

On the Relation Module of a Finite Group

Th.Weigel

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA
Dipartimento di Matematica e Applicazioni

Teoria dei gruppi e applicazioni, Padova 2006

Definitions

Recalling some basics in group theory ...

Let G be a group.

- ▶ Let X be a set, and let $F(X)$ denote the free group over the set X . A surjective homomorphism $\pi: F(X) \rightarrow G$ is called a **presentation of G** .
- ▶ If X is finite, the presentation π will be called **finite**.
- ▶ Let $\pi: F(X) \rightarrow G$ be a presentation of G . The left $\mathbb{Z}[G]$ -module

$$\mathfrak{R}_\pi := \ker(\pi)/[\ker(\pi), \ker(\pi)]$$

is called the **relation module** of π .

Elementary properties, I

Easy exercises ...

Proposition (Schreier's formula)

Let $\pi: F(X) \rightarrow G$ be a finite presentation of the finite group G . Then \mathfrak{R}_π is a free \mathbb{Z} -module of rank

$$\text{rk}_{\mathbb{Z}}(\mathfrak{R}_\pi) = 1 + |G| \cdot (|X| - 1).$$

Elementary properties, II

Easy exercises ...

Definition (Stable equivalence)

Let G be a finite group. The left $\mathbb{Z}[G]$ -modules $A, B \in ob({}_G \text{Mod})$ are called *stably-equivalent*, if there exists projective left $\mathbb{Z}[G]$ -modules P and Q such that

$$A \oplus P \simeq B \oplus Q.$$

Proposition (K.W.Gruenberg [3])

Let $\omega(G) := \ker(\varepsilon)$ denote the augmentation ideal of the integral group algebra $\mathbb{Z}[G]$ of G . The left $\mathbb{Z}[G]$ -module \mathfrak{R}_π is stably-equivalent to $\omega(G) \otimes \omega(G)$.

An alternative description

Using homological algebra ...

Proposition (folklore)

Let $\pi: F(X) \rightarrow G$ be a finite presentation of a finite group, and let $(P_\bullet, \partial_\bullet^P)$ be the chain complex of left $\mathbb{Z}[G]$ -modules concentrated in degrees 1 and 0

$$\cdots \longrightarrow 0 \longrightarrow \coprod_{x \in X} \mathbb{Z}[G]\langle x \rangle \xrightarrow{\partial_1^P} \mathbb{Z}[G]\langle 1 \rangle \longrightarrow 0 \longrightarrow \cdots,$$

where $\partial_1^P(\langle x \rangle) := (\pi(x) - 1)\langle 1 \rangle$.

Then one has canonical isomorphisms

- ▶ $H_0(P_\bullet, \partial_\bullet^P) = \text{coker}(\partial_1^P) \simeq \mathbb{Z}$,
- ▶ $H_1(P_\bullet, \partial_\bullet^P) = \ker(\partial_1^P) \simeq \mathfrak{R}_\pi$.

An example

Easy but not intrinsic . . .

Example (S_3 and the standard generators)

Let $s, t \in S_3$, $\text{ord}(s) = 2$, $\text{ord}(t) = 3$, and let $\pi: F(s, t) \rightarrow S_3$ denote the corresponding presentation. Then

$\mathfrak{R}_\pi \leq \mathbb{Z}[S_3]\langle s \rangle \oplus \mathbb{Z}[S_3]\langle t \rangle$ is the submodule

$$\begin{aligned}\mathfrak{R}_\pi = \mathbb{Z}[S_3](s + 1)\langle s \rangle + \mathbb{Z}[S_3](t^2 + t + 1)\langle t \rangle \\ + \mathbb{Z}[S_3]((st + 1)\langle s \rangle + (sts + s)\langle t \rangle).\end{aligned}$$

The co-augmentation

A special feature of relation modules of finite presentations of finite groups ...

Proposition and Definition (Co-augmentation)

Let $\pi: F(X) \rightarrow G$ be a *finite presentation of finite groups*, and let $N_G \in \mathbb{Z}[G]$ be the element $N_G := \sum_{g \in G} g$.

- ▶ The element $r := \sum_{x \in X} N_G \cdot \langle x \rangle$ is contained in $\ker(\partial_1^P)$ and thus in \mathfrak{R}_π .
- ▶ The mapping $\eta: \mathbb{Z} \rightarrow \mathfrak{R}_\pi$, $\eta(1) := r$, will be called the **co-augmentation**.
- ▶ The left $\mathbb{Z}[G]$ -module $\bar{\mathfrak{R}}_\pi := \text{coker}(\eta)$ will be called the **reduced relation module** of the presentation π .

Projectivity

Folklore ...

Proposition (folklore)

Let $\pi: F(X) \rightarrow G$ be a finite presentation of the finite group G . Then $\bar{\mathfrak{R}}_\pi$ is projective, if and only if G is cyclic.

Euclidean $\mathbb{Z}[G]$ -modules

Linear algebra for $\mathbb{Z}[G]$ -modules ...

Definition (Euclidean $\mathbb{Z}[G]$ -modules)

Let G be a finite group. A tuple (M, μ) is called an **euclidean $\mathbb{Z}[G]$ -module**, if

- ▶ M is a finitely generated projective left $\mathbb{Z}[G]$ -module,
- ▶ $\mu: M \otimes M \rightarrow \mathbb{Z}$ is a symmetric map of $\mathbb{Z}[G]$ -modules,
- ▶ the induced map

$$\mu_{\circ}: M \longrightarrow M^*, \quad \mu_{\circ}(x)(y) := \mu(x \otimes y)$$

is an isomorphism.

¹ $\otimes = \otimes_{\mathbb{Z}}$,

² $\underline{}^* = \text{Hom}(\underline{}, \mathbb{Z}) = \text{Hom}_{\mathbb{Z}}(\underline{}, \mathbb{Z})$.

Maximally isotropic submodules

Like in geometry ...

Definition (Maximally isotropic submodules)

Let (M, μ) be an euclidean $\mathbb{Z}[G]$ -module. The $\mathbb{Z}[G]$ -submodule $R \leq M$ is called **maximally isotropic**, if

- ▶ $\mu|_{R \otimes R} = 0$,
- ▶ the canonical map $\mu_R: M/R \longrightarrow R^*$ induced by μ_\circ is an isomorphism.

Remark

The $\mathbb{Z}[G]$ -submodule $R \leq M$ is maximally isotropic, if and only if the canonical sequence

$$0 \longrightarrow R \xrightarrow{\iota} M \xrightarrow{\bar{\mu}_R} R^* \longrightarrow 0$$

is exact.

The relation cone, I

An euclidean $\mathbb{Z}[G]$ -module associated to π

Let $\pi: F(X) \rightarrow G$ be a finite presentation of the finite group G .

- ▶ Let $X := \{x_0, \dots, x_{r-1}\}$.
- ▶ Put

$$Q_\pi := \coprod_{1 \leq i \leq r-1} \mathbb{Z}[G]\langle x_i \rangle \oplus \coprod_{1 \leq i \leq r-1} \mathbb{Z}[G]\langle x_i^* \rangle.$$

Hence Q_π is a free left $\mathbb{Z}[G]$ -module of rank $2(|X| - 1)$.

The relation cone, II

An euclidean $\mathbb{Z}[G]$ -module associated to π

- ▶ Let $\xi_\pi : Q_\pi \otimes Q_\pi \rightarrow \mathbb{Z}[G]$ be the mapping of left $\mathbb{Z}[G] \otimes \mathbb{Z}[G]$ -modules given by

$$\xi_\pi(x_i \otimes x_j) := -\delta_{i,j} - \pi(x_i)\pi(x_j)^{-1}$$

$$\xi_\pi(x_i \otimes x_j^*) := -\delta_{i,j} + \pi(x_i)(1 - \pi(x_j)^{-1})$$

$$\xi_\pi(x_i^* \otimes x_j) := -\delta_{i,j} + (1 - \pi(x_i))\pi(x_j)^{-1}$$

$$\xi_\pi(x_i^* \otimes x_j^*) := -(1 - \pi(x_i))(1 - \pi(x_j)^{-1})$$

- ▶ Put $\mu_\pi := \varepsilon \circ \xi_\pi$. Then (Q_π, μ_π) is an euclidean $\mathbb{Z}[G]$ -module which will be called **the relation cone of π** .

A structure theorem

on the reduced relation module . . .

Theorem (T.W. [4])

Let $\pi: F(X) \rightarrow G$ be a finite presentation of the finite group G .

Let (Q_π, μ_π) be the euclidean $\mathbb{Z}[G]$ -module as described before.

Then $\bar{\mathcal{R}}_\pi$ is a maximally isotropic submodule of (Q_π, μ_π) .

The standard complex

A well-known object ...

Definition (standard complex for free groups)

Let $F(X)$ be a free group over the set X . Let $(P_\bullet, \partial_\bullet^P)$ be the chain complex of left $\mathbb{Z}[F(X)]$ -modules concentrated in degrees 1 and 0

$$\longrightarrow 0 \longrightarrow \coprod_{x \in X} \mathbb{Z}[F(X)]\langle x \rangle \xrightarrow{\partial_1^P} \mathbb{Z}[F(X)]\langle 1 \rangle \longrightarrow 0 \longrightarrow$$

where $\partial_1^P(\langle x \rangle) := (x - 1).\langle 1 \rangle$.

Then $P := (P_\bullet, \partial_\bullet^P)$ is a projective resolution of the trivial left $\mathbb{Z}[F(X)]$ -module \mathbb{Z} called the **standard complex of $F(X)$** .

The dual of the standard complex, I

Another well-known object . . .

Proposition (folklore)

Let X be a finite set, and let $-\circledast := {}^{\times}\text{Hom}_{F(X)}(-, \mathbb{Z}[F(X)]).$

(a) $P^{\circledast} = (P_{\bullet}^{\circledast}, \partial_{\bullet}^{P^{\circledast}})$ is a chain complex concentrated in degrees 0 and -1 given by

$$\longrightarrow \mathbb{Z}[F(X)]\langle 1^* \rangle \xrightarrow{\partial_0^{P^{\circledast}}} \coprod_{x \in X} \mathbb{Z}[F(X)]\langle x^* \rangle \longrightarrow$$

where $\partial_0^{P^{\circledast}}(\langle 1^* \rangle) = \sum_{x \in X} (x^{-1} - 1) \langle x^* \rangle.$

The dual of the standard complex, II

Another well-known object . . .

Proposition (folklore)

(b)

- ▶ $H_{-k}(P^\circledast) = H^k(F(X), \mathbb{Z}[F(X)]) = 0$ for $k \in \mathbb{Z}$, $k \neq 1$.
- ▶ $H_{-1}(P^\circledast) = H^1(F(X), \mathbb{Z}[F(X)]) = {}^\times D_{F(X)}$ is isomorphic to the (left) dualizing module of $F(X)$.
- ▶ $F(X)$ is a duality group - in the sense of R.Bieri and B.Eckmann [2] - of cohomological dimension 1.

By $P^\circledast[1]$ one denotes the chain complex P^\circledast shifted one position to the left with $\partial_1^{P^\circledast[1]} = -\partial_0^{P^\circledast}$.

A distinguished triangle, I

A less well-known object ...

Theorem (T.W. [4])

(a) *The mapping $\zeta: P^{\circledast}[1] \rightarrow P$*

$$\begin{array}{ccccccc} & & & \partial_1^{P^{\circledast}[1]} & & & \\ \longrightarrow & \mathbb{Z}[F(X)]\langle 1^* \rangle & \xrightarrow{\partial_1^{P^{\circledast}[1]}} & \coprod_{x \in X} \mathbb{Z}[F(X)]\langle x^* \rangle & \longrightarrow & & \\ & \zeta_1 \downarrow & & & \zeta_0 \downarrow & & \\ & & & \partial_1^P & & & \\ \longrightarrow & \coprod_{x \in X} \mathbb{Z}[F(X)]\langle x \rangle & \xrightarrow{\partial_1^P} & \mathbb{Z}[F(X)]\langle 1 \rangle & \longrightarrow & & \end{array}$$

where

$$\zeta_0(\langle x^* \rangle) := x.\langle 1 \rangle,$$

$$\zeta_1(\langle 1^* \rangle) := \sum_{x \in X} \langle x \rangle,$$

is a mapping of chain complexes.

A distinguished triangle, II

A less well-known object ...

Theorem (T.W. [4])

(b) *There exists a distinguished triangle (in $\mathfrak{D}_{(b)}(G \text{ Mod})$)*

$$\Delta: \quad P[-1] \xrightarrow{a} C \xrightarrow{b} P^\otimes[1] \xrightarrow{\zeta} P , \quad (\dagger)$$

where C is a chain complex concentrated in degree 0, and $C_0 = H_0(C)$ is a free $\mathbb{Z}[F(X)]$ -module of rank $2(|X| - 1)$. In particular, one has a short exact sequence

$$0 \longrightarrow C_0 \xrightarrow{H_0(b)} D_{F(X)} \xrightarrow{H_0(\zeta)} \mathbb{Z} \longrightarrow 0 .$$

A distinguished triangle, III

A less well-known object ...

Theorem (T.W. [4])

(c) *There exists an isomorphism of distinguished triangles*

$$\begin{array}{ccccccc} P[-1] & \xrightarrow{a} & C & \xrightarrow{b} & P^\circledast[1] & \xrightarrow{\zeta} & P \\ \parallel & & \downarrow c & & \downarrow -id & & \parallel \\ P[-1] & \xrightarrow{-b_\omega^\circledast} & C^\circledast & \xrightarrow{a^\circledast} & P^\circledast[1] & \xrightarrow{\omega\zeta^\circledast[1]} & P \end{array} \quad (\ddagger)$$

where

- ▶ $(-^\circledast[1], \omega)$ denotes the standard duality in $\mathcal{D}(\mathbb{Z}[F(X)], \sigma)[1]$ (cf. P.Balmer [1]),
- ▶ $(-^\circledast, \varpi)$ denotes the standard duality in $\mathcal{D}(\mathbb{Z}[F(X)], \sigma)[0]$,
- ▶ $c = c_{\varpi}^\circledast$.

Deflation on module categories

Another piece of abstract nonsense ...

Definition (Deflation)

Let $\phi: A \rightarrow B$ be a surjective homomorphism of groups. Then

$$\text{def}^\phi(_): {}_A \text{Mod} \longrightarrow {}_B \text{Mod},$$

$$\text{def}^\phi(M) := \mathbb{Z}[B] \otimes_{\mathbb{Z}[A]} M, \quad M \in \text{ob}({}_A \text{Mod})$$

is called the **deflation functor** corresponding to ϕ .

Proposition

The functor $\text{def}^\phi(_)$ has the following properties:

- ▶ $\text{def}^\phi(M) = M_{\ker(\phi)}$.
- ▶ $\text{def}^\phi(_)$ is covariant, additive and right exact.
- ▶ $\text{def}^\phi(_)$ is mapping projectives to projectives.

Deflation as derived functor, I

More abstract nonsense ...

Proposition

Let $\phi: A \rightarrow B$ be a surjective homomorphism of groups. The deflation functor induces a derived functor

$$\mathsf{def}^\phi(_): \mathfrak{D}_{(b)}(\mathbb{Z}[A]) \longrightarrow \mathfrak{D}_{(b)}(\mathbb{Z}[B]).$$

In particular, $\mathsf{def}^\phi(_)$ maps distinguished triangles to distinguished triangles.

Deflation as derived functor, II

More abstract nonsense ...

Remark (Eckmann-Shapiro-type lemma)

Let $\phi: A \rightarrow B$ be a surjective homomorphism of groups.

- ▶ *Let $\text{def}_k^\phi := H_k(\mathfrak{def}^\phi(-\llbracket 0 \rrbracket))$. Then one has*

$$\text{def}_k^\phi(\mathbb{Z}) = H_k(\ker(\phi), \mathbb{Z}).$$

- ▶ *In particular, if $\pi: F(X) \rightarrow G$ is a presentation, then*
 - ▶ $\text{def}_0^\pi(\mathbb{Z}) = \mathbb{Z}$,
 - ▶ $\text{def}_1^\pi(\mathbb{Z}) = \mathfrak{R}_\pi$,
 - ▶ $\text{def}_k^\pi(\mathbb{Z}) = 0$ for $k \neq 0, 1$.

Deflation as unitary functor

Abstract madness ...

Proposition

Let $\phi: A \rightarrow B$ be a surjective homomorphism of groups. Then

$$\mathsf{def}: \mathcal{D}(\mathbb{Z}[A], \sigma)[d] \longrightarrow \mathcal{D}(\mathbb{Z}[B], \sigma)[d]$$

*is a **unitary functor**¹ for all $d \in \mathbb{Z}$. In particular, the functor $\mathsf{def}^\phi(_)$ maps an isomorphism of distinguished triangles of type (\ddagger) to an isomorphism of distinguished triangles of type (\ddagger) .*

¹Unitary $\Leftrightarrow \exists$ a natural transformation between $\mathsf{def}^\phi(_^\otimes)$ and $\mathsf{def}^\phi(_)^{\otimes}$ satisfying certain properties.

Dualizing modules of finite groups, I

Bringing the nonsense to life ...

Proposition (Eckmann-Shapiro lemma)

Let G be a finite group and $M \in ob({}_G \text{Mod})$. Then one has a natural isomorphism

$$M^* = {}^{\times} \text{Hom}_G(M, \mathbb{Z}[G]) \simeq \text{Hom}(M, \mathbb{Z}) = M^*.$$

Dualizing modules of finite groups, II

Bringing the nonsense to life ...

Corollary

Let G be a finite group. Then

$$-^\otimes: {}_G \text{Mod}^{\text{op}} \longrightarrow {}_G \text{Mod}$$

*is an additive, contravariant, relatively exact functor, i.e. if
 $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ is a short exact sequence of left
 $\mathbb{Z}[G]$ -modules, which splits as sequence of abelian groups, then*

$$0 \longrightarrow C^\otimes \xrightarrow{\beta^\otimes} B^\otimes \xrightarrow{\alpha^\otimes} A^\otimes \longrightarrow 0$$

is short exact.

A 5-term exact sequence

Applying homology to abstract nonsense . . .

Theorem (T.W. [4])

Let $\pi: F(X) \rightarrow G$ be a finite presentation of the finite group G . The homology functor applied to the distinguished triangle $\mathsf{Def}^\pi(\Delta)$ yields a long exact sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\eta} \mathfrak{R}_\pi \xrightarrow{\bar{\iota}} Q_\pi \xrightarrow{\bar{\iota}_\circ} \mathfrak{R}_\pi^* \xrightarrow{\eta^*} \mathbb{Z} \longrightarrow 0 .$$

where $\bar{\iota}_\circ := \bar{\iota}^ \circ (\mu_\pi)_\circ$.*

Bibliography

- P. Balmer, *Triangular Witt groups. I. The 12-term localization exact sequence*, *K-Theory* **19** (2000), no. 4, 311–363.
- R. Bieri and B. Eckmann, *Groups with homological duality generalizing Poincaré duality*, *Invent. Math.* **20** (1973), 103–124.
- K. W. Gruenberg, *Relation modules of finite groups*, American Mathematical Society, Providence, R.I., 1976, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 25.
- Th. Weigel, *On the dualizing module of free groups and the relation-correlation triangle*, unpublished, 2006.