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Sia G un gruppo finito.

Per H sottogruppo di G indichiamo con

[H]G := {Hg|g ∈ G} .

Dati H e K sottogruppi di G, definiamo

[H]G ≤ [K]G :⇐⇒ ∃g ∈ G : H ≤ Kg.

Poniamo C(G) := {[H]G|H ≤ G} .

(C(G),≤) : il Frame di G.
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Problema.

Il Frame è in grado di caratterizzare la

risolubilità?



Denotiamo con

M(G) :={intersezioni di elementi

massimali di C(G)}.

Teorema 1.

Se G è risolubile, M(G) è un reticolo in

cui elementi massimali si intersecano mas-

simalmente, ovvero:

∀ [M1]G, [M2]G elementi massimali diM(G),

[M1]G ∧ [M2]G è coperto da entrambi.



Inoltre

Teorema 2.

Se G è risolubile, M(G) è un reticolo gra-

duato di dim. ≤ s− 2

(s = la lunghezza di una serie principale).

Inoltre M(G) ammette un ordinamento ri-

corsivo di coatomi.

Corollario

Se G è risolubile, il complesso d’ordine

∆(C(G)) è contraibile o sferico di dimen-

sione s− 2.



Congettura.

G è risolubile se e solo se M(G) è un reti-

colo in cui elementi massimali si interse-

cano massimalmente.



La questione si riduce a

classificare i gruppi semplici S per cui se

S ≤ G ≤ Aut(S) esistono due classi

[M1]S, [M2]S:

1) entrambe massimali rispetto all’essere

G−invarianti e per cui

2) esista x ∈ S t.c.

M1 ∩ (M2)
x 6≤ (M1 ∩M2)

y, ∀y ∈ S.
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