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Vogliamo presentare il seguente risultato:

Teorema Sia G un gruppo semplice finito in cui tutte le sezioni proprie siano
gruppi semplici noti. Supponiamo che

a) esista un sottogruppo 2-locale massimale H di caratteristica 2 ;
b) per ogni 5-sottogruppo B di G di rango maggiore o uguale a 2 , CG(B) abbia

caratteristica 5 ;
c) O2

′(CG(t)) = 1 per ogni elemento t ∈ G di ordine 2 ;
d) O5

′(CG(b)) = 1 per ogni elemento b ∈ G di ordine 5 ;
e) le componenti nei centralizzanti degli elementi di ordine 5 siano gruppi di tipo

Lie in caratteristica 5 ;
f) m5(H) = m2,5(G) ≥ 2 .

Allora G è isomorfo al gruppo semplice sporadico di Harada−Norton .

1. Definizioni

Ricordiamo che se p è un numero primo, un sottogruppo H di un gruppo G si
dice p -locale se H è il normalizzante in G di un p -sottogruppo non identico.

Un gruppo H ha caratteristica p se

CH(Op(H)) ≤ Op(H).

Un gruppo G si dice di caratteristica locale p se ogni sottogruppo p -locale di
G ha caratteristica p . Per il Teorema di Borel-Tits [1] i gruppi semplici di tipo Lie
su un campo di caratteristica p hanno caratteristica locale p .

Una componente K in un gruppo X è un sottogruppo subnormale e quasisem-
plice (cioè K è perfetto e K/Z(K) è semplice);

Una componente di un gruppo G centralizza ogni sottogruppo subnormale che
non la contenga, in particolare componenti distinte si centralizzano.

Il gruppo generato dalle componenti di un gruppo G è il prodotto centrale di
queste e si indica con E(G) e viene (spesso) detto sottogruppo di Bender di G .

Il sottogruppo di Fitting generalizzato F ∗(G) è il prodotto (centrale) del
sottogruppo di Fitting di G con il sottogruppo di Bender di G e, per ogni gruppo
finito G vale l’uguaglianza di Bender-Fitting:

CG(F ∗(G)) = Z(F ∗(G)).

Si osservi che un gruppo H ha caratteristica p se e solo se F ∗(H) è un p -gruppo.
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Una p -componente di G è un sottogruppo subnormale K di G tale che
K = Op

′

(K) e K/Op
′(K) è quasisemplice

Il p -rango mp(G) di un gruppo G è la massima dimensione dei p -sottogruppi
abeliani elementari contenuti in G (come spazi vettoriali sul campo con p elementi).
Se r è un altro numero primo il p -rango r -locale mr,p(G) di G è il massimo tra
i mp(H) dove H varia tra i sottogruppi p -locali di G ed infine e(G) è il massimo
tra i m2,p(G) al variare tra i primi p che dividono l’ordine di G .

2. Motivazioni

Questo problema ha origine nel progetto di revisione del teorema di Classifi-
cazione dei Gruppi Semplici Finiti di Gorenstein, Lyons e Solomon (dimostrazione
di II generazione). Ricordiamo che la classificazione originale ha una suddivisione
in casi che può essere schematizzata nel modo seguente (tra parentesi gli esempi):

1) m2(G) ≤ 2 (L2(q), L3(q), U3(q), q dispari, M11 e U3(4));
2) m2(G) > 2 ed esiste un’involuzione il cui centralizzante abbia 2-componenti
(gruppi alterni e gruppi di tipo Lie in caratteristica dispari);
3) m2(G) > 2 ed i centralizzanti delle involuzioni non hanno 2-componenti (gruppi
di tipo Lie in caratteristica 2).

Il caso 3) si divide a sua volta in:
3a) e(G) ≤ 2 (gruppi quasithin);
3b) e(G) > 2 ed esiste un primo p ed un elemento t di ordine p tali che m2,p(G) > 2
e CG(t) ha p -componenti;
3c) e(G) > 2 ma per ogni primo p ed ogni elemento t di ordine p tali che
m2,p(G) > 2, CG(t) non ha p -componenti.

La strategia delle dimostrazioni di prima e seconda generazione del Teorema
CSFG è quella di cercare di sfruttare il più possibile le informazioni che, in un
generico gruppo semplice G , si possono ottenere dai centralizzanti CG(t) degli
elementi t di ordine primo p , tali che CG(t) contenga delle p -componenti e, tra i
numeri primi p , privilegiare il 2. Questo è il motivo della suddivisione tra i casi 2)
e 3).

Le suddivisioni relative al 2-rango ed a e(G) sono invece dovute alla possibilità
o meno di usare il metodo del Funtore Segnalante.

Questo metodo permette di eliminare il 2′ -radicale nei centralizzanti delle in-
voluzioni nel caso in cui il 2-rango sia maggiore di 2 (caso 2)) e, analogamente,
(nei casi 3b) e 3c)) di eliminare il p′ -radicale nei centralizzanti degli elementi di
ordine p se il p -rango 2-locale è maggiore di 2.

In particolare, permette di dimostrare che

(1) i gruppi semplici nel caso 3) hanno caratteristica locale 2 e
(2) i gruppi semplici nel caso 3c) hanno caratteristica locale 2 e caratteristica

locale p per almeno un primo dispari p .
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In [7] Klinger e Mason hanno dimostrato che non esistono gruppi semplici di
questo tipo (e dunque i gruppi che hanno una doppia caratteristica devono essere
anche quasithin).

Nel progetto di revisione di Gorenstein, Lyons e Solomon la nozione di caratter-
istica locale viene sostituita da quella di caratteristica debole: dato un primo p , un
gruppo G si dice di caratteristica debole p se

(1) mp(G) ≥ 2;
(2) Op

′(H) per ogni sottogruppo p -locale H .
(3) CG(B) ha caratteristica p per ogni p -sottogruppo B di G di rango mag-

giore o uguale a 2.
(4) le componenti nei centralizzanti degli elementi di ordine p sono gruppi finiti

di tipo Lie in caratteristica p .

(Per esattezza, in [5] al posto di caratteristica debole p si parla di p -type che è una
nozione molto vicina alla caratteristica debole p). La suddivisione in casi è analoga
a quella della dimostrazione di prima generazione salvo sostituire con “2-gruppo (p -
gruppo) di rango 2” la parola “involuzione” (“p -elemento”). In questa situazione,
nel nuovo caso 3c), si ottengono gruppi che hanno simultaneamente caratteristica
debole 2 e caratteristica debole p per un opportuno numero primo p (gruppi di
bicaratteristica (2,p)). L’insieme di tali gruppi questa volta non è vuoto, ma vi
rientrano molti dei grandi gruppi sporadici.

Utilizzando i metodi introdotti da Klinger e Mason (e prima ancora da Thompson
nella sua classificazione degli N -gruppi [11]) Gorenstein e Lyons (sotto l’ipotesi che
e(G) ≥ 4) sono riusciti ad ottenere una caratterizzazione come gruppi di bicarat-
teristica 2, 3 dei gruppi sporadici F1 , F2 , F ′

24 , F23 , F22 , Co1 , e di altri sei gruppi
di Lie su campi di ordine 2 o 3 [3].

Successivamente Korchagina, Lyons e Solomon, estendendo l’indagine ai gruppi
in cui e(G) ≤ 3 sono riusciti a caratterizzare Su , Th e Co3 [8] e [9].

Su suggerimento di Solomon, C.Franchi, M.S. Lucido e M. Mainardis [2] sono
riusciti a caratterizzare il gruppo di Lyons come l’unico gruppo di bicaratteristica
dispari (provando in questo caso che i primi devono essere 3 e 5).

Infine, Korchagina, Lyons e Solomon hanno caratterizzato HN come gruppo di
bicaratteristica 2, 3.

In questa direzione sembra quindi possibile intravvedere la speranza di ottenere
una caratterizzazione intrinseca di una buona parte dei gruppi sporadici.

Come già detto che la definizione precisa di bicaratteristica varia un po’ nei
diversi lavori citati. Nel nostro lavoro la caratteristica debole 2 corrisponde alle
condizioni a) e c), la caratteristica debole 5) corrisponde alle condizioni b), d), e)
ed f).

3. Cenno della dimostrazione

D’ora in poi supponiamo che G sia un gruppo che soddisfa le ipotesi del Teorema
1. Il nostro obiettivo è trovare un’involuzione t in G tale che

CG(t) sia isomorfo a (2HS) · 2,



4 C. FRANCHI, M. MAINARDIS, R. SOLOMON

cioè isomorfo al centralizzante di un’involuzione non centrale nel gruppo di Harada-
Norton (con HS indichiamo il gruppo sporadico di Higman-Sims). Questo permette
l’identificazione di G come il gruppo sporadico di Harada-Norton per un risultato
di Harada [6].

La strategia per ottenere l’involuzione desiderata è tramite una serie di approssi-
mazioni successive a partire dal sottogruppo 2-locale H , sfruttando interazioni tra
i centralizzanti delle involuzioni ed i centralizzanti degli elementi di ordine 5.

Lemma 3.1. Sia x un elemento di ordine 5 in G e sia Cx := CG(x) . Allora o
Cx ha caratteristica 5 , oppure valgono le seguenti affermazioni:

(1) E(Cx) è un gruppo semplice di tipo Lie in caratteristica 5 ;
(2) O5(Cx) è ciclico;
(3) per ogni 5-sottogruppo abeliano elementare B contenente x , risulta

B ≤ 〈x〉 × E(Cx).

Dimostrazione. Supponiamo che Cx non abbia caratteristica 5. Per le ipotesi d)
ed e) esiste una componente J che è un gruppo semplice di tipo Lie in caratteristica
5. Poiché 5 divide l’ordine di J , la condizione b) implica che

J = E(Cx) e 〈x〉 = Ω1(O5(Cx)).

In particolare O5(C) è ciclico. Per l’Azione Coprima e l’Identità di Bender-Fitting,

CCx
(J) = O5(C).

Sia y ∈ B \ 〈x〉 , y deve indurre un automorfismo interno non identico su J da cui

y ∈ CCx
(J)× E(Cx) = O5(C)× E(Cx),

da cui la tesi avendo x ordine 5. �

Lo strumento fondamentale per studiare le relazioni tra i centralizzanti delle
involuzioni ed i centralizzanti degli elementi di ordine 5 è il Lemma Diedrale di
Thompson (Teorema 3.2) ed una sua generalizzazione dovuta a Korchagina, Lyons
e Solomon (Teorema 3.4).

Teorema 3.2. [5] Sia p un numero primo dispari ed E un 2-gruppo abeliano
elementare non identico di rango m che agisce fedelmente su un p-gruppo P .
Allora P contiene un sottogruppo abeliano elementare E -invariante Q tale che

QE = D1 ×D2 × . . .×Dm,

dove i Di sono gruppi diedrali di ordine 2p .

Corollario 3.3. Sia X un gruppo finito, p un primo dispari, B un p-sottogruppo
abeliano elementare di rango massimo contenuto in un sottogruppo 2-locale di X

e sia B1 un sottogruppo non identico di B . Allora o

(1) CB1
non ha caratteristica p , oppure

(2) m2(CB1
) ≤ mp(B/B1) + 1 , in particolare m2(CB) ≤ 1 .
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Teorema 3.4. [8] Siano p e r numeri primi distinti E un r -gruppo abeliano
elementare non identico di rango m che agisce fedelmente su un p-gruppo P .
Allora P contiene un sottogruppo E -invariante Q tale che

QE = E1Q1 ∗ E2Q2 ∗ . . . ∗ EmQm,

dove i gli Ei sono sottogruppi ciclici di E ed i Qi sono sottogruppi di Q tali
che Ei agisce in modo nontriviale su Qi , ma centralizza ogni sottogruppo proprio
Ei -invariante di Qi .

La dimostrazione del seguente Lemma è un esempio di come si utilizzano questi
risultati:

Lemma 3.5. O2(H) non contiene alcun sottogruppo abeliano elementare caratte-
ristico e di rango maggiore o uguale a 2

Dimostrazione. Supponiamo per assurdo che A sia un sottogruppo abeliano
elementare di O2(H) di rango maggiore o uguale a 2. Sia B un 5-sottogruppo
abeliano elementare di rango massimo in H . Per il Corollario 3.3 e l’ipotesi b),
m2(CB) ≤ 1. In particolare B agisce in modo non triviale su A . Per 3.4 esiste un
iperpiano B1 di B tale che

(1) m2([CA(B1), B]) ≥ 4.

Per il Corollario 3.3 E(CG(B1)) 6= 1 e quindi, per il Lemma 3.1,

(1) m5(B1) = 1 e m5(B) = 2;
(2) J := E(Cx) è un gruppo semplice di tipo Lie in caratteristica 5;
(3) B = B1(B ∩ J);
(4) m2,5(J) ≤ 1

Ispezionando i gruppi semplici di tipo Lie in caratteristica 5, l’ultima condizione
implica che m2(J) ≥ 2. D’altra parte

[CA(B1), B] = [CA(B1), B ∩ J ] ≤ J

in contraddizione con 1 �

In particolare Ω1(Z(O2(H))) è ciclico. Sia z un’involuzione che lo genera. Dal
lemma precedente si ottiene subito:

Corollario 3.6. H = CG(z) e z è 2-centrale in G

Chiaramente z non è ancora l’involuzione che cerchiamo (il suo centralizzante
H ha caratteristica 2)

Sfruttando il lemma precedente, con argomentazioni analoghe, si dimostra che

Lemma 3.7. m2,5(G) = 2 .

Sia ora B un 5-sottogruppo abeliano elementare di rango 2 di H (un tale
sottogruppo esiste per la condizione f). Studiando l’azione di B su O2(H) si riesce
a dimostrare che O2(H) è un prodotto centrale di due o più sottogruppi Ri ciascuno
dei quali è isomorfo a Q8 ∗ D8 . Per il Teorema 3.4 possiamo trovare un elemento
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x in B tale che CO2(H)(x) contenga un sottogruppo T isomorfo a Q8 ∗D8 e tale
che T = [B, T ] .

A questo punto abbiamo informazioni sufficienti per dare una descrizione abbas-
tanza precisa di Cx :

Lemma 3.8. Con le notazioni precedenti, valgono le seguenti affermazioni

(1) CO2(H)(x) = T ∼= Q8 ∗D8 ;
(2) F ∗(Cx) = O5(Cx) ∼= 51+4 ∗ 5m per qualche numero naturale m ;
(3) TO5(Cx) è normale in Cx e Cx/TO5(Cx) è isomorfo ad un sottogruppo

di A5 il cui ordine è un multiplo di 5 .

Sia ora t un’involuzione noncentrale in T , tale che t centralizzi un sottogruppo
P di tipo 51+2 contenuto in O5(Cx).

Vogliamo provare che t è l’involuzione cercata ed il seguente lemma ci dice che
siamo sulla buona strada:

Lemma 3.9. E(Ct) 6= 1 .

Dimostrazione. (cenno) Se per assurdo E(Ct) = 1, allora Ct soddisferebbe le
medesime condizioni di H . In particolare, per il Corollario 3.6, t sarebbe coniugato
con z . Ma questo si dimostra essere impossibile. �

Lemma 3.10. 1) E(Ct)/Z(E(Ct)) ∼= HS ,
2) P ≤ E(Ct) e
3) esiste un’involuzione v in Ct che agisce su E(Ct) come automorfismo esterno.

Dimostrazione. (cenno) Sia K := E(Ct). Studiando l’azione di x su K si prova
che K è quasisemplice, inoltre

(1) Aut(K) contiene un sottogruppo isomorfo a P

(2) (per il Lemma 3.7) m5(K) ≤ 2

Non ci sono molti gruppi quasisemplici che soddisfano queste condizioni, infatti
un’ispezione ai gruppi semplici noti prova che K/Z(K) può essere isomorfo ad uno
dei seguenti gruppi:

L3(5), U3(5), Co3, Co2, HS, Mc, Ru, e Th.

A questo punto si dimostra che z ∈ K e, dopo un’ulteriore indagine caso per caso
(studiando in particolare l’intersezione tra O2(H) e K ), si eliminano tutti tranne
HS . La terza parte segue dal fatto che O2(H) ∩ Ct è troppo grande per essere
contenuto nel 2 radicale del centralizzante di un’involuzione (2-centrale) in HS .

�

Ora ci sono due estensioni centrali di un gruppo ciclico di ordine 2 con HS , una
spezzante, l’altra (quella che vogliamo) non spezzante. Il primo caso è eliminato
dal seguente lemma.

Lemma 3.11. Z(E(Ct)) 6= 1 .
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Dimostrazione. (cenno) Sia K := E(Ct) e supponiamo per assurdo che K ∼= HS

e sia v come nel lemma precedente. Dalla struttura di HS , risulta

Kv
∼= S8.

Sia y un elemento di ordine 5 in Kv . Nuovamente per la struttura di HS

Ky = 〈y〉 ×K ′
y

con K ′
y
∼= A5 e si prova che

Gy = 〈y〉 × J〈t〉
con J isomorfo a L3(5), U3(5) o U3(5) · 3 e

Gt = 〈t〉 ×K〈v〉.

Ne segue che se s ∈ 〈t, v〉 ∩ J , allora

E(Js) ∼= SL2(5).

Per il Balance Theorem ([5], Theorem 5.23, pag. 30), applicato a Gt e Gs si ottiene

L′
v ≤ E(E(Ct) ∩ Cs) = E(E(Cs) ∩ Ct).

In particolare, posto L := E(Cs), risulta

L′
v ≤ Lt.

Ora, tenendo presente che m2,5(G) = 2, le uniche possibilità per L e l’azione di
t sono

L azione di t

A8 t centralizza L
A8 ×A8 t scambia i fattori

A10 t è una trasposizione in A10

L4(4) t automorfismo di campo
HS t automorfismo esterno

D’altra parte si riesce a dimostrare s ∈ L e questo è una contraddizione perché,
dalla tabella, Z(L) = 1.

�

Resta infine da dimostrare che

|O2(Gt)| = 2.

Studiando la struttura di CG(x, t) si dimostra che O2(Gt) è ciclico di ordine 2 o 4
ed il caso in cui quest’ordine è 4 viene eliminato per un risultato di Solomon [10].
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