
Recall that a nilpotent self-normalizing subgroup is called a Carter subgroup. In 1961 R. Carter proved that in
each finite solvable group Carter subgroups exist and are conjugate. Moreover, a homomorphic image of a Carter
subgroup (of a solvable group) under any homomorphism is a Carter subgroup.

Note that the intersection of a Carter subgroup K of G with a normal subgroup H of G might not be a Carter
subgroup of H. Consider G = Sym3 and its normal subgroup H = Alt3. It is clear that Sym3 is solvable and its
Carter subgroup K is a Sylow 2-subgroup. On the other hand, the group Alt3 is cyclic, hence it coincides with its
Carter subgroup and it is a 3-group.

If a group is not assumed to be finite, then Carter subgroups may be even non-isomorphic. A free product of
two non-isomorphic nilpotent groups K1 and K2 gives such example. Further, arbitrary finite group may not contain
Carter subgroups. The minimal example is Alt5. However, there is still not known any example of finite groups
containing non-conjugate Carter subgroups. Thus the following problem (which we refer as a conjugacy problem)
appears.
Problem. Are Carter subgroups of a finite group conjugate?

During last 30 years, many authors investigated Carter subgroups in some classes of finite groups close to be simple.
In particular, the structure of Carter subgroups was obtained in the following groups:

symmetric and alternating (L. Di Martino, M.C. Tamburini, 1976);
in each G with SLn(q) ≤ G ≤ GLn(q) (N.A. Vavilov, 1979; L. Di Martino, M.C. Tamburini, 1987);
in Sp2n(q), GUn(q), and GO±

n (q), in the last case q is odd, (L. Di Martino, A.E. Zalesski, M.C. Tamburini, 1997).
Later Carter subgroups were classified in each G with Op′

(S) ≤ G ≤ S, where S ∈ {Sp2n(q),GUn(q),GO±
n (q)} (A.

Previtali, M.C. Tamburini, E.P. Vdovin, 2004).
In 1998 F. Dalla Volta, A. Lucchini, and M.C. Tamburini proved that a counter example of minimal order to the

conjugacy problem should be an almost simple group. This result allows to solve the conjugacy problem by using the
classification of finite simple groups.

It is easy to see that if G is a counter example of minimal order and K is a Carter subgroup of G, then none
elements z1, z2 ∈ Z(K) can be conjugate in G. In particular, none element z ∈ Z(K) of prime order can be conjugate
to its nontrivial power in G

Indeed, assume that z, zg ∈ Z(K) for some g ∈ G. Consider 〈K,Kg〉. It has a nontrivial center (since zg ∈
Z(K)∩Z(Kg)), so , |〈K,Kg〉| < |G|, i. e., Carter subgroups of 〈K,Kg〉 are conjugate. Hence there exists x ∈ 〈K,Kg〉
such that Kx = Kg, in particular zx = zg. But zg ∈ Z(K) ∩ Z(Kg) ≤ Z(〈K,Kg〉), i. e., zx = z.

By using this simple fact and considering conjugate elements of prime order in finite groups, M.C. Tamburini and
E.P. Vdovin in 2002 have shown that a wide class of almost simple groups does not contain a counter example of
minimal order. In particular, this class contains all simple groups.

Soc(A) = G Conditions for A
alternating, sporadic;

A1(rt), B`(rt), C`(rt), t even if r = 3;
2B2(22n+1), G2(rt), F4(rt), 2F4(22n+1); none

E7(rt), r 6= 3; E8(rt), r 6= 3, 5
D2`(rt), 3D4(r3t), 2D2`(r2t), A/(A ∩ Ĝ) 2− group

t even if r = 3 and, if G = D4(rt), or
|(Field(G) ∩A) : (Ĝ ∩A)|2′ > 1 |Ĝ : (A ∩ Ĝ)| = 2k, k > 0

B`(3t), C`(3t), D2`(3t), 3D4(33t), 2D2`(32t),
D2`+1(rt), 2D2`+1(r2t), 2G2(32n+1), A = G

E6(rt), 2E6(r2t), E7(3t), E8(3t), E8(5t)
A`(rt), 2A`(r2t), ` > 1 G ≤ A ≤ Ĝ,

If G is a group, A,B,H are subgroups of G and B is normal in A (B � A), then NH(A/B) := NH(A) ∩NH(B).
If x ∈ NH(A/B), then x induces an automorphism Ba 7→ Bx−1ax of A/B. Thus there exists a homomorphism of
NH(A/B) into Aut(A/B). The image of this homomorphism is denoted by AutH(A/B). In particular, if S is a
composition factor of G, then for each H ≤ G the group AutH(S) is defined. A finite group G said to satisfy (C)
if for each its (non-Abelian) composition factor S and each nilpotent subgroup N of AutG(S), Carter subgroups of
〈N,S〉 are conjugate. Then the following theorem is true.

Theorem 1. (E.P. Vdovin, 2006) If a finite group G satisfies (C), then its Carter subgroups are conjugate.

Lemma 2. Let G be a finite group, K a Carter subgroup of G with the center Z(K). Assume also that e 6= z ∈ (K)
and CG(z) satisfies (C).
(1) Each subgroup Y containing K and satisfying (C) is self-normalizing in G.
(2) None conjugate of z in G, except z, is not in Z(G).
(3) If H is a Carter subgroup of G, which is non-conjugate with K, then z is not conjugate to any element from the
center of H.
In particular, the centralizer CG(z) is self-normalizing in G, and z is not conjugate to a nontrivial power zk 6= z.

1



Lemma 3. (A criterion of existence of a Carter subgroup containing a Sylow 2-subgroup) Let G be a finite group and
S a Sylow 2-subgroup of G.

Then G contains a Carter subgroup K ≥ S if and only if NG(S) = SCG(S).

In view of Lemma 3, we shall say that a finite group G satisfies (ESyl2) if for a Sylow 2-subgroup S of G the
equality NG(S) = SCG(S) holds.

Lemma 4. (Descending Lemma) Let G be a finite group and H a Carter subgroup of G. Assume that there exists a
normal subgroup B = T1× . . .×Tk of G such that T1 ' . . . ' Tk ' T , Z(Ti) = {1} for all i, and G = H(T1× . . .×Tk).

Then AutH(Ti) is a Carter subgroup of 〈AutH(Ti), Ti〉.

Lemma 5. (First ascending lemma) Let G be a finite group, S a Sylow 2-subgroup of G and x ∈ NG(S) be of odd
order. Assume that there exist normal subgroups G1, . . . , Gk of G such that G1 ∩ . . . ∩ Gk ∩ S ≤ Z(NG(S)). If
ϕi : G→ G/Gi is a natural homomorphism, assume also that xϕi centralizes SGi/Gi. Then x centralizes S.

Lemma 6. (Second ascending lemma) Let G be a finite group and H be a normal subgroup of G such that |G : H| = 2t.
Let S, T be Sylow 2-subgroups of G,H respectively and NH(T ) = TCH(T ).

Then NG(S) = SCG(S). In particular, the groups G,H contain Carter subgroups K,L with S ≤ K and T ≤ L.

Theorem 7. Let G be either D4(q), or 3D4(q3). Assume that τ is a graph automorphism of G of order 3 (in case of
3D4(q3) this is an automorphism, which has the set of stable points isomorphic to G2(q)). Denote by A1 the subgroup
of Aut(D4(q)) generated by inner-diagonal and field automorphisms, and also by a graph automorphism of order 2.
Let A ≤ Aut(G) be such that A 6≤ A1 (if G ' D4(q)), and let K be a Carter subgroup of A.

If G ' 3D4(q3) and (|A : G|, 3) = 1, then q is odd and K contains a Sylow 2-subgroup of A. Otherwise, up to
conjugation in G, we have that τ ∈ K, if q is odd, then K ∩ A1 contains a Sylow 2-subgroup of CA(τ) ' ΓG2(q), if
q = 2t is even, then K ∩ A1 contains a Sylow 2-subgroup of G2(2t2′ ). Note that if q is odd, then in ΓG2(q) Carter
subgroups always exist, while for q = 2t even Carter subgroups exist if and only if |ΓG2(q) : G2(q)| = t.

In particular, Carter subgroups of A are conjugate.

Theorem 8. Let G be a finite group of Lie type (G is not necessary simple) over a field of characteristic p and G,
σ are chosen so that Op′

(Gσ) ≤ G ≤ Gσ. Assume also that G 6' 3D4(q3). Choose a subgroup A of Aut(Op′
(Gσ)) with

A ∩Gσ = G and assume that A is contained in A1, defined in Theorem 7, if G = D4(q). Let K be a Carter subgroup
of A and assume that A = KG.

Then one of the following statements hold.

(1) A = ΓG and either ΓG = 2A2(22t) h 〈ζ〉, or ΓG = ̂2A2(22t) h 〈ζ〉; |ζ| = t is odd, CG(ζ) ' 2̂A2(2) (note that
CG(ζ) ' 2̂A2(2) if G = ̂2A2(22t) or t is divisible by 3), K ∩G has order 2 · 3k, where 3k−1 = t3..

(2) G is defined over GF (2t), a field automorphism ζ is in A, |ζ| = t, and denoting by τ a graph automorphism of
order 6 2 with τ ∈ A, up to conjugation in G, we have K = S h 〈ζ, τ〉, where S is a Sylow 2-subgroup of Gζ2′ .

(3) G ' PSL2(3t), ζ ∈ A = Aut(G), |ζ| = t and, up to conjugation in G, we have K = S h 〈ζ〉, where S is a Sylow
3-subgroup of Gζ3′ .

(4) A = ΓG = 2G2(32n+1)h 〈ζ〉, |ζ| = 2n+1, and, up to conjugation in G, we have K ∩ 2G2(32n+1) = S×P , where
S is of order 2 and |P | = 3|ζ|3 .

(5) p does not divide |K ∩G| and K contains a Sylow 2-subgroup of A. Note that the group A satisfies (ESyl2) if
and only if G satisfies (ESyl2).

In particular, Carter subgroups of A are conjugate.

Proof scheme.
1. We construct in A parabolic subgroups and reductive subgroups of maximal rank and transfer to A the structure

results on the normalizes of p-subgroups and centralizes of semisimple elements. It is easy to see that K�K∩G 6= {e},
so Z(K) ∩G 6= {e} and there exists an element x ∈ Z(K) ∩G of prime order.

2. If there exists x ∈ Z(K) ∩G with |x| = p, then K is contained in a proper parabolic subgroup of A. The order
of a Carter subgroup of its Levi factor is not divisible by p. By using descending lemma, we obtain that for each
non-Abelian composition factor of the Levi factor point (5) of Theorem 8 holds. By using ascending lemmas we obtain
that K contains a Sylow 2-subgroup of the parabolic subgroup. But a Sylow 2-subgroup of the Levi factor does not
centralizes elements of order p if G 6' Cn(q). If G ' Cn(q), then more accurate computations show that in this case
K satisfies to one of the statements of the theorem.

3. Now p does not divide |K ∩G|. Thus |x| 6= p, then K is contained in CA(x), that contains a normal reductive
subgroup of maximal rank R of A. By using descending lemma, we obtain that for each non-Abelian composition
factor of R point (5) of Theorem 8 is true. Thus we may assume that |x| = 2.
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4. Now x is an involution. By using descending lemma, we obtain that K contains Sylow 2-subgroups of all
non-Abelian composition factors of R. By ascending lemmas it follows that K contains a Sylow 2-subgroup of CA(x).
Hence K contains a Sylow 2-subgroup of A.

As a corollary of Theorems 7 and 8 we obtain the following theorem. It can be stated without using of the
classification of finite simple groups, if all composition factors of G are assumed to be known simple groups.

Theorem 9. Let G be a finite group. Then the Carter subgroups of G are conjugate.

Moreover, as a corollary of Theorem 9 we obtain immediately that a homomorphic image of a Carter subgroup is
again a Carter subgroup.

Theorem 10. Let G be a finite group, K its Carter subgroup and ϕ a homomorphism of G. Then Kϕ is a Carter
subgroup of Gϕ.

In Theorems 7 and 8 there is a condition A = KG, that is used during the proofs of the theorems. However,
direct computations show that it can be removed without lost of correctness of the theorems. Moreover, the following
theorem is true.

Theorem 11. Let G be a finite simple group and G ≤ A ≤ Aut(G) an almost simple group. Assume that A contains
a subgroup S such that G ≤ S and S contains a Carter subgroup.

Then A contains a Carter subgroup.

Let G = G0 ≥ G1 ≥ . . . ≥ Gn = {e} be a chief normal series of G. Then Gi/Gi+1 = Ti,1 × . . . × Ti,ki
, where

Ti,1 ' . . . ' Ti,ki
' Ti and Ti is a simple group. If i > 1, then denote by Ki a Carter subgroup of G/Gi (if it exists)

and by Ki its complete preimage in G/Gi+1. If i = 0, then K0 = {e} and K0 = G/G1 (note that K0 always exists).
A finite group G is said to satisfy (E), if, for every i and j, either Ki does not exist, or AutKi

(Ti,j) contains a Carter
subgroup. The following theorem gives a criterion of existence of a Carter subgroup.

Theorem 12. (Existence Criterion) Let G be a finite group. Then G contains a Carter subgroup if and only if G
satisfies (E).

Note that in condition (E) the chief series can not be substituted by a composition series. The following simple
example shows this fact. This example shows also that an extension of a group containing a Carter subgroup by a
group containing a Carter subgroup may fail to contain a Carter subgroup. Consider L = ΓSL2(33) = PSL2(33)h〈ϕ 〉,
where ϕ is a field automorphism of PSL2(33). Let X = (L1 × L2) h Sym2, where L1 ' L2 ' L and, if σ = (1, 2) ∈
Sym2 \ {e}, (x, y) ∈ L1 × L2, then σ(x, y)σ = (y, x) (permutational wreath product of L and Sym2). Denote by
H = PSL2(33)×PSL2(33) the minimal normal subgroup of X and by M = L1×L2. Let G = (Hh 〈(ϕ,ϕ−1) 〉)hSym2

be a subgroup of X. Then the following statements hold:

1. For each composition factor S of G, AutG(S) contains a Carter subgroup.

2. G ∩M �G contains a Carter subgroup.

3. G/(G ∩ L) is nilpotent.

4. G does not contain a Carter subgroup.

Tables given below are organized in the following way. In the first column is given a simple group S such that
Carter subgroups of Aut(S) are classified. In the second column we give conditions for a subgroup A ≤ Aut(S) to
contain a Carter subgroup. In the third column we give the structure of a Carter subgroup K. In every subgroup of
Aut(S) lying between S and A Carter subgroups does not exist. By Pr(G) a Sylow r-subgroup of G is denoted. By ϕ
we denote a field automorphism of a group of Lie type S, by τ we denote a graph automorphism of a group of Lie type
S contained in K (since graph automorphisms of order 2 and 3 of D4(q) does not commute, only one of them can be
in K). If A does not contains a graph automorphism, then we suppose τ = e. By ψ we denote a field automorphism
of S of maximal order contained in A (it is a power of ϕ, but 〈ψ〉 can be a proper subgroup of 〈ϕ〉). If G is a solvable
group, by K(G) we denote a Carter subgroup of G. In Table 15 by χ the 2′-part of a field automorphism ϕ of 2A2(22t)
is denoted.

Table 13. Groups of automorphisms of alternating groups, containing Carter subgroups.

Group S Conditions on A Structure of K
Alt5 A = Sym5 K = P2(Sym5)

Altn, n > 6 none K = NA(P2(S))

Table 14. Groups of automorphisms of sporadic groups, containing Carter subgroups.
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Group S Conditions on A Structure of K
J2, J3, Suz,HN A = Aut(S) K = P2(A)

6' J1, J2, J3, Suz,HN none K = P2(A)

Table 15. Groups of automorphisms of classical groups, containing Carter subgroups.

Group S Conditions on A Structure of K
A1(q), q ≡ ±1 (mod 8) none K = NA(P2(S))
A1(q), q ≡ ±3 (mod 8) Ŝ ≤ A K = NA(P2(Ŝ))
An(2t), t > 2, if n = 1 ϕ ∈ A K = 〈ϕ, τ〉i Sϕ2′

An(q), q is odd, n > 2 none K = P2(A)×K(O(NA(P2(A))))
2A2(22t), t is odd, t 6≡ 0 (mod 3) A = 〈χ〉i Ŝ K = 〈χ〉 ×K(U3(2))

2A2(22t), t is odd, t3 = 3k−1, k > 2 〈χ〉i S ≤ A ≤ 〈χ〉i Ŝ K = 〈χ〉i (2× 3k)
2A2(22t) A = Aut(S) K = 〈ϕ〉i P2(Sϕ2′ )

2An(q2), q is odd none K = P2(A)×K(O(NA(P2(A))))
2An(22t), n > 3 A = Aut(S) K = 〈ϕ〉i P2(Sϕ2′ )

B2(q), q ≡ ±1 (mod 8) none K = P2(A)×K(O(NA(P2(A))))
B2(2t), t > 2 ϕ ∈ A K = 〈ϕ, τ〉i P2((Sτ )ϕ)

B2(q), q ≡ ±3 (mod 8) Ŝ ≤ A K = P2(A)×K(O(NA(P2(A))))
Bn(q), q is odd, n > 3 none K = P2(A)×K(O(NA(P2(A))))
Cn(q), q ≡ ±1 (mod 8) none K = P2(A)×K(O(NA(P2(A))))
Cn(q), q ≡ ±3 (mod 8) Ŝ ≤ A K = P2(A)×K(O(NA(P2(A))))

Cn(2t), n > 3 A = Aut(S) K = 〈ϕ〉 × P2(Sϕ2′ )
D4(q), q is odd none if |τ | 6 2, then

K = P2(A)×K(O(NA(P2(A))));
if |τ | = 3, then

K = 〈τ, ψ〉i P2(Sτ )
D4(2t) ϕ ∈ A if |τ | 6 2, then

K = 〈τ, ϕ〉i P2(Sϕ2′ );
if |τ | = 3, then

K = 〈τ, ϕ〉i P2((Sτ )ϕ2′ )
Dn(q), q is odd, n > 5 none K = P2(A)×K(O(NA(P2(A))))

Dn(2t), n > 5 ϕ ∈ A K = 〈τ, ϕ〉i P2(Sϕ2′ )
2Dn(q2), q is odd none K = P2(A)×K(O(NA(P2(A))))

2Dn(22t) A = Aut(S) K = 〈ϕ〉i P2(Sϕ2′ )

Table 16. Groups of automorphisms of exceptional groups of Lie type, containing Carter subgroups.

Group S Conditions on A Structure of K
2B2(22n+1), n > 1 A = Aut(S) K = 〈ϕ〉 × P2(2B2(2))

(2F4(2))′ none K = P2(A)
2F4(22n+1), n > 1 A = Aut(S) K = 〈ϕ〉 × P2(2F4(2))

2G3(32n+1) A = Aut(G) 〈ϕ〉i (2× P ),
where |P | = 3|ϕ|3

3D4(q3), q = 2t is even A = Aut(G) = Gh 〈ζ〉 K = P2(Gζ2′ ) h 〈ζ〉
3D4(q3), q is odd (|A : G|, 3) = 1 K = P2(A)×K(O(NA(P2(A))))
3D4(q3), q is odd |τ | = 2 and A = Gh 〈ψ, τ〉 K = P2(Gτ ) h 〈τ, ψ〉
others, q is odd none K = P2(A)×K(O(NA(P2(A))))
others, q = 2t ϕ ∈ A 〈τ, ϕ〉i P2(Sϕ2′ )
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