ALGEBRA 1

Terzo appello - 3 settembre 2007

Esercizio 1

Per una funzione $f: X \to Y$ si dica se sono vere le proposizioni seguenti (dimostrazione o controesempio!):

- a) se $\{B_i\}_{i\in I}$ è una famiglia di sottoinsiemi di Y risulta $f^{-1}(\cap_{i\in I}B_i) = \cap_{i\in I}f^{-1}(B_i)$. b) se $\{A_j\}_{j\in J}$ è una famiglia di sottoinsiemi di X risulta $f(\cap_{j\in J}A_j) = \cap_{j\in J}f(A_j)$.

Esercizio 2

Si dica quante sono e si elenchino le classi resto $\bar{x} \in \mathbb{Z}/105\mathbb{Z}$ tali che $40\bar{x} = 15$.

Esercizio 3

Si fattorizzi in irriducibili il polinomio $f(x) = x^3 + x^2 - x + 2$

c) in $\mathbb{Z}/7\mathbb{Z}[x]$. a) in $\mathbb{R}[x]$; b) in $\mathbb{Q}[x]$;

Esercizio 4

Si dimostri che per ogni $n \geq 1$ si ha

$$1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Esercizio 5

- a) Si completi la definizione: "Il polinomio $f \in \mathbb{Z}[x]$ si dice primitivo se ..."
- b) Si dimostri che il prodotto di due polinomi primitivi è primitivo (Lemma di Gauss.)

Esercizio 6

Date le permutazioni in Sym(9)

si determini l'ordine e la classe della permutazione $\alpha^2 \circ \beta^{-1}$.