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Introduction

The well-known Krull-Schmidt-Azumaya theorem gives sufficient conditions for a mod-
ule to have an essentially unique decomposition as a direct sum of indecomposable
submodules. A lot of work has been done over the years to extend as far as possible
this theorem and to see whether particular classes of modules have essentially unique
decomposition.

Recently, though, the attention has been pointed in another direction. Instead of
looking for other “very good” classes of modules, a great deal of attention has been
posed on “good” classes of modules and on ways to measure how different is “good”
from “very good”. Namely, for every full subcategory C of Mod-R, a reduced commu-
tative monoid V (C) carrying all the information about direct sum decompositions in
C has been considered. The elements of V (C) are the isomorphism classes 〈A〉 of the
modules A in C and the sum is given by 〈A〉+ 〈B〉 = 〈A⊕B〉 for every A,B ∈ C.

It is clear that the Krull-Schmidt theorem holds in C if and only if the monoid V (C)
is free, the point being we can consider weaker, though controllable, conditions, such
as the monoid V (C) being a Krull monoid.

In 1964, P. Crawley and B. Jónsson introduced the exchange property of a module
and, in 1969, R. B. Warfield Jr. proved that the exchange property is equivalent to
the endomorphism ring of the module being local for indecomposable module. These
two equivalent properties are a natural property to ask to the indecomposable modules
belonging to a class C for V (C) to be a free monoid.

In 2002, A. Facchini proved that a sufficient condition for V (C) to be a Krull monoid
is that every module in C has semilocal endomorphism ring. What about the exchange
property? Is there any analogue property which is equivalent for M to the fact that
End(M) is semilocal?

The semiexchange property was born as an attempt to give a positive answer to
this question. In Section 1 we define the semiexchange property. Given a ring R, a
right R-module M and a positive integer m, we say M has the semiexchange property
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with respect to m if for any R-module G and any two direct sum decompositions

G = M ′ ⊕N = ⊕i∈IAi

where M ′ ∼= M , there are a partition I =
⋃̇
j∈JIj with |Ij | ≤ m for any j ∈ J and

R-submodules Bj of ⊕i∈IjAi, j ∈ J , such that G = M ′ ⊕ (⊕j∈JBj). In Section 1 we
also give the definition and prove the basic properties of the semiexchange property for
elements of a cancellative monoid. The theory of cancellative monoids has been exten-
sively developed in recent years, with the study of non-unique factorization in domains
as main motivation. It turns out it is very useful to study non-unique decompositions
of modules as well. In this respect we think it is wise to compare tools and results in
the two fields. We gave elementary proofs for our results for seek of semplicity, but
we gave also references to results in the literature which have our claims as simple
corollaries.

In Section 2 we prove that the dual Goldie dimension of a module M is the smallest
integer n (if any) such that M has the semiexchange property with respect to n. Thus
an indecomposable module M whose endomorphism ring is not semilocal does not have
the semiexchange property with respect to n for any integer n. In Section 3, finally,
as an application of the semiexchange property, we will prove a stronger version of the
Weak Krull-Schmidt Theorem for biuniform modules.

Throughout the paper rings will be associative rings with identity 1 6= 0 and mod-
ules will be right modules. Mod-R will denote the category of right modules over a ring
R, mod-R will denote the category of finitely presented right modules, proj-R will de-
note the category of finitely generated projective right modules and add-M will denote
the full subcategory of Mod-R which elements are isomorphic to a direct summand of
a finite direct sum of copies of the module M .

Aknowledgements. I am very grateful to Alberto Facchini for his time, his
criticism, his suggestions and his invaluable supervision.

I would like to thank the referee for telling me about the ω-invariant, pointing out
its relation with the semiexchange property.

1 Definitions and first properties

A few preliminars are in order to make the paper as self-contained as possible.
We begin with a well known immediate consequence of the modular identity that

will be used repeatedly in the sequel.

Lemma 1.1 If A ⊆ B ⊆ A⊕ C are modules, then B = A⊕D, where D = B ∩ C.

Other lemmas we use extensively are the following ones. We recall them here for
the readers’ convenience.

Lemma 1.2 ([2, Lemma 3.8]) If G, M ′, N , P , Ai (i ∈ I), Bi (i ∈ I) are modules,
Bi ⊆ Ai for every i ∈ I,

G = M ′ ⊕N ⊕ P = (⊕i∈IAi)⊕ P
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and
G/P =

((
M ′ + P

)
/P
)
⊕ (⊕i∈I ((Bi + P ) /P )) ,

then
G = M ′ ⊕ (⊕i∈IBi)⊕ P.

Lemma 1.3 ([3, Lemma 2.6]) Let A be a module and let M1,M2,M be submodules
of A such that A = M1⊕M2. Let π2 : A = M1⊕M2 →M2 be the canonical projection.
Then A = M1 ⊕M if and only if π2|M : M → M2 is an isomorphism. If these two
equivalent conditions hold, then the canonical projection πM : A → M with respect to
the decomposition A = M1 ⊕M is (π2|M )−1 ◦ π2.

We are now ready to start. We begin defining the semiexchange property, which
is the object of study of the whole paper. Then we will prove some properties of
the semiexchange property, trying to generalize as closely as possible the well-known
properties of the exchange property.

Definition. Let R be a ring, M be a right R-module, ℵ be a cardinal and m be a
positive integer. We say that M has the ℵ-semiexchange property with respect to m
if for any R-module G and any two direct sum decompositions

G = M ′ ⊕N = ⊕i∈IAi

where M ′ ∼= M and |I| ≤ ℵ, there is a partition I =
⋃̇
j∈JIj with |Ij | ≤ m for any

j ∈ J and R-submodules Bj of ⊕i∈IjAi, j ∈ J , such that G = M ′ ⊕ (⊕j∈JBj). Note
that, by Lemma 1.1, the submodules Bj are direct summands of the ⊕i∈IjAi’s.

Let X be a monoid, x be an element of X, ℵ be a finite cardinal and m be a
positive integer. Recall that X is naturally equipped with a pre-order given by s ≤ t
if and only if there is an element r ∈ X such that s + r = t. We say that x has the
ℵ-semiexchange property with respect to m if whenever

x+ y =
∑
i∈I

ai

where |I| ≤ ℵ, there is a partition I =
⋃̇
j∈JIj with |Ij | ≤ m for any j ∈ J and elements

bj ≤
∑

i∈Ij ai, j ∈ J , such that x+ y = x+
(∑

j∈J bj

)
.

We say that an R-module (an element of X) has the finite semiexchange property
with respect to m if it has the ℵ-semiexchange property with respect to m for any
finite cardinal ℵ.

We say that an R-module has the semiexchange property with respect to m if it
has the ℵ-semiexchange property with respect to m for any cardinal ℵ.

For every cardinal ℵ, an R-module has the ℵ-exchange property [2] if and only if
it has the ℵ-semiexchange property with respect to 1.

Similarly we will say that, for a finite cardinal ℵ, an element of a monoid X has
the ℵ-exchange property if it has the ℵ-semiexchange property with respect to 1 and
that it has the exchange property if it has the ℵ-semiexchange property with respect
to 1 for every finite cardinal ℵ.
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Lemma 1.4 An indecomposable R-module M has the ℵ-semiexchange property with
respect to m if and only if for any R-module G and any two direct sum decompositions
G = M ′⊕N =

⊕
i∈I Ai where |I| ≤ ℵ and M ′ ∼= M , there are indices i1, . . . , it ∈ I for

some t ≤ m and a submodule B of
⊕t

k=1Aik such that G = M ′⊕B⊕
(⊕

j 6=i1,...,it Aj

)
.

Proof. Let M be an indecomposable R-module. If M has the ℵ-semiexchange prop-
erty with respect to m and

M ⊕N =
⊕
i∈I

Ai

where |I| ≤ ℵ, there is a partition I =
⋃̇
j∈JIj with |Ij | ≤ m for any j ∈ J and

decompositions
⊕

i∈Ij Ai = Bj ⊕ Cj , j ∈ J , such that
⊕

i∈I Ai = M ⊕
(⊕

j∈J Bj

)
.

Therefore M ∼=
⊕

j∈J Cj and, since M is indecomposable, Cj = 0 for any j but for

one index j0. We conclude that M ⊕N =
⊕

j∈J

(⊕
i∈Ij Ai

)
= M ⊕Bj0 ⊕

(⊕
i/∈Ij0

Ai

)
with |Ij0 | ≤ m.

Lemma 1.5 An indecomposable element x of a cancellative monoid X has the ℵ-
semiexchange property with respect to m if and only if whenever there are y, ai ∈ X
(i ∈ I, |I| ≤ ℵ) such that a = x+ y =

∑
i∈I ai, there are indices i1, . . . , it ∈ I for some

t ≤ m and an element b of X such that a = x+ b+
∑

j 6=i1,...,im aj.

Proof. The proof is a straight translation of the previous proof in the monoid lan-
guage.

Remark 1.6 Using the notations of [7, Definition 2.8.14], if ω(y) < ∞ for some
element y of a cancellative monoid X, then y has the semiexchange property with
respect to ω(y). On the other hand, the previous Lemma essentially says that an
indecomposable element x has the finite semiexchange property with respect to m if
and only if ω(x) ≤ m.

Proposition 1.7 Let M be a module and let M = M1 ⊕M2 be a decomposition of
M . If M has the ℵ-semiexchange property with respect to m, then M1 has the ℵ-
semiexchange property with respect to m.

Proof. Suppose M has the ℵ-semiexchange property with respect to m and suppose
G = M ′

1 ⊕N =
⊕

i∈I Ai with M ′
1
∼= M1 and |I| ≤ ℵ. Then G′ = M2 ⊕G = M ′ ⊕N =

M2 ⊕
⊕

i∈I Ai with M ′ ∼= M . Let k ∈ I be any index and define A′
i = Ai for every

i 6= k and A′
k = M2⊕Ak. One has G′ = M ′⊕N =

⊕
i∈I A

′
k. Thus there is a partition

I =
⋃̇
j∈JIj with |Ij | ≤ m and decompositions

⊕
i∈Ij Ai = Bj ⊕ Cj , j ∈ J , such that⊕

i∈I A
′
i = M ′ ⊕

(⊕
j∈J Bj

)
. We will denote by j0 the index j ∈ J such that k ∈ Ij0 .

Since M2 ⊆ M2 ⊕ Bj0 ⊆ M2 ⊕ G, we have by Lemma 1.1 that M2 ⊕ Bj0 = M2 ⊕ B′
j0

where B′
j0

= (M2 ⊕Bj0)∩G ⊆ G. Thus M ′⊕Bj0 = M ′
1⊕M2⊕Bj0 = M ′

1⊕M2⊕B′
j0

and, denoting the Bj ’s by B′
j for every j 6= j0 one has G′ = M ′ ⊕

(⊕
j∈J B

′
j

)
. Note

that B′
j ⊆ G for every j ∈ J and that M ′

1 ⊆ G. Thus using the modular identity
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we get G = G ∩
(
M2 ⊕

(
M ′

1 ⊕
(⊕

j∈J B
′
j

)))
= (G ∩M2) ⊕

(
M ′

1 ⊕
(⊕

j∈J B
′
j

))
=

M ′
1 ⊕

(⊕
j∈J B

′
j

)
. This shows that M1 has the ℵ-semiexchange property with respect

to m.

Proposition 1.8 Let M be a module and let M = M1 ⊕M2 ⊕ . . . ⊕Mk be a decom-
position of M into indecomposable modules. If Mx has the ℵ-semiexchange property
with respect to mx for every x, then M has the ℵ-semiexchange property with respect
to
∑k

x=1(mx − 1) + 1.

Proof. Suppose

G =
k⊕
j=1

M ′
j ⊕N =

⊕
i∈I

Ai

with M ′
j
∼= Mj for every j = 1, . . . , k and with |I| ≤ ℵ.

We will recursively define for every x = 1, 2, . . . , k sets Ix, Jx, Rx,Kx, Sx, Tx, T
′
x and

modules Bx, Cx, Dx and Ax,i for every i ∈ Ix such that G = M ′
1 ⊕ . . . ⊕M ′

x ⊕ Bx ⊕(⊕
i/∈Jx

Ax−1,i

)
.

As a start consider I0 = I, K0 = {Ai}i∈I and A0,i = Ai for every i ∈ I.
Suppose that we defined all the mentioned sets and modules for some x − 1 =

1, 2, . . . k−1. SinceM ′
x is an indecomposable module with the ℵ-semiexchange property

with respect to mx, by Lemma 1.2, there is a subset Jx ⊆ Ix−1 with |Jx| = mx and a
decomposition

⊕
i∈Jx

Ax,i = Bx + Cx such that

G = M ′
1 ⊕ . . .⊕M ′

x−1 ⊕

 ⊕
i∈Ix−1

Ax−1,i

 = M ′
1 ⊕ . . .⊕M ′

x ⊕Bx ⊕

⊕
i/∈Jx

Ax−1,i

 .

Define

Rx = {Ax,i}i∈Jx ∪

 ⋃
y∈{1,...,x−1} such that By∈{Ax,i}i∈Jx

Ry

 ,

Sx = Rx ∩ {Ai}i∈I , Tx = Rx \ Sx and T ′x = Tx ∪ {Bx}

and set Kx = {Ax−1,i}i∈Ix−1\Jx
∪ {Bx}. We do not want to tell Bx and the Ax−1,i’s

apart, so we are defining the Ax,i’s just by renaming the elements of Kx. Choose a
set Ix with the same cardinality of Kx and use it to rename the elements of Kx as
{Ax,i}i∈Ix .

Consider now the partial order � given by x � y if Bx ∈ T ′y.
We will prove that:

(a) if x � y, then x ≤ y;

(b) if x � y and x � z, then z � y or y � z;

(c) one has |Sx| ≤
∑

y�x(my − 1) + 1;

(d) if x = 1, 2, . . . , k and x1, x2, . . . , xt are the maximal elements of {1, 2, . . . , x} with
respect to �, then Sx1 , Sx2 , . . . , Sxt form a partition of I \Kx.
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If for every x = 1, 2, . . . , k one notes that
⊕

i∈Sx
Ai = Bx⊕Dx whereDx =

⊕
y�xCy

and that G =
⊕k

j=1M
′
j ⊕N = M ′

1 ⊕ . . .⊕M ′
x ⊕

⊕
y maximal wrt �By ⊕

⊕
i/∈

⋃x
z=1 Jz

Ai,
then the conclusion of the proof follows.

Let us now show claims (a) – (d).

(a) Straightforward.

(b) If x � y, then Bx ∈ T ′y. This means that Bx /∈ Ky and the only possibility for
Bx to be in some Tz for z ≥ y, is that By ∈ T ′z, i.e. y � z.

(c) Since Sx = ({Ax−1,i}i∈Jx ∩K0) ∪
(⋃

y such that By∈{Ax−1,i}i∈Jx
Sy

)
, one has

|Sx| ≤ mx −
{By | By ∈ {Ax−1,i}i∈Jx

}+
∑

By∈{Ax−1,i}i∈Jx

|Sy| ≤

≤ mx +
∑

By∈{Ax−1,i}i∈Jx

∑
z�y

(mz − 1) =
∑
y�x

(my − 1) + 1.

(d) All the Ai’s eventually substituted (i.e. the Ai’s which are not in Kx) are in some
Sy. Since Sx ⊇ Sy for every y � x, they all are in some Sz with z maximal with
respect to �. The same idea of (a) shows these Sz’s are disjoint.

Proposition 1.9 Let x be an element of a cancellative monoid X and let x = x1 +x2

be a decomposition of x. If x1, x2 have respectively the ℵ-semiexchange property with
respect to m1 and the ℵ-semiexchange property with respect to m2, then x has the
ℵ-semiexchange property with respect to m1m2.

Proof. Suppose
a = x1 + x2 + y =

∑
i∈I

ai.

There is a partition I =
⋃̇
j∈JIj with |Ij | ≤ m1 for any j ∈ J and decompositions∑

i∈Ij ai = bj + cj , j ∈ J , such that
∑

i∈I ai = x1 +
(∑

j∈J bj

)
. By the cancellativity

of X we have x2 + y =
∑

j∈J bj and, by the ℵ-semiexchange property with respect
to m2 of x2, there is a partition J =

⋃̇
k∈KJk with |Jk| ≤ m2 for any k ∈ K and

decompositions
∑

j∈Jk
bj = dk + ek, k ∈ K, such that

a =
∑
i∈I

ai = x1 + x2 +

(∑
k∈K

dk

)
.

Therefore x has the ℵ-semiexchange property with respect to m1m2.

Let us now turn our attention to free monoids and Krull monoids. The reason why
the exchange property is “a natural property to ask to the modules belonging to a
class C for V (C) to be a free monoid” is that a monoid is free if and only if it is atomic
and all its elements have the finite exchange property.
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Remark 1.10 A atomic monoid is free if and only if all its elements have the finite
exchange property.

In fact, let F be a free monoid and let x, y, a1, a2, . . . , an be elements of F such
that x+ y =

∑n
i=1 ai. By Proposition 1.9 it is sufficient to assume x indecomposable.

Being F free, there exist a1,1, a1,2, . . . , a1,t1 , a2,1, a2,2, . . . , a2,t2 , . . . , an,1, an,2, . . . , an,tn
indecomposable elements of F such that ai = ai,1 + ai,2 + . . . + ai,ti (i = 1, 2, . . . , ti).
Moreover there are k, h such that x = ak,h, so that x ≤ ak and x has the finite exchange
property.

Conversely, if every element x ∈ F has the exchange property, it is easy to see
that, if a = a1 + a2 + . . . + an = b1 + b2 + . . . + bm where the ai’s and the bj ’s are
indecomposable, one has m = n and ai = bi after a suitable rearrangement of the
indices. This is equivalent to the fact that F is free (this is very well known, see for
example [8, p. 7]).

This naturality, however, seems to disappear in the Krull case, at least for monoids,
as the next example shows. It is recovered, however, for classes of modules (see Corol-
lary 2.7).

Proposition 1.11 If x is an element of a Krull monoid X, then x has the finite
semiexchange property with respect to m for some m.

Proof. Let X be a Krull monoid, let I be a set, let ϕ : X → N(I) be a divisor monoid
homomorphism and let x be an element of X. Again by Proposition 1.9 it is sufficient
to think x indecomposable. Let n be a positive integer and let y, a1, a2, . . . , an ∈ X
such that x + y = a1 + a2 + . . . + an. Let x1, x2, . . . , xm be indecomposable elements
of N(I) such that ϕ(x) = x1 + x2 + . . .+ xm. Since xi has the finite exchange property
for every i, one has xi ≤ ϕ(aj[i]) for some j[i], so that ϕ(x) ≤

∑m
i=1 ϕ(aj[i]). Since ϕ is

a divisor homomorphism one has x ≤
∑m

i=1 aj[i].

Remark 1.12 Remark 1.10 and Proposition 1.11 are, by remark 1.6, easy corollaries
of [7, Proposition 7.1.9].

Example 1.13 There exists a non-Krull atomic monoid which is not a Krull monoid
and whose elements have the finite semiexchange property with respect to m for some
integer m depending on the element.

Consider the indecomposable elements of the monoid M = N≥2 = {2, 3, 4, . . .}. It
is clear that every element m ∈ M has the semiexchange property with respect to 3.
Nevertheless the monoid M is not a Krull monoid since it is not even integrally closed
([8, Theorem 22.8]).

Proposition 1.14 Every module has the m-semiexchange property with respect to m.
If a module has the (m + 1)-semiexchange property with respect to m, then it has the
finite semiexchange property with respect to m.

Proof. Obviously every module has the m-semiexchange property with respect to
m. We will show that, for every n > m, if M has the n-semiexchange property with
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respect to m then it has the (n+ 1)-semiexchange property with respect to m. In fact
if

M ⊕N =
n+1⊕
i=1

Ai,

then M ⊕ N =
⊕n

i=1Bi where Bi = Ai for i = 1, 2, . . . , n − 1 and Bn = An ⊕ An+1.
Thus, there exists a partition {1, 2, . . . , n} =

⋃̇
j∈JIj with |Ij | ≤ m for any j ∈ J and

decompositions
⊕

i∈Ij Bi = Cj ⊕ C ′
j , j ∈ J , such that

M ⊕N = M ⊕

⊕
j∈J

Cj

 .

One has Bn ∈ Ij0 for some index j0. Set I ′j = Ij for every j 6= j0 and I ′j0 = Ij0∪{n+1}.
If |Ij0 | < m we are done. If |Ij0 | = m, then

∣∣∣I ′j0∣∣∣ = m+1. Since C ′
j0

is a direct summand
of M , it has the n-semiexchange property with respect to m and, since n > m, it has
the (m+ 1)-semiexchange property with respect to m. Now

⊕
i∈I′j0

Ai = Cj0 +C ′
j0

, so

that there is a partition I ′j0 =
⋃̇
j∈J ′I

′
j with

∣∣∣I ′j∣∣∣ ≤ m for any j ∈ J ′ and decompositions⊕
i∈I′j

Ai = Dj +D′j, j ∈ J ′, such that⊕
i∈I′j0

Ai = Cj0 + C ′
j0 = Cj0 +

⊕
j∈J ′

Dj ,

so that

M ⊕N = M ⊕

⊕
j∈J

Cj

 = M ⊕

 ⊕
j∈J\{j0}

Cj

⊕

⊕
j∈J ′

Dj

 ,

and we are done.

2 Modules with semilocal endomorphism rings

In this section we investigate the link between the semiexchange property of a module
and the dual Goldie dimension of its endomorphism ring. For the definition and the
basic properties of the dual Goldie dimension of a module we refere the reader to [3,
chapter 2]. For our pourposes the main thing we should keep in mind is that a ring
R is semilocal if and only if the regular module RR has finite dual Goldie dimension
and this dimension turns out to be the length of the right semisimple module R/J(R).
The corresponding left-hand condition holds as well.

We start with the following Lemma which is a restatement and rearrangement of
Lemma 1.3 and Proposition 1 of [10].

Lemma 2.1 Let A be a module and let M1,M2,M be submodules of A such that A =
M⊕M1. Let π1 : A→M1 be the canonical projection with respect to this decomposition
and εi : Mi → A be the embeddings for i = 1, 2. Then:
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(1) one has A = M ⊕M2 if and only if there is a homomorphism π2 : A→M2 such
that π1ε2π2ε1 = idM1 and π2ε1π1ε2 = idM2 = π2ε2;

(2) there exists a direct summand M ′ of M1 such that A = M2⊕M ′⊕M if and only
if there is an epimorphism π2 : A → M2 such that idM2 = π2ε2 and π2ε1π1ε2 is
an isomorphism.

Proof. (1) Follows from Lemma 1.3. If A = M ⊕M2, then, by Lemma 1.3, π1ε2
is an isomorphism and the projection onto M2 associated to this decomposition is
π2 = (π1ε2)

−1 π1. Hence π1ε2π2 = π1, so that π1ε2π2ε1 = π1ε1 = idM1 . Similarly from
π2 = (π1ε2)

−1 π1 we get π2ε1π1ε2 = (π1ε2)
−1 π1ε1π1ε2 = idM2 = π2ε2.

Conversely, if π1ε2π2ε1 = idM1 and π2ε1π1ε2 = idM2 , then it is clear that π1ε2 is
an isomorphism. Hence, again by Lemma 1.3, we get A = M ⊕M2.

(2) Suppose there is an epimorphism π2 such that idM2 = π2ε2 and π2ε1π1ε2 is an
isomorphism. One has A = M2 ⊕ ker(π2) and π2 is the canonical projection onto M2

associated with this decomposition.
Let H be the image of the homomorphism ε1π1ε2 : M2 → A. Since π2ε1π1ε2 is

an isomorphism, π2|H : H → M2 is an isomorphism as well and A = H ⊕ ker(π2) by
Lemma 1.3. The projection onto H relative to this decomposition is πH = (π2|H)−1π2.
Now H = ε1π1ε2(M2) ⊆M1 ⊆ H⊕ker(π2), so that, by Proposition 1.1, M1 = H⊕M ′

where M ′ = M1∩ker(π2). The projection π′H : M1 → H relative to this decomposition
is π′H = (π2|H)−1π2|M1 . Thus

A = M1 ⊕M = H ⊕M ′ ⊕M

with projection π′′2 : A → H, where π′′2 = (π2|H)−1π2|M1π1 = (π2|H)−1π2ε1π1, which
is, when restricted to M2, the map (π2|H)−1π2ε1π1ε2, hence it is an isomorphism.
Therefore, again by Lemma 1.3,

A = M2 ⊕M ′ ⊕M.

Conversely, if there exists a direct summand M ′ of M1 such that A = M2 ⊕
M ′ ⊕ M , then, by (1), there is an epimorphism π : A → M2 ⊕ M ′ such that
πε1π1εM2⊕M ′ = idM2⊕M ′ and πεM2⊕M ′ = idM2⊕M ′ . Therefore, if we denote by π′2
the canonical projection M2 ⊕ M ′ → M2 with kernel M ′ and we define π2 = π′2π,
we get π2ε1π1ε2 = π′2πε1π1εM2⊕M ′ε2|M2⊕M ′

= π′2idM2⊕M ′ε2|M2⊕M ′
= idM2 and

π2ε2 = π′2πεM2⊕M ′ε2|M2⊕M ′
= π′2idM2⊕M ′ε2|M2⊕M ′

= idM2 , and this completes the
proof.

Lemma 2.2 Let R be a ring, let J be its Jacobson radical and let P,Q be two projective
finitely generated right modules. Let πP : P → P/PJ and πQ : Q → Q/QJ be the
canonical projections. For each f : P → Q there is a unique morphism f̄ : P/PJ →
Q/QJ such that πQf = f̄πP and for every g : P/PJ → Q/QJ there is a morphism
g : P → Q such that πQg = gπP . Moreover:

• for each f : P → Q, f is an epimorphism if and only if f̄ is an epimorphism;

• for each g : P/PJ → Q/QJ ,
(
g
)

= g.
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• for each f : P → Q, if f is an isomorphism then f̄ is an isomorphism;

Finally, if J is superfluous in R or P is an indecomposable projective module, then
f : P → Q, f is an isomorphism if and only if f̄ is an isomorphism.

Proof. Let f : P → Q be an homomorphism. Since QJ ⊇ f(P )J = f(PJ), one has
kerπQf ⊇ kerπP so that, by the factor theorem [1, Theorem 3.6], there exists a unique
homomorphism f̄ : P/PJ → Q/QJ such that πQf = f̄πP and f is an epimorphism
if and only if f̄ is an epimorphism. Moreover, if f is an isomorphism, then kerπP =
kerπQf and f̄ is also injective.

Let now g : P/PJ → Q/QJ be a homomorphism. Since P is projective and πQ is
an epimorphism, there is an homomorphism g : P → Q such that πQg = gπP .

Obviously (denoting by [x] the equivalence class of x in X/XJ) one has g[x] =
[g(x)] =

(
g
)
[x] for every [x] ∈ P/PJ .

If f̄ is an isomorphism and J is superfluous in R, then f is an epimorphism and
(ker f +PJ)/PJ = 0, so that ker f ⊆ PJ which is a superfluous submodule of P . Now
ker f is a direct summand of P , so that ker f = 0 and f is an isomorphism.

Finally, if f̄ is an isomorphism and P is an indecomposable projective module,
then, being ker f a direct summand of P , the kernel of f is either equal to 0 or equal
to P . But f is surjective, so that ker f cannot be equal to P . Hence ker f = 0 and f
is an isomorphism.

The next Lemma is a collection of bits and pieces from [4, proof of Lemma 3.1]
and [6, Lemma 2.1]. We decided to state and prove it since we did not find the whole,
natural statement anywhere in the literature.

Lemma 2.3 Let R be a ring, e be an idempotent in R and J(R) be the Jacobson
radical. Then eRe is semilocal of dual Goldie dimension n if and only if eR/eJ(R) is
a semisimple R/J(R)-module of composition length n.

Proof. Suppose that eRe is semilocal of dual Goldie dimension n, that is
eRe/J(eRe) ∼= (e + J(R))R/J(R)(e + J(R)) is a semisimple Artinian ring of Goldie
dimension n. Then, by [6, Lemma 2.1], eR/eJ(R) ∼= (e+J(R))R/J(R) is a semisimple
R/J(R)-module of composition length n.

Conversely, if eR/eJ(R) is a semisimple R/J(R)-module of composition length
n, say eR/eJ(R) ∼=

⊕m
i=1 S

ji
i for some pair-wise non-isomorphic simples Si,

then EndR(eR/eJ(R)) ∼= eRe/eJ(R)e is isomorphic to the direct product∏m
i=1 Mji(EndR(Si)), where Mα(S) denotes the ring of α × α matrices with coeffi-

cients in the ring S. As each Mji (EndR(Si)) is a direct sum T jii of ji isomorphic
simple modules Ti, it follows that eRe/eJ(R)e = eRe/J(eRe) ∼=

⊕m
i=1 T

ji
i for some

pair-wise non-isomorphic simples Ti.

We are now ready to prove the main results about the semiexchange property, that
is to say to link the semiexchange property of an indecomposable module to the dual
Goldie dimension of its endomorphism ring. The link is as strict as one may wish, in the
sense that the dual Goldie dimension of the endomorphism ring of an indecomposable
module M is m if and only if M has the (finite) semiexchange property with respect
to m and it does not have the (finite) semiexchange property with respect to m− 1.
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Theorem 2.4 Let M be an indecomposable module whose endomorphism ring has
finite dual Goldie dimension m. Then M has the semiexchange property with respect
to m.

Proof. Let G,M ′, N,Ai(i ∈ I) be modules such that M ′ is isomorphic to M and
G = M ′ ⊕N =

⊕
i∈I Ai and let ε : M ′ → G, π : G→M ′, εi : Ai → G, πi : G→ Ai be

the inclusions and the projections relative to these decompositions. Let R, Ri be the
endomorphism rings of M ′, Ai respectively. Let J(S) denote the jacobson radical of a
ring S and let R/J(R) be the direct sum S1 ⊕S2 ⊕ . . .⊕Sm where the Sj ’s are simple
modules. We denote by F the natural category equivalence HomR(G,−) : add-G →
proj-End(G) given by, for every idempotent e ∈ End(G), the corrispondence of the
object eEnd(G) of proj-End(G) to the direct summand eG of GR, which is an object of
add(GR) (see [3, Theorem 4.7]). Let J denote J(End(G)), let e = F (ε), p = F (π), ei =
F (εi), pi = F (πi), for every P,Q ∈proj-End(G) and every f : P → Q let f : P/PJ →
Q/QJ be the morphism induced in the category proj-End(G)/J(End(G)) and for every
f : P/PJ → Q/QJ in the category proj-End(G)/J(End(G)) let f : P → Q be a lifting
of f . Finally, let pSi

: R/J(R) → Si and eSi : Si → R/J(R) be the inclusions and the
natural projections associated to the given decomposition of R/RJ .

By Lemma 2.3, one has F (G)/F (G)J = T1 ⊕ T2 ⊕ . . . ⊕ Tm ⊕ F (N)/F (N)J =⊕
i∈I F (Ai)/F (Ai)J . Since the Tj ’s have the exchange property, there are indices

i1, i2, . . . , im ∈ I and a direct summand B of
⊕m

j=1 F (Aij )/F (Aij )J such that
F (G)/F (G)J = T1 ⊕ T2 ⊕ . . . ⊕ Tm ⊕ B ⊕

⊕
i∈I\{i1,...,im} F (Ai)/F (Ai)J or, equiva-

lently by Lemma 2.1, there is an epimorphism t : F (G)/F (G)J → T1 ⊕ T2 ⊕ . . .⊕ Tm
such that tei1⊕...⊕impi1⊕...⊕ime and te are isomorphisms.

Therefore the morphism τ = F−1(t) : G→M is surjective and τεi1⊕...⊕imπi1⊕...⊕imε
and β = τε are isomorphisms by Lemma 2.2. Setting πM ′ = β−1τ , one has that
πM ′εi1⊕...⊕imπi1⊕...⊕imε is an isomorphism and πM ′ε = idM ′ , so that by Lemma 2.1
G = M ′ ⊕X ⊕

⊕
i∈I\{i1,...,im}Ai for some direct summand X of

⊕m
j=1Aij . Hence the

conclusion.

Theorem 2.5 Let m be a positive integer and M be an indecomposable module whose
endomorphism ring has dual Goldie dimension greater or equal to m (possibly infinite).
Then M does not have the finite semiexchange property with respect to m− 1.

Proof. Let M be a module whose endomorphism ring R has dual Goldie dimension
greater or equal to m. This means that in the regular module RR there is a set of m
coindependent modules {A1, A2, . . . , Am}. We can consider, without loss of generality,
that these modules are maximal right ideals.

If J is the intersection A1 ∩ A2 ∩ . . . ∩ Am, then R/J is the direct sum of m
simple modules R/JR = S1 ⊕ S2 ⊕ . . .⊕ Sm. Now let M1,M2, . . . ,Mm be m modules
isomorphic to M and set G = M1 ⊕ M2 ⊕ . . . ⊕ Mm. For every i = 1, 2, . . . ,m
denote by εi the inclusion Mi → G and by πi the projection G → Mi relative to this
decomposition. Denote by R(i), J (i), S

(i)
1 , S

(i)
2 , . . . , S

(i)
m the endomorphism ring of Mi,

the intersection of the coindependent modules in R(i) and the simples summing up to
R(i)/J (i) respectively.
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Let F : add-M →proj-R be the category equivalence described in Theorem 2.4.
Set pi = F (πi) and ei = F (εi) for every index i = 1, 2, . . . ,m and finally, for every
homomorphism f : P → Q, let f : P/PJ → Q/QJ be the map induced by f .

Consider the morphisms

α :
m⊕
i=1

(
S

(i)
1 ⊕ S

(i)
2 ⊕ . . .⊕ S(i)

m

)
→ S1 ⊕ S2 ⊕ . . .⊕ Sm

given by

α(s(1)
1 , s

(1)
2 , . . . , s(1)

m , s
(2)
1 , s

(2)
2 , . . . , s(2)

m , . . . , s
(m)
1 , s

(m)
2 , . . . , s(m)

m ) = (s(1)1 , s
(2)
2 , . . . , s(m)

m )

and

β : S1 ⊕ S2 ⊕ . . .⊕ Sm →
m⊕
i=1

(
S

(i)
1 ⊕ S

(i)
2 ⊕ . . .⊕ S(i)

m

)
given by

β(s1, s2, . . . , sm) = (s1, 0, . . . , 0, 0, s2 . . . , 0, . . . , 0, 0, . . . , sm).

Obviously αβ is the identity of R/J , and it can be lifted to a morphism βα : R→
⊕mi=1R

(i) → R which is an isomorphism since R is an indecomposable projective mod-
ule. Therefore the morphism F−1(α)F−1(β) : M → G → M is an isomorphism as
well. Hence M ′ = F−1(β)(M) is a direct summand of G isomorphic to M . Assume,
by way of contraddiction, that M has the finite semiexchange property with respect
to m − 1. Since M is indecomposable, according to Lemma 1.4 there is a subset
I ⊂ {1, . . . ,m} such that M ′ can be substituted to ⊕i∈IMi i.e., there exists an epimor-
phism π : G→M ′ such that the morphism

∑
i∈I πεiπiεM ′ = πM ′ε⊕i∈IMiπ⊕i∈IMiεM ′ is

an isomorphism. Thus the morphism
∑

i∈I F (π)ēip̄iēM ′ is an isomorphism.
But it is clear that, for every and every epimorphism p : F (G)/F (G)J(EndG) →

F (M ′)/F (M ′)J(EndG), the morphism
∑

i∈I pēip̄iēM ′ is not an isomorphism and this
yelds a contraddiction.

Thus M does not have the finite semiexchange property with respect to m− 1.

We can sum up the previous results as this theorem.

Theorem 2.6 For an indecomposable module M and for a positive integer m the
following are equivalent:

(a) the endomorphism ring of M has dual Goldie dimension m;

(b) the module M has the finite semiexchange property with respect to m but it does
not have the finite semiexchange property with respect to m− 1;

(c) the module M has the semiexchange property with respect to m but it does not
have the semiexchange property with respect to m− 1.

This naturally implies that, if the endomorphism ring of M has infinite dual Goldie
dimension, then M does not have the finite semiexchange property with respect to m
for any positive integer m.

By [4, Theorem 3.4] we get for free the already mentioned “come back of naturality”.
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Corollary 2.7 Let C be an add-close class of modules such that every C ∈ C is a finite
direct sum of indecomposable modules and has the semiexchange property with respect
to n for some n depending on C. Then V (C) is a Krull monoid.

3 Weak Krull-Schmidt Theorem for biuniform modules

In this section we show an application of the semiexchange property which has been
one of the motivations behind its definition.

In 1996 A. Facchini proved a weak version of the Krull-Schmidt theorem for biuni-
form modules. Direct sums of biuniform modules do not decompose in a unique way as
direct sum of indecomposables up to a permutation and up to isomorphism. However,
they decompose in a unique way up to two permutations and up to monogeny and
epigeny (recall that two modules A and B are said to be in the same monogeny class,
in notation [A]m = [B]m, if there exist monomorphisms from A to B and viceversa,
and, dually, they are said to be in the same epigeny class, in notation [A]e = [B]e, if
there exist an epimorphism form A to B and an epimorphism from B to A; both are
equivalence relations).

We will prove a version of the Weak Krull-Schmidt theorem for finite direct sums
of biuniform modules which is stronger then the usual one proved by Facchini in [3].
In particular it is a closer generalization of the Krull-Schmidt thoerem as stated for
example in [1, Theorem 12.9].

Before stating the main result it could be useful to recall some facts about biuniform
modules.

(1) [3, Corollary 4.16] The endomorphism ring of a biuniform module has dual Goldie
dimension≤ 2, so that any biuniform module has the semiexchange property with
respect to 2.

(2) [3, Lemma 9.8] Let A,B,C,D be biuniform modules such that A⊕B ∼= C ⊕D.
Then {[A]m, [B]m} = {[C]m, [D]m} and {[A]e, [B]e} = {[C]e, [D]e}.

(3) [3, Lemma 9.2(b)] If f1, . . . , fn : A→ B are n homomorphisms and f1 + · · ·+ fn
is an isomorphism, then either one of the fi is an isomorphism or there exist two
distinct indices i, j = 1, 2, . . . , n such that fi is injective and not surjective, and
fj is surjective and not injective.

Theorem 3.1 (Weak Krull-Schmidt Theorem for biuniform modules) Let
M1, . . . ,Mn, N1, . . . , Nm be biuniform modules. If

G = M1 ⊕ · · · ⊕Mn = N1 ⊕ · · · ⊕Nm,

then m = n, there are two permutations σ, τ of {1, 2, . . . , n} and there are modules
B1, B2, . . . , Bn such that

(1) for every i = 1, 2, . . . , n we have

G = Mσ(1) ⊕ . . .⊕Mσ(i−1) ⊕Bi ⊕Nτ(i+1) ⊕ . . .⊕Nτ(n);
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(2) if we set ϕ = σ−1τ and ψ(i) = σ−1τ(i + 1) for every i = 1, 2, . . . , n − 1 and
ψ(n) = σ−1τ(1), then for every i = 1, 2, . . . , n we get

[Mi]m = [Nϕ(i)]m and [Mi]e = [Nψ(i)]e.

Proof. First of all note that n = m is obvious since n = dimG = m.
For every direct sum decomposition X = Y ⊕ Z define εY : Y → X to be the

embedding and π(Z)Y : X → Y to be the canonical projection. We will often write πY
instead of π(Z)Y if there is no possibility of confusion. Throughout the proof we will
use the composite morphisms πMiεNjπNjεMi . Note that, as Mi and Nj are biuniform,
the morphism πMiεNjπNjεMi is surjective (injective) if and only if both πMiεNj and
πNjεMi are surjective (injective) if and only if πNjεMiπMiεNj is surjective (injective)
(see [3, Lemma 6.26]).

Let I be the set {j|j = 1, 2, . . . , n,∃i(πNjεMiπMiεNj ) is an isomorphism}. If i ∈ I,
then by Lemma 2.1(2) one has G = Mj ⊕

(⊕
` 6=iN`

)
, so πMjεN`

= 0 for every ` 6= i.
Finally define B1 = N1, α = 1 and σ1 = idSn = τ1.
With all this in mind we can proceed step by step along the index i.
While 0 ≤ i < n, procede as follows: thanks to the previous step we already got

G = Mσi(1) ⊕ . . .⊕Mσi(i−1) ⊕Bi ⊕Nτi(i+1) ⊕ . . .⊕Nτi(n).

There are two possibilities: either there is no ` such that

π(Mσi(1) ⊕ . . .⊕Mσi(i−1) ⊕Nτi(i+1) ⊕ . . .⊕Nτi(n))BiεM`
π(⊕h 6=`Mh)M`

εBi

is an isomorphism or there is such an `.
In the first case, since

∑n
j=1 πBiεMjπMjεBi , by Fact (3) there is an index h such that

πBiεMh
πMh

εBi is injective and not surjective. Note that (a) h /∈ {σi(1), . . . , σi(i− 1)}
(since πMσi(`)

εBi = 0 for every ` = 1, . . . , i − 1) and (b) h /∈ I (for the same
reason). By (a) there is a permutation σi+1 ∈ Sn such that σi+1(`) = σi(`)
for every ` = 1, . . . , i − 1 and σi+1(i) = h. By (b) there is a module X ∈
{Mσi(1), . . . ,Mσi(i−1), Bi, Nτi(i+1), . . . , Nτi(n)} such that πMh

εXπXεMh
is surjective and

non-injective. Now we haveX 6= Mσi(1), . . . ,Mσi(i−1), because πMσi(`)
εMh

= 0 for every
` = 1, . . . , i − 1. Moreover X 6= Bi since πBiεMh

πMh
εBi is injective and not surjec-

tive. Therefore X ∈ {Nτi(i+1), . . . , Nτi(n)}, say X = Nk. Hence there is a permutation
τi+1 ∈ Sn such that τi+1(`) = τi(`) for every ` = 1, 2, . . . , i and that τi+1(i + 1) = k.
Finally, by Fact (1) and Lemma 1.2, there is a module Bi+1 ⊆ Bi ⊕Nk such that

G = Mσi+1(1) ⊕ . . .⊕Mσi+1(i) ⊕Bi+1 ⊕Nτi+1(i+2) ⊕ . . .⊕Nτi+1(n).

Note that, by Fact (2), one has [Bi+1]m = [Nτi+1(i+1)]m, [Bi+1]e = [Bi]e, [Mσi+1(i)]e =
[Nτi+1(i+1)]e and [Bi]m = [Mσi+1(i)]m.

In the latter case note ` /∈ {σi(1), . . . , σi(i − 1)} since πMσi(k)
εBi = 0 for every

k = 1, . . . , i− 1. Thus there is a permutation σi+1 ∈ Sn such that σi+1(k) = σi(k) for
every k = 1, . . . , i − 1 and σi+1(i) = `. For the usual reason there is a permutation
τi+1 ∈ Sn such that τi+1(`) = τi(`) for every ` = 2, . . . , i and that τi+1(i + 1) = α.
Note that one has [Bi]m = [Mσi+1(i)]m, [Bi]e = [Mσi+1(i)]e and Nα = Nτi+1(i+1). Reset
α : = τi+1(1) and set Bi+1 = Nτi+1(1). By Fact (1) and Lemma 1.2 we get

G = Mσi+1(1) ⊕ . . .⊕Mσi+1(i) ⊕Bi+1 ⊕Nτi+1(i+2) ⊕ . . .⊕Nτi+1(n).
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Note that one has [Bi+1]m = [Nα]m and [Bi+1]e = [Nα]e.
Finally compute the n-th step to check the epigeny and monogeny classes of [Nτn(n)]

without defining neither Bn+1, σn+1 nor τn+1.
To conclude it is enough to run through the n steps, set σ = σn and τ = τn and

check the monogeny classes and the epigeny classes of the modules Mi, Ni and Bi.
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