Algebra - Foglio esercizi 3

2 novembre 2005

- 1. Sia $f: G \to G$ un omomorfismo del gruppo G in sé. Provare che l'insieme $\{x \in G \mid f(f(x)) = f(x)\}$ è un sottogruppo di G.
- 2. Sia $f: G_1 \to G_2$ un omomorfismo tra i gruppi finiti G_1 e G_2 e sia H un sottogruppo di G_1 contenente il nucleo di f. Provare che risulta $(G_1: H) = (f(G_1): f(H))$.
- 3. Sia G il gruppo dei numeri complessi non nulli rispetto alla moltiplicazione e sia N l'insieme dei numeri complessi di modulo 1 (cioè l'insieme degli a+ib tali che $a^2+b^2=1$). Dimostrare che N è un sottogruppo normale di G e che G/N è isomorfo al gruppo dei numeri reali positivi rispetto alla moltiplicazione (suggerimento: usare il primo teorema dell'omomorfismo).
- 4. Sia G il gruppo delle matrici reali 2×2 della forma $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ dove $ad \neq 0$. Sia G' l'insieme delle matrici della forma $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$.
 - a) Dimostrare che $G' = \{ \prod_{i=1}^{n} x_i y_i x_i^{-1} y_i^{-1} \mid n \in \mathbb{N}, x_i, y_i \in G \}.$
 - b) Scrivere esplicitamente G/G' e dimostrare che è abeliano.
- 5. Sia $R = \{m/n \in \mathbb{Q} : m, n \in \mathbb{Z} \text{ e } 7 \text{ non divide } n\}$. Mostrare che R è un sottoanello del campo dei numeri razionali. Mostrare che $I = \{m/n \in \mathbb{Q} : m, n \in \mathbb{Z}, 7 \text{ non divide } n, 7 \text{ divide } m\}$ è l'unico ideale massimale di R. Tutte le frazioni si intendono ovviemente ridotte ai minimi termini.
- 6. Sia R un anello e sia X un sottoinsieme di R.
 - a) Dimostrare che $\ell(X)=\{r\in R\mid rx=0 \text{ per ogni } x\in X\}$ è un ideale sinistro di R.
 - b) Se X è un ideale sinistro di R, dimostrare che $\ell(X)$ è un ideale bilatero.
- 7. Sia R un anello commutativo finito. Dimostrare che ogni ideale primo di R è un ideale massimale.
- 8. Sia R un anello commutativo e siano H e K ideali di R. Provare che l'insieme $(H:K)=\{r\in R\mid rx\in H \text{ per ogni }x\in K\}$ è un ideale di R contenente H.

Dimostrare inoltre che l'ideale (H:K)K è contenuto in H e che (H:H+K)=(H:K).

Dimostrare infine che, se R ha un'unità, allora (H:K)=R se e solo se K è contenuto in H.