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Let G be a finitely generated profinite group.

Some relevant sequences of integer numbers
can be defined:

an(G) :=
the number of (open) subgroups
of index n in G.

mn(G) :=
the number of (open) maximal
subgroups of index n in G.

bn(G) :=
∑

|G:H|=n

µG(H)

where µG is the
Möbius function
of the lattice
of open subgroups

µG(G) = 1, µG(H) = −∑
K>H µG(K) if H < G.
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Why should one be interested in the study of
the sequence {bn(G)}n∈N?

A formal Dirichlet series PG(s) can be defined
by considering the generating function associ-
ated with this sequence:

PG(s) :=
∑

n∈N

bn(G)

ns

If G is prosolvable (and hopefully in other rel-
evant cases), then the series PG(s) is conver-
gent in some right half plane of C and, for
t ∈ N large enough, PG(t) gives the probability
that t randomly chosen elements in G generate
G. Mann proposed the name probabilistic zeta
function for the multiplicative inverse of PG(s).

PẐ(s) =
∑
n

µ(n)

ns
=

( ∑
n

1

ns

)−1
= ζ(s)−1
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Many important results have been obtained

about the asymptotic behavior of the sequences

{an(G)}n∈N and {mn(G)}n∈N; in particular the

connection between the growth type of these

sequences and the structure of G has been

widely studied.

It is completely unexplored the asymptotic be-

havior of the sequence {bn(G)}n∈N.

For example it would be interesting to char-

acterize the groups G for which the growth of

the sequence {bn(G)}n∈N is polynomial.

Interesting but hard question!

Let us start with something (hopefully) easier.
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Question. What can we say about G, if

bn(G) = 0 for almost all n ∈ N ?

Before making a conjecture, let us answer to
the same question for the other two sequences.

• an(G) = 0 for almost all n ⇒ G is finite.

• mn(G) = 0 for almost all n ⇒ G
FratG is finite.

If µG(H) 6= 0, then H is an intersection of max-
imal subgroups of G and FratG ≤ H. Hence

bn(G) =
∑

|G:H|=n

µG(H) = bn(G/FratG) ∀n ∈ N.

One can expect that bn(G) = 0 for almost all
n ∈ N would imply that there are only finitely
many subgroups of G that are intersection of
maximal subgroups. This would lead to con-
jecture:

Conjecture. If bn(G) = 0 for almost all n,

then G/FratG is finite.
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Technical results that support our conjecture

A finitely generated profinite group G has a

family {Gn}n∈N of open normal subgroups such

that

• G1 = G,

• ⋂
n∈NGn = 1,

• Gn+1 < Gn,

• Gn/Gn+1 is a chief factor of G.

To any chief factor Gn/Gn+1 a Dirichlet poly-

nomial (i.e. a finite Dirichlet series) Pn(s) is

associated:

Pn(s) =
∑

r∈N

bn,r

rs
with bn,r =

∑

Gn+1≤H≤G
HGn=G
|G:H|=r

µG(H)
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The series PG(s) can be written as a formal
infinite product:

PG(s) =
∏

n∈N
Pn(s).

1. Pn(s) = 1 ⇔ Gn/Gn+1 ≤ Frat(G/Gn+1).

2. G/FratG is finite ⇔ Gn/Gn+1 is a Frattini
factor for all but finitely many n ∈ N.

3. bn(G) = 0 for almost all n ∈ N ⇔ PG(s) is
finite (i.e. a Dirichlet polynomial).

So, a tempting (but wrong) argument is: if
PG(s) is a finite series, then Pn(s) = 1 for all
but finitely many n ∈ N and G/FratG is finite.

We must be more careful: we cannot exclude
that a formal product of infinitely many non
trivial Dirichlet polynomials could be finite.
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A related problem with a surprising solution

Assume that G is a finitely generated prosolv-
able group, and let p be a fixed prime number.

• If apr(G) = 0 for almost all r ∈ N, then G

contains an open normal subgroup K which is
a pro-p′-group.

• If mpr(G) = 0 for almost all r ∈ N, then G

contains an open normal subgroup K which
is pro-p-nilpotent (equivalently, the set Ωp of
n ∈ N such that Gn/Gn+1 is non-Frattini and
has p-power order, is finite).

What about the prosolvable groups G with

the property that bpr(G) = 0 for almost all

r ∈ N? Do they have the same behaviour as

the prosolvable groups in which mpr(G) = 0

for almost all r ∈ N?
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In the prosolvable case, for any n ∈ N, the finite

series Pn(s) associated with the chief factor

Gn/Gn+1 is:

Pn(s) = 1− cn

|Gn/Gn+1|s
where cn is the number of complements of

Gn/Gn+1 in G/Gn+1.

PG(s) has an Euler factorization over the set

of prime numbers:

PG(s) =
∏
p

PG,p(s)

where, for any prime p,

PG,p(s) =
∑
r

bpr(G)

prs
=

∏

n∈Ωp

(
1− cn

prns

)
, with

Ωp = {n | |Gn/Gn+1| = prn and cn 6= 0}
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Question (Mann) Suppose that the p-factor

PG,p(s) is a Dirichlet polynomial (equivalently

bpr(G) = 0 for almost all r ∈ N) or, more in

general, that PG,p(s) is a rational function of

1/ps (i.e. PG(s) = A(s)/B(s) with A(s) and

B(s) Dirichlet polynomials). Does this imply

that G contains a normal open pro-p-nilpotent

subgroup?

The answer to the question is negative!

If tn is the number of irreducible polynomials

in F2[x] of degree n, then

1− 2x =
∏
n
(1− xn)tn

So for example

1− 2p

ps
=

∏
n

(
1− pn

pns

)tn
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Let H be the free pro-abelian group of rank 2
and fix p an odd prime.

For any n ∈ N, there is an irreducible action of
Zpn−1 over (Zp)n; H contains tn different open
normal subgroups K with H/K ∼= Zpn−1; so
we can construct tn irreducible non isomorphic
H-modules of order pn: Mn,1, . . . , Mn,tn.

Consider G :=
(∏

n,i Mn,i

)
oH.

G is a 2-generated prosolvable group, with in-
finitely many non-Frattini chief factors of p-
power order: Ωp is infinite and G does not
contain any open normal pro-p-nilpotent sub-
group. However

PG,p(s) =

(
1− 1

ps

) (
1− p

ps

) ∏
n

(
1− pn

(pn)s

)tn

=

(
1− 1

ps

) (
1− p

ps

) (
1− 2p

ps

)

In particular bpr(G) = 0 if r ≥ 4.
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By repeating the same game with all the prime

numbers we can prove:

Theorem. There exists a 2-generated pro-

solvable group G such that for each prime p

1. PG,p(s) is a Dirichlet polynomial;

2. G has infinitely many non-Frattini chief fac-

tors that are p-groups.

This does not answer our first question: does

PG(s) finite imply G/FratG finite? Indeed,

the group G we constructed has the property

that PG,p(s) is finite for each prime p; how-

ever we have also that PG,p(s) 6= 1, so PG(s) =∏
p PG,p(s) turns out to be infinite.
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Our conjecture holds for the prosolvable groups

Theorem (E. Detomi, AL) Let G be a finitely

generated prosolvable group. Then the follow-

ing are equivalent:

1. bn(G) = 0 for almost all n ∈ N.

2. PG(s) is a Dirichlet polynomial.

3. PG(s) is a rational Dirichlet series.

4. G/FratG is a finite group.
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The proof relies on the following facts:

A corollary of Skolem-Mahler-Lech Theorem

Let {γn}n∈N, {rn}n∈N be two sequences of

positive integers and let 1 6= µ ∈ N. If the

infinite product

∏

n∈N

(
1− γn

µrns

)

is finite (or more in general rational), then for

each prime q there exists n ∈ N such that q

divides rn.

Some representation theory

Let n be the degree of an irreducible repre-

sentation of a finite solvable group X over a

finite field . If q is a prime divisor of n, then

q ≤ max{π(X)}.
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Sketch of the proof

Let G be a finitely generated prosolvable group
and let π(G) be the set of prime divisors of the
indices of the open subgroups of G.

PG(s) =
∏

p PG,p(s) rational implies:

1. π(G) is finite;

2. PG,p(s) is rational for all p ∈ π(G).

Fix p ∈ π(G) and let

PG,p(s) =
∏

n∈Ωp

(
1− cn

prns

)
.

Assume, by contradiction, |Ωp| = ∞.

For any prime q there exists n ∈ Ωp such that
q divides rn = dimFp

Gn/Gn+1.

This implies q ≤ max{π(G)}.
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What about the general case?

Given an arbitrary finitely generated profinite

group G, we can again express the Dirichlet

series PG(s) as an infinite formal product

PG(s) =
∏
n

Pn(s)

where Pn(s) is the Dirichlet polynomial associ-

ated with the chief factor Gn/Gn+1.

We would like to prove that if PG(s) is rational,

then Pn(s) = 1 for almost all n ∈ N; this would

imply that G/FratG is finite.

In the prosolvable case we used the Euler fac-

torization PG(s) =
∏

p PG,p(s), however PG(s)

admits an Euler factorization over the set of

prime numbers if and only if G is prosolvable.
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Anyway, we can get a kind of Euler factoriza-

tion over the finite simple groups by collecting

together, for any simple group S, all the Pn(s)

such that the composition factors of Gn/Gn+1

are isomorphic to S.

PG(s) =
∏

S

ES(s), with ES(s) =
∏

Gn/Gn+1
∼=Srn

Pn(s)

In the prosolvable case PG,p(s) = EZp
(s).
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When we try to work with this generalized
Euler factorization, we meet several problems:

♠ In the prosolvable case it is easy to prove
that if PG(s) is rational, then π(G) is finite and
PG,p(s) = 1 for all but finitely many primes.
In the general case π(G) is finite if and only
if ES(s) = 1 for almost all simple groups S;
however none of these two equivalent facts can
be easily deduced from the rationality of PG(s).

Let π̃(G) be the set of primes p with the prop-
erty that there exists n ∈ N divisible by p such
that bn(G) 6= 0.

If PG(s) is rational, then π̃(G) is finite; the
problem is that π̃(G) could be smaller than
π(G). Recently it was proved:

Theorem (E. Damian, AL) If G is finite, then
π(G) = π̃(G).

Open problem: can this result be generalized

to finitely generated profinite groups?
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♠ Even if we know that PG(s) =
∏

S ES(s)

is the product of finitely many Euler factors

ES(s), we cannot easily deduce, as in the pro-

solvable case, that PG(s) rational implies ES(s)

rational for each S.

♠ Let ΩS = {n ∈ N | Gn/Gn+1
∼= Srn}. Even

if we know that ES(s) =
∏

n∈ΩS
Pn(s) is ratio-

nal, we cannot apply the same trick (the corol-

lary of Skolem-Mahler-Lech Theorem) we used

in the solvable case, because the series Pn(s)

are now more complicated and involve many

non-trivial terms.
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The problem is still open; the best result we

were able to prove is:

Theorem (E. Detomi, AL) Let G be a fi-

nitely generated profinite group in which al-

most every composition factor is cyclic or iso-

morphic to an alternating group. If PG(s) is

rational, then G/FratG is a finite group.

Remark. The methods employed in the proof

could probably be adapted to prove that the

same conclusion holds if we assume that al-

most every composition factor is cyclic or is

a group of Lie type over a fixed characteristic

p. Roughly speaking, we are in big trouble if

infinitely many composition factors belong to

uncomparable families of simple groups!
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Sketch of the proof

Notation. For any n ∈ N, let Gn/Gn+1 = Sn
rn.

I := {i ∈ N | Si
∼= Zni or Si

∼= Alt(ni) ∃ ni ∈ N}.

PG(s) rational

⇓
P (s) =

∏

i∈I

Pi(s) =
∑

r∈N
cr/rs rational

First step. The set π(G) is finite.

Since P (s) is rational, there exists a prime u
such cn = 0 when n is divisible by a prime q ≥ u.

We prove that ni < u for any i ∈ I

To deal with the case Si
∼= Alt(ni), we need

to understand how the properties of maximal
subgroups of Alt(ni) reflect on the distribution
of the coefficients of the polynomial Pi(s).
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Second step. Let ΩS be the set of n such
that Gn/Gn+1 is non-Frattini and isomorphic
to a direct product of copies of S. The set ΩS
is finite for any finite simple group S.

Assume T = {S | |ΩS| = ∞} 6= ∅.
Let J = {i ∈ I | Si ∈ T }, Pj(s) =

∑
l bj,l/ls.

There exists µ ∈ N such that:

•
∏

j∈J

(
1 +

bj,µ
rj

µrj·s

)
is rational

• bj,µ
rj ≤ 0 ∀j ∈ J

• bj,µ
rj < 0 for infinitely many j ∈ J

By Skolem-Mahler-Lech Theorem:

for each prime u there exists j ∈ J such that u

divides the composition length rj of Gj/Gj+1.

Hence for each prime u there exists r such that
u divides r and G has either a transitive per-
mutation representation of degree r or a linear
irreducible representation of degree r over a
finite field; this contradicts π(G) finite.
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Skolem-Mahler-Lech Theorem

If {a0, a1, ...} is a recurrence sequence, then the

set of all k such that ak = 0 is the union of

a finite (possibly empty) set and a finite num-

ber (possibly zero) of full arithmetical progres-

sions, where a full arithmetic progression is a

set of the form {r, r+d, r+2d, ...} with r ∈ [0, d).

Corollary

Let c1, . . . , cr, λ1, . . . , λr be algebraic numbers

with the property that

λi/λj is a root of unit ⇒ λi = λj.

Then the exponential polynomial

ψ(m) = c1λm
1 + · · ·+ crλ

m
r

vanishes for infinitely many integers m only if

ψ(m) is identically zero.

23


