di F-algebra (V, +, -), definisco
U=ker(d)={xeV:x-y=0forally eV }.

E’ facile scegliere la struttura di algebra su un fissato (V, +)

(di dimensione finita) in modo che U abbia dimensione
arbitraria.

Inoltre

Dungue ritrovo

Lemma

NNT =Cn(T) = Cr(N).
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Regolari

Caranti

Annullatori
Fissata una struttura di F-algebra (V, +, -), definisco
U=ker(d)={xeV:x-y=0forally eV }.

E’ facile scegliere la struttura di algebra su un fissato (V, +)
(di dimensione finita) in modo che U abbia dimensione
arbitraria.
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Quando V, e dunque Aff(V), sono finiti -~

U # 0, dato che (V, +, -) e nilpotente, dunque
NNT ={v(x):x €U} enonbanale.

In altre parole, un sottogruppo abeliano regolare del

gruppo affine ha intersezione non banale con il gruppo
delle traslazioni.

Ricordiamo che c’e un semplice argomento alternativo
elementare di p-gruppi.

Inoltre quando V é finito segue da quanto visto prima
che N N'T puo avere ordine arbitrario # 1.
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e Sia (V,+, ) lideale massimale tF[[t]] dell’anello delle
serie di potenze formali F [[t]].

E’ un anello radicale.

Siccome F[[t]] € un dominio, abbiamo
U={xeV:xy=0perogniy eV }={0}.
Dunque il sottogruppo abeliano regolare T interseca il
gruppo N delle traslazioni in {1 }.

Inoltre T € privo di torsione.
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Dimensione infinita

Esempio

e Sia (V,+, ) lideale massimale tF [[t]] dell'anello delle
serie di potenze formali F[[t]].

e E’un anello radicale.
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Dimensione infinita

Esempio

Sia (V, +, ) I'ideale massimale tF [[t]] dell'anello delle
serie di potenze formali F[[t]].

E’ un anello radicale.

Siccome F[[t]] € un dominio, abbiamo
U={xeV:xy=0perogniy eV }={0}.
Dunque il sottogruppo abeliano regolare T interseca il
gruppo N delle traslazioniin {1 }.

Inoltre T € privo di torsione. Se F ha caratteristica
positiva p, il gruppo N delle traslazioni ha esponente p.
Dunque Aff(V) ha due sottogruppi abeliani regolari
molto diversi, un po’ come S, con cui abbiamo
cominciato.
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