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Definitions
Recalling some basics in group theory . . .

Let G be a group.
I Let X be a set, and let F (X ) denote the free group over the

set X . A surjective homomorphism π : F (X ) → G is called
a presentation of G.

I If X is finite, the presentation π will be called finite.
I Let π : F (X ) → G be a presentation of G. The left

Z[G]-module

Rπ : = ker(π)/[ker(π), ker(π)]

is called the relation module of π.



Elementary properties, I
Easy exercises . . .

Proposition (Schreier’s formula)
Let π : F (X ) → G be a finite presentation of the finite group G.
Then Rπ is a free Z-module of rank

rkZ(Rπ) = 1 + |G| · (|X | − 1).



Elementary properties, II
Easy exercises . . .

Definition (Stable equivalence)
Let G be a finite group. The left Z[G]-modules
A, B ∈ ob(G Mod) are called stably-equivalent, if there exists
projective left Z[G]-modules P and Q such that

A ⊕ P ' B ⊕ Q.

Proposition (K.W.Gruenberg [3])
Let ω(G) : = ker(ε) denote the augmentation ideal of the
integral group algebra Z[G] of G. The left Z[G]-module Rπ is
stably-equivalent to ω(G)⊗ ω(G).



An alternative description
Using homological algebra . . .

Proposition (folklore)
Let π : F (X ) → G be a finite presentation of a finite group,
and let (P•, ∂P

• ) be the chain complex of left Z[G]-modules
concentrated in degrees 1 and 0

. . . // 0 //
∐

x∈X Z[G]〈x〉
∂P

1 // Z[G]〈1〉 // 0 // . . . ,

where ∂P
1 (〈x〉) : = (π(x)− 1)〈1〉.

Then one has canonical isomorphisms
I H0(P•, ∂P

• ) = coker(∂P
1 ) ' Z,

I H1(P•, ∂P
• ) = ker(∂P

1 ) ' Rπ.



An example
Easy but not intrinsic . . .

Example (S3 and the standard generators)
Let s, t ∈ S3, ord(s) = 2, ord(t) = 3, and let π : F (s, t) → S3
denote the corresponding presentation. Then
Rπ ≤ Z[S3]〈s〉 ⊕ Z[S3]〈t〉 is the submodule

Rπ = Z[S3](s + 1)〈s〉+ Z[S3](t2 + t + 1)〈t〉
+ Z[S3]

(
(st + 1)〈s〉+ (sts + s)〈t〉

)
.



The co-augmentation
A special feature of relation modules of finite presentations of finite groups . . .

Proposition and Definition (Co-augmentation)
Let π : F (X ) → G be a finite presentation of finite groups, and
let NG ∈ Z[G] be the element NG : =

∑
g∈G g.

I The element r : =
∑

x∈X NG.〈x〉 is contained in ker(∂P
1 ) and

thus in Rπ.
I The mapping η : Z → Rπ, η(1) : = r , will be called the

co-augmentation.
I The left Z[G]-module R̄π : = coker(η) will be called the

reduced relation module of the presentation π.



Projectivity
Folklore . . .

Proposition (folklore)
Let π : F (X ) → G be a finite presentation of the finite group G.
Then R̄π is projective, if and only if G is cyclic.



Euclidean Z[G]-modules
Linear algebra for Z[G]-modules . . .

Definition (Euclidean Z[G]-modules)
Let G be a finite group. A tuple (M, µ) is called an euclidean
Z[G]-module, if

I M is a finitely generated projective left Z[G]-module,
I µ : M ⊗ M → Z is a symmetric map of Z[G]-modules,
I the induced map

µ◦ : M −→ M∗, µ◦(x)(y) : = µ(x ⊗ y)

is an isomorphism.

1⊗ = ⊗Z,
2 ∗ = Hom( , Z) = HomZ( , Z).



Maximally isotropic submodules
Like in geometry . . .

Definition (Maximally isotropic submodules)
Let (M, µ) be an euclidean Z[G]-module. The Z[G]-submodule
R ≤ M is called maximally isotropic, if

I µ|R⊗R = 0,
I the canonical map µR : M/R −→ R∗ induced by µ◦ is an

isomorphism.

Remark
The Z[G]-submodule R ≤ M is maximally isotropic, if and only
if the canonical sequence

0 // R
ι // M

µ̄R // R∗ // 0

is exact.



The relation cone, I
An euclidean Z[G]-module associated to π

Let π : F (X ) → G be a finite presentation of the finite group G.
I Let X : = {x0, . . . , xr−1}.
I Put

Qπ : =
∐

1≤i≤r−1

Z[G]〈xi〉 ⊕
∐

1≤i≤r−1

Z[G]〈x∗i 〉.

Hence Qπ is a free left Z[G]-module of rank 2(|X | − 1).



The relation cone, II
An euclidean Z[G]-module associated to π

I Let ξπ : Qπ ⊗ Qπ → Z[G] be the mapping of left
Z[G]⊗ Z[G]-modules given by

ξπ(xi ⊗ xj) : = −δi,j − π(xi)π(xj)
−1

ξπ(xi ⊗ x∗j ) : = −δi,j + π(xi)(1 − π(xj)
−1)

ξπ(x∗i ⊗ xj) : = −δi,j + (1 − π(xi))π(xj)
−1

ξπ(x∗i ⊗ x∗j ) : = −(1 − π(xi))(1 − π(xj)
−1)

I Put µπ : = ε ◦ ξπ. Then (Qπ, µπ) is an euclidean
Z[G]-module which will be called the relation cone of π.



A structure theorem
on the reduced relation module . . .

Theorem (T.W. [4])
Let π : F (X ) → G be a finite presentation of the finite group G.
Let (Qπ, µπ) be the euclidean Z[G]-module as described before.
Then R̄π is a maximally isotropic submodule of (Qπ, µπ).



The standard complex
A well-known object . . .

Definition (standard complex for free groups)
Let F (X ) be a free group over the set X . Let (P•, ∂P

• ) be the
chain complex of left Z[F (X )]-modules concentrated in degrees
1 and 0

// 0 //
∐

x∈X Z[F (X )]〈x〉
∂P

1 // Z[F (X )]〈1〉 // 0 //

where ∂P
1 (〈x〉) : = (x − 1).〈1〉.

Then P : = (P•, ∂P
• ) is a projective resolution of the trivial left

Z[F (X )]-module Z called the standard complex of F(X).



The dual of the standard complex, I
Another well-known object . . .

Proposition (folklore)
Let X be a finite set, and let ~ : = ×HomF (X)( , Z[F (X )]).
(a) P~ = (P~

• , ∂P~

• ) is a chain complex concentrated in degrees
0 and −1 given by

// Z[F (X )]〈1∗〉
∂P~

0 //
∐

x∈X Z[F (X )]〈x∗〉 //

where ∂P~

0 (〈1∗〉) =
∑

x∈X (x−1 − 1)〈x∗〉.



The dual of the standard complex, II
Another well-known object . . .

Proposition (folklore)
(b)

I H−k (P~) = Hk (F (X ), Z[F (X )]) = 0 for k ∈ Z, k 6= 1.
I H−1(P~) = H1(F (X ), Z[F (X )]) = ×DF (X) is isomorphic to

the (left) dualizing module of F (X ).
I F (X ) is a duality group - in the sense of R.Bieri and

B.Eckmann [2] - of cohomological dimension 1.

By P~[1] one denotes the chain complex P~ shifted one
position to the left with ∂

P~[1]
1 = −∂P~

0 .



A distinguished triangle, I
A less well-known object . . .

Theorem (T.W. [4])
(a) The mapping ζ : P~[1] → P

// Z[F (X )]〈1∗〉
∂

P~[1]
1 //

ζ1
��

∐
x∈X Z[F (X )]〈x∗〉 //

ζ0
��

//
∐

x∈X Z[F (X )]〈x〉
∂P

1 // Z[F (X )]〈1〉 //

where
ζ0(〈x∗〉) : = x .〈1〉,

ζ1(〈1∗〉) : =
∑
x∈X

〈x〉,

is a mapping of chain complexes.



A distinguished triangle, II
A less well-known object . . .

Theorem (T.W. [4])
(b) There exists a distinguished triangle (in D(b)(G Mod))

∆: P[−1]
a // C

b // P~[1]
ζ // P , (†)

where C is a chain complex concentrated in degree 0, and
C0 = H0(C) is a free Z[F (X )]-module of rank 2(|X | − 1). In
particular, one has a short exact sequence

0 // C0
H0(b) // ×DF (X)

H0(ζ) // Z // 0 .



A distinguished triangle, III
A less well-known object . . .

Theorem (T.W. [4])
(c) There exists an isomorphism of distinguished triangles

P[−1]
a // C

b //

c
��

P~[1]
ζ //

−id
��

P

P[−1]
−b~

ω // C~ a~
// P~[1]

ωζ~[1]// P

(‡)

where
I ( ~[1], ω) denotes the standard duality in D(Z[F (X )], σ)[1]

(cf. P.Balmer [1]),
I ( ~, $) denotes the standard duality in D(Z[F (X )], σ)[0],
I c = c~

$.



Deflation on module categories
Another piece of abstract nonsense . . .

Definition (Deflation)
Let φ : A → B be a surjective homomorphism of groups. Then

defφ( ) : A Mod −→ B Mod,

defφ(M) : = Z[B]⊗Z[A] M, M ∈ ob(A Mod)

is called the deflation functor corresponding to φ.

Proposition
The functor defφ( ) has the following properties:

I defφ(M) = Mker(φ).

I defφ( ) is covariant, additive and right exact.
I defφ( ) is mapping projectives to projectives.



Deflation as derived functor, I
More abstract nonsense . . .

Proposition
Let φ : A → B be a surjective homomorphism of groups. The
deflation functor induces a derived functor

defφ( ) : D(b)(Z[A]) −→ D(b)(Z[B]).

In particular, defφ( ) maps distinguished triangles to
distinguished triangles.



Deflation as derived functor, II
More abstract nonsense . . .

Remark (Eckmann-Shapiro-type lemma)
Let φ : A → B be a surjective homomorphism of groups.

I Let defφk : = Hk (defφ( [[0]])). Then one has

defφk (Z) = Hk (ker(φ), Z).

I In particular, if π : F (X ) → G is a presentation, then
I defπ0 (Z) = Z,
I defπ1 (Z) = Rπ,
I defπk (Z) = 0 for k 6= 0, 1.



Deflation as unitary functor
Abstract madness . . .

Proposition
Let φ : A → B be a surjective homomorphism of groups. Then

def : D(Z[A], σ)[d ] −→ D(Z[B], σ)[d ]

is a unitary functor1for all d ∈ Z. In particular, the functor
defφ( ) maps an isomorphism of distinguished triangles of type
(‡) to an isomorphism of distinguished triangles of type (‡).

1Unitary ⇔ ∃ a natural transformation between defφ( ~) and defφ( )~

satisfying certain properties.



Dualizing modules of finite groups, I
Bringing the nonsense to life . . .

Proposition (Eckmann-Shapiro lemma)
Let G be a finite group and M ∈ ob(G Mod). Then one has a
natural isomorphism

M~ = ×HomG(M, Z[G]) ' Hom(M, Z) = M∗.



Dualizing modules of finite groups, II
Bringing the nonsense to life . . .

Corollary
Let G be a finite group. Then

~ : G Modop −→ G Mod

is an additive, contravariant, relatively exact functor, i.e. if
0 → A α→ B

β→ C → 0 is a short exact sequence of left
Z[G]-modules, which splits as sequence of abelian groups, then

0 // C~
β~

// B~ α~
// A~ // 0

is short exact.



A 5-term exact sequence
Applying homology to abstract nonsense . . .

Theorem (T.W. [4])
Let π : F (X ) → G be a finite presentation of the finite group G.
The homology functor applied to the distinguished triangle
defπ(∆) yields a long exact sequence

0 // Z
η // Rπ

ῑ // Qπ
ῑ◦ // R∗

π
η∗ // Z // 0 .

where ῑ◦ : = ῑ∗ ◦ (µπ)◦.
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