ALGEBRA PER INFORMATICA

Esame scritto - 20 dicembre 2006

Esercizio 1

Dato l'anello $R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, a, b \text{ coprimi, } 2 \nmid b \right\}$ con la somma e il prodotto soliti tra frazioni, si dimostri che il sottoinsieme $I \subseteq R$ dato da $I = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, a, b \text{ coprimi, } 2 \nmid b, 2 \mid a \right\}$

- \bullet è un ideale di R;
- \bullet è un ideale massimale di R;
- ullet è l'unico ideale massimale di R.

Esercizio 2

Con le notazioni dell'esercizio precedente: quanti elementi ha il campo R/I?

Esercizio 3

Si risolvano i seguenti sistemi di congruenze in \mathbb{Z} .

$$a)\left\{\begin{array}{ll} x\equiv 45\pmod{89}\\ 3x\equiv 7\pmod{10} \end{array}\right. \qquad b)\left\{\begin{array}{ll} 5x\equiv 12\pmod{35}\\ x\equiv 12\pmod{41} \end{array}\right.$$

Esercizio 4

Sia R un campo, sia S un anello e sia $f: R \to S$ un omomorfismo di anelli. Dimostrare che o f è iniettivo o manda tutti gli elementi di R in 0.

Esercizio 5

Si dimostri che l'anello $\mathbb{Z}/m\mathbb{Z}$ ha degli elementi nilpotenti diversi da zero se e solo se esiste un numero primo p tale che $p^2 \mid m$.

Esercizio 6

Sia G un gruppo e H un suo sottogruppo. Definiamo il *centralizzante di H in G* come $C(H) = \{x \in G \mid hx = xh \text{ per ogni } h \in H\}$. Si dimostri che C(H) è un sottogruppo di G.

Esercizio 7

Dati i polinomi

$$f(x) = x^4 - 2x^3 - 2x - 1$$
 e $g(x) = x^3 + x^2 - 6x + 1$

appartenenti a $\mathbb{Z}/7\mathbb{Z}[x]$ trovare il loro massimo comune divisore M(x) e trovare due polinomi $\lambda(x), \mu(x) \in \mathbb{Z}/7\mathbb{Z}[x]$ tali che $\lambda(x)f(x) + \mu(x)g(x) = M(x)$.

Esercizio 8

Sia G un gruppo finito e sia n un numero intero coprimo con $\mid G \mid$. Dimostrare che ogni elemento $g \in G$ si può scrivere come $g = x^n$ per qualche $x \in G$.

Esercizio 9

Si scrivano tutti i polinomi di secondo grado irriducibili di $\mathbb{Z}/3\mathbb{Z}[x]$. Si scriva un campo K di 9 elementi spiegando nel dettaglio perché K è un campo.