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Let G be a finitely generated profinite group.

Some relevant sequences of integer numbers
can be defined:

(@) = the number of (open) subgroups
an " of index n in G.

the number of (open) maximal

mnlG) = g bgroups of index n in G.

where pq is the

L MOoDbius function
n(G) = > uc(H)  tine jattice
|G:H|=n

of open subgroups

pa(G) =1, ug(H) = - X g>grg(K) if H<G.
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Why should one be interested in the study of
the sequence {bn(G)},en?

A formal Dirichlet series Pg(s) can be defined
by considering the generating function associ-
ated with this sequence:

Pt = 3 O

neN

If G is prosolvable (and hopefully in other rel-
evant cases), then the series Pg(s) is conver-
gent in some right half plane of C and, for
t € N large enough, Pg(t) gives the probability
that ¢t randomly chosen elements in G generate
G. Mann proposed the name probabilistic zeta
function for the multiplicative inverse of Pg(s).

P = = (1) = e




Many important results have been obtained
about the asymptotic behavior of the sequences
{an(G)}eny and {mn(G)},ens in particular the
connection between the growth type of these
sequences and the structure of G has been
widely studied.

It is completely unexplored the asymptotic be-
havior of the sequence {b,(G)},en-

For example it would be interesting to char-
acterize the groups G for which the growth of
the sequence {b,(G)},cn iS polynomial.

Interesting but hard question!

Let us start with something (hopefully) easier.



Question. What can we say about G, if
bn(G) =0 for almost all n e N ?

Before making a conjecture, let us answer to
the same question for the other two sequences.

e an,(G) = 0 for almost all n = G is finite.

e mnp(G) = 0 for almost all n = % is finite.

If uo(H) # 0, then H is an intersection of max-
imal subgroups of GG and FratG < H. Hence

bn(G) = > upg(H) =by(G/FratG) Vn e N.
|G:H|=n

One can expect that b,(G) = 0 for almost all
n € N would imply that there are only finitely
many subgroups of G that are intersection of
maximal subgroups. This would lead to con-
jecture:

Conjecture. If b,(G) = 0 for almost all n,
then GG/ FratG is finite.




Technical results that support our conjecture

A finitely generated profinite group G has a
family {Gn},,en Of Open normal subgroups such
that

e G1 =G,
d ﬂneN Gnp =1,
o G’I’L—'—l < Gn,
o Gpn/Gp4q is a chief factor of G.
To any chief factor G /G, 41 a Dirichlet poly-

nomial (i.e. a finite Dirichlet series) P,(s) is
associated:

b
reN T Gpi1<H<G
|G:H|=r




The series Ps(s) can be written as a formal
infinite product:

Pg(s) = ][] Pu(s).

neN

1. Pn(s) =1« Gn/Gn+1 < Frat(G/Gn+1).

2. G/FratdG is finite & Gn /G4 is a Frattini
factor for all but finitely many n € N.

3. bp(G) = 0 for almost all n € N < Pg(s) is
finite (i.e. a Dirichlet polynomial).

So, a tempting (but wrong) argument is: if
Pq(s) is a finite series, then P,(s) = 1 for all
but finitely many n € N and G/ Fratd is finite.

We must be more careful: we cannot exclude
that a formal product of infinitely many non
trivial Dirichlet polynomials could be finite.
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A related problem with a surprising solution

Assume that G is a finitely generated prosolv-
able group, and let p be a fixed prime number.

o If a,r(G) = O for almost all » € N, then G
contains an open normal subgroup K which is
a pro-p’-group.

o If m,(G) = O for almost all » € N, then G
contains an open normal subgroup K which
is pro-p-nilpotent (equivalently, the set €2, of
n € N such that Gn/G,41 is non-Frattini and
has p-power order, is finite).

What about the prosolvable groups G with
the property that b,(G) = 0 for almost all
r € N? Do they have the same behaviour as
the prosolvable groups in which m,(G) = 0
for almost all r € N7




In the prosolvable case, for any n € N, the finite
series P,(s) associated with the chief factor
Gn/Gp41 is:

Cn
Gn/Gpy1l®

where ¢, is the number of complements of
Gn/Gn_|_1 in G/Gn—l-l

Pn(s) =1 —

Pn(s) has an Euler factorization over the set
of prime numbers:

Pa(s) = H PG,p(S)
p

where, for any prime p,

Pgp(s) = prr(G) = (1 B ) with

po p’l“S nEQp p’l“nS

2p ={n||Gn/Gpy1| =p™ and cp # 0}




Question (Mann) Suppose that the p-factor
Pg ,(s) is a Dirichlet polynomial (equivalently
b,r(G) = 0 for almost all » € N) or, more in
general, that Pg ,(s) is a rational function of
1/p% (i.e. Pg(s) = A(s)/B(s) with A(s) and
B(s) Dirichlet polynomials). Does this imply
that G contains a normal open pro-p-nilpotent
subgroup?

The answer to the question is negative!

If ¢, is the number of irreducible polynomials
in F>[z] of degree n, then

1 -2z =][(1—a™)
n

So for example
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Let H be the free pro-abelian group of rank 2
and fix p an odd prime.

For any n € N, there is an irreducible action of
Zpn_1 Over (Zp)", H contains t, different open
normal subgroups K with H/K = Zn_1; SO
we can construct ¢, irreducible non isomorphic
H-modules of order p": My, 1,..., Mp4,.

Consider |G 1= (Hn,i Mn,i) X H.

(G is a 2-generated prosolvable group, with in-
finitely many non-Frattini chief factors of p-
power order: €2, is infinite and G does not
contain any open normal pro-p-nilpotent sub-
group. However

_(, 1\(,_ P o\
Fapls) = (1 ps) (1 pS) ln_[ (1 (p”)3>
p° p® p°

In particular byr(G) =0 if r > 4.
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By repeating the same game with all the prime
numbers we can prove:

Theorem. There exists a 2-generated pro-
solvable group G such that for each prime p

1. Pgp(s) is a Dirichlet polynomial;

2. G has infinitely many non-Frattini chief fac-
tors that are p-groups.

This does not answer our first question: does
Pa(s) finite imply G/FratG finite? Indeed,
the group G we constructed has the property
that Pg ,(s) is finite for each prime p; how-
ever we have also that Pg ,(s) # 1, so0 Pg(s) =
[I, Pap(s) turns out to be infinite.
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Our conjecture holds for the prosolvable groups

Theorem (E. Detomi, AL) Let G be a finitely
generated prosolvable group. Then the follow-
ing are equivalent:

1. bp(G) = 0 for almost all n € N.
2. Pn(s) is a Dirichlet polynomial.
3. Pn(s) is a rational Dirichlet series.

4. G/ FratG is a finite group.
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The proof relies on the following facts:

A corollary of Skolem-Mahler-Lech Theorem

Let {Vm}lneN, {"n}neny b€ two sequences of
positive integers and let 1 # u € N. If the
infinite product

I (1)
neN H

is finite (or more in general rational), then for
each prime q there exists n € N such that q
divides ry.

Some representation theory

Let n be the degree of an irreducible repre-
sentation of a finite solvable group X over a
finite field . If q is a prime divisor of n, then
g < max{n(X)}.
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Sketch of the proof

Let G be a finitely generated prosolvable group
and let 7(G) be the set of prime divisors of the
indices of the open subgroups of G.

Pq(s) = II, Pgp(s) rational implies:
1. n(G) is finite;
2. Pgp(s) is rational for all p € w(G).

Fix p e m(G) and let

Pa ()= ]I (1_;;3)'

Assume, by contradiction, |2, = oo.

For any prime g there exists n € £2, such that
g divides rp = dimp Gn/Gpy1.

This implies ¢ < max{n(G)}.
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What about the general case?

Given an arbitrary finitely generated profinite
group G, we can again express the Dirichlet
series Pn(s) as an infinite formal product

Pa(s) = HPn(S)

where P, (s) is the Dirichlet polynomial associ-
ated with the chief factor Grn/G) 4 1.

We would like to prove that if Pg(s) is rational,
then P,(s) = 1 for almost all n € N; this would
imply that G/ FratG is finite.

In the prosolvable case we used the Euler fac-
torization Pg(s) = [, Pgp(s), however Pg(s)
admits an Euler factorization over the set of
prime numbers if and only if G is prosolvable.
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Anyway, we can get a kind of Euler factoriza-
tion over the finite simple groups by collecting
together, for any simple group S, all the P,(s)
such that the composition factors of G /G 41
are isomorphic to S.

Pg(s) =[] Es(s), with Eg(s) = ][ Pn(s)
S Gn/Gpy1=8™

In the prosolvable case Pg ,(s) = EZp(s).
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When we try to work with this generalized
Euler factorization, we meet several problems:

A In the prosolvable case it is easy to prove
that if Pg(s) is rational, then n(G) is finite and
Pgp(s) = 1 for all but finitely many primes.
In the general case «(G) is finite if and only
if FEg(s) = 1 for almost all simple groups S;
however none of these two equivalent facts can
be easily deduced from the rationality of Pg(s).

Let 7(G) be the set of primes p with the prop-
erty that there exists n € N divisible by p such
that b,(G) #= 0.

If Pg(s) is rational, then 7(G) is finite; the
problem is that #(G) could be smaller than
7(G). Recently it was proved:

Theorem (E. Damian, AL) If G is finite, then
m(G) = 7(G).

Open problem: can this result be generalized
to finitely generated profinite groups?
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& Even if we know that Pg(s) = [lg Eg(s)
IS the product of finitely many Euler factors
Eg¢(s), we cannot easily deduce, as in the pro-
solvable case, that Pg(s) rational implies Eg(s)
rational for each §S.

[ Let QS = {n e N | Gn/Gn+1 = Sr”}. Even
if we know that Eg(s) = [l enq Pn(s) is ratio-
nal, we cannot apply the same trick (the corol-
lary of Skolem-Mahler-Lech Theorem) we used
in the solvable case, because the series P,(s)
are now more complicated and involve many
non-trivial terms.
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The problem is still open:; the best result we
were able to prove is:

Theorem (E. Detomi, AL) Let G be a fi-
nitely generated profinite group in which al-
most every composition factor is cyclic or iso-
morphic to an alternating group. If Pg(s) is
rational, then G/ FratG is a finite group.

Remark. The methods employed in the proof
could probably be adapted to prove that the
same conclusion holds if we assume that al-
most every composition factor is cyclic or is
a group of Lie type over a fixed characteristic
p. Roughly speaking, we are in big trouble if
infinitely many composition factors belong to
uncomparable families of simple groups!
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Sketch of the proof

Notation. Forany n € N, let G /G, 41 = Sn'™.
I . ={ieN|S5; = Zni or S; = Alt(n;) d n; € N}.

Pq(s) rational

U
P(s) = ][ Pi(s) = > _ ¢ /r® rational

1e1 reN

First step. The set n(G) is finite.

Since P(s) is rational, there exists a prime u
such ¢, = 0 when n is divisible by a prime g > .

We prove that n; < u for any 1 € I

To deal with the case S; = Alt(n;), we need
to understand how the properties of maximal
subgroups of Alt(n;) reflect on the distribution
of the coefficients of the polynomial P;(s).

21



Second step. Let C2g be the set of n such
that Grn/G, 41 is non-Frattini and isomorphic
to a direct product of copies of S. The set C2g
is finite for any finite simple group S.
Assume 7 = {5 | |Qg| = oo} # 0.
Let J={ie€l|S;, €T}, P](S) = > bj’l/ls.
There exists u € N such that:
b. ?“j
e |] (1 + %) is rational
jeJ H

° bj e < 0 for infinitely many 3 € J

By Skolem-Mahler-Lech Theorem:

for each prime u there exists 5 € J such that u
divides the composition length r; of Gj/Gj+1.

Hence for each prime u there exists r such that
u divides r and G has either a transitive per-
mutation representation of degree r or a linear
irreducible representation of degree r over a
finite field; this contradicts n(G) finite.
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Skolem-Mahler-Lech Theorem

If {ag,aq,...} iS @ recurrence sequence, then the
set of all £ such that a; = 0 is the union of
a finite (possibly empty) set and a finite num-
ber (possibly zero) of full arithmetical progres-
sions, where a full arithmetic progression is a
set of the form {r,r+d,r+2d,...} with r € [0,d).

Corollary
Let cq1,...,¢cr, A 1,..., A\ De algebraic numbers
with the property that
Ai/Aj is a root of unit = \; = A;.
Then the exponential polynomial

Y(m) = ci A\ + -+ oA

vanishes for infinitely many integers m only if
w(m) is identically zero.
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