ALGEBRA PER INFORMATICA

Esame scritto - 4 settembre 2007

Esercizio 1

Sia G un gruppo. Si provi che l'unione insiemistica di due suoi sottogruppi è un sottogruppo se e solo se uno dei due è contenuto nell'altro. Si diano due esempi di questo fatto nel caso di due sottogruppi di $(\mathbb{Z}, +)$ (uno in cui l'unione insiemistica dei due suoi sottogruppi è un sottogruppo, uno in cui non lo è).

Esercizio 2

Si risolvano i seguenti sistemi di congruenze in \mathbb{Z} .

$$a) \left\{ \begin{array}{l} 2x \equiv 7 \pmod{9} \\ 4x \equiv 3 \pmod{5} \end{array} \right. \pmod{5} \qquad \qquad b) \left\{ \begin{array}{l} 1025x \equiv 5312065 \pmod{8} \\ 36x \equiv 322 \pmod{5} \\ 4x \equiv 7 \pmod{3} \end{array} \right.$$

Esercizio 3

Dati i polinomi

$$f(x) = x^3 - 6x^2 + x + 4$$
 e $q(x) = x^5 - 6x + 1$

appartenenti a $\mathbb{Q}[x]$ trovarne un massimo comune divisore M(x) e trovare due polinomi $\lambda(x), \mu(x) \in \mathbb{Q}[x]$ tali che $\lambda(x)f(x) + \mu(x)g(x) = M(x)$.

Esercizio 4

Dimostrare per induzione su a che per ogni intero $a \ge 0$ e per ogni primo p si ha

$$a^p \equiv a(\text{mod}p).$$

Estendere la dimostrazione a tutti gli interi a, non necessariamente positivi.

Esercizio 5

Il centro Z(G) di un gruppo G è $\{x \in G \mid gx = xg \text{ per tutti gli elementi } g \in G\}$. Dimostrare che Z(G) è un sottogruppo di G. È normale?

Esercizio 6

Nell'anello degli interi $\mathbb Z$ si consideri un ideale $m\mathbb Z$. Si dimostri che l'ideale è primo se e solo se m è un numero primo. Se ne deduca che tutti gli ideali massimali di $\mathbb Z$ sono primi. (Ricordiamo che un ideale I di un anello R è primo se per ogni $a,b\in R$ si ha che $ab\in I$ implica $a\in I$ oppure $b\in I$)

Esercizio 7

Si provi che un elemento $a \in \mathbb{Z}/n\mathbb{Z}$ ha ordine n/d dove d = MCD(a, n).

Esercizio 8

Scrivere le radici ottave dell'unità complesse (tutte le radici complesse del polinomio x^8-1), dire quali di esse sono primitive e scrivere il polinomio ciclotomico $\Phi_8(x)$ come polinomio di $\mathbb{Z}[x]$. Scomporlo quindi come prodotto di fattori irriducibili (di primo grado) in $\mathbb{C}[x]$.

Esercizio 9

Si consideri nell'anello $\mathbb{R}[x]$ l'ideale $I=(x^3+x^2-x+2,x^2+x-2)=\{p(x)(x^3+x^2-x+2)+q(x)(x^2+x-2)\mid p(x),q(x)\in\mathbb{R}[x]\}$: è un ideale principale? Se no lo si dimostri, se sì si mostri un polinomio che lo genera.