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Definitions

Recalling some basics in group theory ...

Let G be a group.

» Let X be a set, and let F(X) denote the free group over the
set X. A surjective homomorphism 7: F(X) — G is called
a presentation of G.

» If X is finite, the presentation = will be called finite.

» Let m: F(X) — G be a presentation of G. The left
Z|@G]-module

Ry : = ker(r)/[ker(), ker(r)]

IS called the relation module of .
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Elementary properties, |

Easy exercises ...

Proposition (Schreier’'s formula)

Letm: F(X) — @G be a finite presentation of the finite group G.
Then ‘R is a free Z-module of rank

ke (Re) = 14 Gl - (1X] = 1).
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Elementary properties, Il

Easy exercises ...

Definition (Stable equivalence)

Let G be a finite group. The left Z|G]-modules
A, B € ob(sMod) are called stably-equivalent, if there exists
projective left Z|G|-modules P and Q such that

AP~ Ba& Q.

Proposition (K.W.Gruenberg [3])

Let w(@G): = ker(e) denote the augmentation ideal of the
integral group algebra 7[G] of G. The left Z|G]-module R is
stably-equivalent to w(G) ® w(Q).
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An alternative description

Using homological algebra ...

Proposition (folklore)

Letm: F(X) — @G be a finite presentation of a finite group,
and let (P,, 0L be the chain complex of left Z|G]-modules
concentrated in degrees 1 and O

P

0 — [y ZIGI(X) —~ Z[G](1) 0

where 81’3(<x>): = (m(x) — 1)(1).

Then one has canonical isomorphisms
> Ho(P.,0Y) = coker(9)) ~ Z,
> Hi(P,,0) = ker(0F) ~ R,.
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An example

Easy but not intrinsic ...

Example (S; and the standard generators)

Let s, t € S3, ord(s) =2, ord(f) = 3,and let 7: F(s,t) — S3
denote the corresponding presentation. Then

R, < Z[S3](s) & Z[S3](t) is the submodule

R, = Z[S5](s + 1)(s) + Z[S3](t? + t + 1) (1)
+ Z[S3]((st + 1)(s) + (sts + s)(t)).
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The co-augmentation

A special feature of relation modules of finite presentations of finite groups ...

Proposition and Definition (Co-augmentation)
Letm: F(X) — G be a finite presentation of finite groups, and
let Ng € Z|G] be the element Ng: = > _,.59.
» The elementr: =Y,y Ng.(x) is contained in ker(0f) and
thus in R.
» The mapping n: Z — R, n(1): = r, will be called the
co-augmentation.

» The left Z[G]-module i, : = coker(n) will be called the
reduced relation module of the presentation .
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Projectivity

Folklore ...

Proposition (folklore)

Letw: F(X) — G be a finite presentation of the finite group G.
Then ‘R is projective, if and only if G is cyclic.
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Euclidean Z[G]-modules

Linear algebra for Z[G]-modules ...

Definition (Euclidean Z[G]-modules)

Let G be a finite group. A tuple (M, 1) is called an euclidean
Z|G]-module, if

» M is a finitely generated projective left Z[G]-module,
> u: M@ M — Zis a symmetric map of Z[G]-modules,
» the induced map

po: M — M*, uo(x)(y): = u(x @ y)

IS an isomorphism.

'® = ®z,
2_* = Hom(_,Z) = Homz(_, Z). o



Maximally isotropic submodules

Like in geometry ...

Definition (Maximally isotropic submodules)

Let (M, 1) be an euclidean Z[G]-module. The Z[G]-submodule
R < M is called maximally isotropic, if

> :LL’R(X)R — O!

» the canonical map ur: M/R — R* induced by . is an
Isomorphism.

Remark
The Z[G]-submodule R < M is maximally isotropic, if and only
if the canonical sequence

L LR

O—R——M—R"——0

IS exact.
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The relation cone, |

An euclidean Z[G]-module associated to 7

Let 7: F(X) — @G be a finite presentation of the finite group G.
» Let X: ={xp,...,X_1}.
» Put
Q= || zlGixye ] zZlGlx).

1<i<r—1 1<i<r—1

Hence Q; is a free left Z[G]-module of rank 2(|X| — 1).
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The relation cone, Il

An euclidean Z[G]-module associated to 7

» Let &0 Qr ® Q. — Z[G] be the mapping of left
Z| G| ® Z[G]-modules given by
En(Xi ® X)) = —6j; — m(X;)m(x))
En(Xi @ X )= =6+ 7(x)(1 = 7(x)"")
(X x) =8+ (1 —7m(x)m(x)""
&G @x): = —(1 —7(x)(1 —m(x)"")

» Put yu,: =¢eo&;. Then (Q, ur) is an euclidean
7| G]-module which will be called the relation cone of .
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A structure theorem

on the reduced relation module ...

Theorem (T.W. [4])

Letm: F(X) — @G be a finite presentation of the finite group G.
Let (Qx, r) be the euclidean Z[G]-module as described before.
Then R, is a maximally isotropic submodule of (Qy, ).
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The standard complex

A well-known object ...

Definition (standard complex for free groups)

Let F(X) be a free group over the set X. Let (P,, ) be the
chain complex of left Z[F(X)]-modules concentrated in degrees
1and 0

P

0 TLeex ZIF(X))(X) — ZF (X)) (1) —— 0

where 97 ((x)): = (x — 1).(1).
Then P: = (P,,dF) is a projective resolution of the trivial left
Z|F(X)]-module Z called the standard complex of F(X).
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The dual of the standard complex, |

Another well-known object . ..

Proposition (folklore)

Let X be a finite set, and let _®: = *Homg(x)(—, Z[F(X)]).

(a) P® = (P®,0F ®) Is a chain complex concentrated in degrees
0 and —1 given by

p®

IR0 L T L ZIF(O))(XT) ——

where 9§ ((17)) = Y yex (X = 1)(x*).
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The dual of the standard complex, I

Another well-known object . ..

Proposition (folklore)
(b)
> H_x(P®) = HX(F(X),Z[F(X)]) =0fork € Z, k # 1.
> H_1(P®) = H'(F(X),Z[F(X)]) = *Dg(x) is isomorphic to
the (left) dualizing module of F(X).

» F(X) is a duality group - in the sense of R.Bieri and
B.Eckmann [2] - of cohomological dimension 1.

By P®[1] one denotes the chain complex P® shifted one

position to the left with 07 [' = —5P°
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A distinguished triangle, |

A less well-known object ...

Theorem (T.W. [4])
(a) The mapping ¢: P®[1] — P

P® [1]

G l Col
8'D

—— [xex ZIF(X)[{x) ———Z[F(X)|(1)

where

Co({x7)): = x.(1),
G(1%): = D%,

xeX

Is a mapping of chain complexes.

ZIFOON1*) — 2 Tex ZIF (O] () ——
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A distinguished triangle, I

A less well-known object ...

Theorem (T.W. [4])
(b) There exists a distinguished triangle (in D (g Mod))

A Pl-1]—3~Cc—2= P[] —>P, ()

where C is a chain complex concentrated in degree 0, and
Co = Hy(C) is a free Z|F(X)]-module of rank 2(|X| —1). In
particular, one has a short exact sequence

Ho (b H,
0—— Cog “Drx) L Z 0.
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A distinguished triangle, Il

A less well-known object ...

Theorem (T.W. [4])
(c) There exists an isomorphism of distinguished triangles

Pl-1]—2>C—2 > PO[1] > P (1)

lc l_,d
—bg By ]

PI—1] 2> co -2 popy] =2

where

> (_®[1],w) denotes the standard duality in ©(Z[F(X)], o)[1]
(cf. RBalmer [1]),

» (_®, @) denotes the standard duality in ©(Z[F (X)], )[0],
> c=C2.
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Deflation on module categories

Another piece of abstract nonsense ...

Definition (Deflation)
Let ¢: A — B be a surjective homomorphism of groups. Then

def?(_): 4Mod — gMod,
def?(M): = Z[B] @z q M, M € ob(4Mod)

is called the deflation functor corresponding to ¢.

Proposition

The functor def?(_) has the following properties:
> def®(M) = Myer(s)-
» def?(_) is covariant, additive and right exact.
» def? (_) is mapping projectives to projectives.
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Deflation as derived functor, |

More abstract nonsense ...

Proposition

Let o: A — B be a surjective homomorphism of groups. The
deflation functor induces a derived functor

0ef?(): D (1) (Z[A]) — D(r)(Z[B]).

In particular, v¢f*(_) maps distinguished triangles to
distinguished triangles.
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Deflation as derived functor, |

More abstract nonsense ...

Remark (Eckmann-Shapiro-type lemma)
Let o: A— B be a surjective homomorphism of groups.
> Letdef}: = Hk(def*(_[0])). Then one has

def(Z) = Hk(ker(¢), Z).

» In particular, if m: F(X) — G is a presentation, then
» def((Z) = Z,
» deff (Z) = R,
» defg(Z) =0 fork #0,1.
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Deflation as unitary functor

Abstract madness ...

Proposition
Let : A — B be a surjective homomorphism of groups. Then

0ef: D(ZI[A], o)[d] — D(Z][B], 0)[d]

is a unitary functor’ for all d € Z. In particular, the functor
2¢f?(_) maps an isomorphism of distinguished triangles of type
(1) to an isomorphism of distinguished triangles of type (1).

"Unitary < 3 a natural transformation between 2¢f*(__®) and vef*(_)®
satisfying certain propertes. 7



Dualizing modules of finite groups, |

Bringing the nonsense to life ...

Proposition (Eckmann-Shapiro lemma)

Let G be a finite group and M € ob(z Mod). Then one has a
natural isomorphism

M® = *Homg(M, Z[G]) ~ Hom(M, Z) = M*.
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Dualizing modules of finite groups, |l

Bringing the nonsense to life ...

Corollary
Let G be a finite group. Then

_®: sMod°® — ;Mod

Is an additive, contravariant, relatively exact functor, i.e. if

0—A%B2L C— 0isa short exact sequence of left
7| G]-modules, which splits as sequence of abelian groups, then

6@

0—>Cc®- 2 »pe 2L pe .0

IS short exact.
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A 5-term exact sequence

Applying homology to abstract nonsense ...

Theorem (T.W. [4])

Let: F(X) — @G be a finite presentation of the finite group G.
The homology functor applied to the distinguished triangle
0ef"(A) yields a long exact sequence

%k

0—>7 =M, —>Q, =Rt L >y 0.

whereto: = 1% o (ir)o-
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