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Abstract

We consider mixed-integer sets defined by a linear system Az > b plus
an integrality requirement on one variable, where A is a totally unimodular
matrix with at most two nonzero entries per row. We give a complete
linear-inequality description for the convex hull of any set of this type.
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1 Introduction

In a recent paper, Conforti et al. [1] investigated the class X' of mixed-integer
sets of the type X := {x € R" : Az > b, z; integer for i € I}, where A is a
totally unimodular matrix with at most two nonzero entries per row, b is an
arbitrary vector, and [ is a subset of {1,...,n}. They gave a linear system of in-
equalities that describes conv(X) (the convex hull of X) in a higher-dimensional
space by means of additional variables. As remarked in [1], the family X in-
cludes and generalizes several mixed-integer sets that had been studied pre-
viously [2, 3, 8, 11, 13, 14], most of them arising as relaxations of lot-sizing
problems.

Despite the result of [1], a linear-inequality description for conv(X) in the
original variables x is unknown in the general case. However, the convex hull in
the original space was found for the sets in some subfamilies of X' [3, 4, 6, 8, 13].
In particular, a linear-inequality description in the original space is known for
any set in X having only one continuous variable [4, 6]. The object of this study
is, in a sense, the symmetric case: we deal with mixed-integer sets in X with a
single integer variable.

The rest of this note is organized as follows. In Section 2 we state our main
result, i.e., for any set X € X with a single integer variable, we give a system
of linear inequalities that describes conv(X) in the original space. The result
is then proven in Section 3.

Standard terminology and basic results of polyhedral theory will be used
throughout the paper. We refer the reader to [10] or [12].
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2 The convex hull

Let X :={z € R": Az > b, x; integer for i € I} be a mixed-integer set, where
A is an m x n totally unimodular matrix with at most two nonzero entries per
row and I C {1,...,n} with [I| = 1. We assume w.l.o.g. that z,, is the integer
variable, i.e., I = {n}.

As shown in [1], a result in [9] implies that it is possible to multiply by —1 a
subset of columns of A so that the resulting matrix has the following property:
if a row contains two nonzero entries, then one of them is +1 and the other is
—1. Therefore we can assume w.l.o.g. that A satisfies this property, and thus
the linear system Az > b has the form

x; —xj > dij, (i,7) € D, (1)
x>, €L, (2)
z, <wu;,, €U, (3)

for some subsets D C {1,...,n}x{l,...,n}and L,U C {1,...,n}, and rational
numbers d;j;, l;, u;. If the above system does not include an explicit lower (resp.,
upper) bound on the integer variable x,,, we set [, :== —oo (resp., u, := +00).
Otherwise, if a lower (resp., upper) bound on z,, is given, we assume w.l.o.g.
that [, (resp., uy) is an integer number.

Let G = (V, E) be the directed graph whose arc-node incidence matrix is
constituted by the first n — 1 columns of A, with a dummy node 0. That is, the
vertex set of G is V :={0,...,n — 1} and the arc set E is defined as follows:

(a) for each pair (i,7) € D, where i,j # n, E contains arc (3, j);

(b) for each pair (i,n) € D, E contains arc (i,0); symmetrically, for each pair
(n,j) € D, E contains arc (0, 7);

(c) for each index i € L with ¢ # n, E contains arc (,0);

(d) for each index i € U with i # n, E contains arc (0, 7).

Note that G may contain several pairs of parallel or opposite arcs.

Thus every inequality of the system Ax > b (i.e., system (1)—(3)), except
for the inequalities I, < x,, < uy, gives rise to an arc of G. We assign weights
to the arcs of G as follows: every arc of type (a) or (b), arising from a pair
(1,7) € D, receives weight d;;; arcs of type (c) receive weight l;; arcs of type (d)
receive weight —u;. The weight of an arc e € E is denoted by b.. In other
words, be is the right-hand side of the inequality of (1)-(3) (written in the “>”
form) that corresponds to arc e.

Let C denote a sequence of arcs eq, ..., e, forming an undirected cycle in
G (k > 2). Let ig = irs1 be the node shared by arcs ey and e, and for
1 <t <k, let i; be the node shared by arcs e;_1 and e;. Thus for 0 < ¢t < k,
either e; = (iy,4¢41) or e, = (i¢41,%t). Let Eg = {e; 1 er = (ig,0141)} and
E; = {et ey = (ig11,1¢)}. Also, let TC+ (resp., T;; ) be the set of indices ¢ such
that e is in EJ (resp., E;). We define

b= be, bpi= Y be, Bei=0bl—b. (4)

e€EL e€E;



We now present the main result of this note, that is, a linear-inequality
description for the convex hull of X, denoted conv(X). In the following, f(«a)
stands for the fractional part of a number a, i.e., f(a) :=a — |a].

Theorem 1 The polyhedron conv(X) is described by the original system (1)—
(3) plus all inequalities of the form

> (@i = i) + (e + f(Be))zn > bg + f(Be) e + 1], (5)
teTy
where
e C is a sequence of arcs eq, . .. , e, forming an undirected cycle in G (k > 2);

10 = ig+1 = 0 is the node shared by arcs ey and e, and for 1 <t <k, iy
is the node shared by arcs e;—1 and es; ey is an arc of type (b), while e,
is either of type (c) or of type (d);

0 if0eTd,

o x0:=0, f¢ is defined by (4), and e¢ := .
—1  otherwise.

The next section is devoted to proving the above theorem.

3 Proof of the result

The following notation will be used. We denote by P the set {x € R™ : Ax > b},
i.e., the polyhedron defined by (1)—(3). Furthermore, we write A = [M | a,],
where M is the column submatrix of A constituted by the first n — 1 columns
of A and a,, is the n-th column of A. Similarly, we decompose a vector z € R™
as ¢ = (xp7, Tp).

Since the set X has a single integer variable, its convex hull is completely
described by split cuts [5]. We recall that an inequality cz > 0 is a split cut for
P with respect to variable x,, if there exists an integer o such that the inequality
cx > 0 is valid for the two polyhedra {z € P : x,, < a}and {x € P : z, > a+1}.

Let cx > 0 be a non-redundant split cut associated with the disjunction
(xn < @)V (zn, > a+ 1) for some integer o, where we can assume w.l.o.g.
that [, < a < u,. Since the inequality cx > § is valid for both polyhedra
{reP:x, <a}and {x € P:x, > a+ 1}, by Farkas’ Lemma (see, e.g., [12])
there exist multipliers (v, A), (w, u) € R™ x R satisfying

vM = cpr = wM, (6)

Vay — A = ¢ = way, + U, (7)
vb—Aa =9 =wb+ pla+1), (8)
v,w >0, A\, > 0. (9)

Thus the vector (v, A\, w, 1) belongs to the pointed cone defined by

vM = wM, (10)

vay — A = wa, + W, (11)
vb — Aav = wb + p(a + 1), (12)
v,w >0, A\, > 0. (13)



As cx > 4 is non-redundant, (v, \,w, ) is an extreme ray of (10)—(13).
Furthermore, as we are only interested in extreme rays of (10)—(13) with A, u >
0 (otherwise inequality ¢z > 0 would be implied by the original system Az > b),
we observe that (v, w) is an extreme ray of the cone defined by

oM = wM, (14)
v,w > 0. (15)

Now, if for an integer k we define
v =b— ka,,
equations (11)—(12) give
A= (w—v)b*T = (v —w)h®. (16)
Using (6)—(8) and (16), inequality cz > § can be written as
oMy + (vb* — wb* ™) 2, > vb® + (v — Wb ) a. (17)

Therefore the polyhedron conv(X) is described by the original system (1)—
(3) plus the inequalities (17) for all extreme rays (v, w) of (14)—(15) and all «
such that the corresponding values of A and p defined by (16) are positive. We
now show that all these inequalities are of the form (5).

Lemma 2 Let o be an integer such that I, < a < uy, and let (v,w) be an
extreme ray of the cone defined by (14)—(15) such that the values A\ and p
defined by (16) are positive. Then the corresponding inequality (17) is of the
form (5).

Proof. We rewrite system (14)—(15) as

(v,w)M =0, (18)
v,w >0, (19)

M

where M = [—M]

Note that M may have some all-zero rows, namely the rows corresponding
to inequalities z,, > [,, and z,, < u,, (if they appear in system Az > b). Suppose,
for instance, that inequality x, > [, is the t-th row of system Axz > b. Then
the vector (v,w) defined by setting v; = 1 and all other entries equal to zero
is the only extreme ray of (18)-(19) with v; # 0. Similarly, the vector (v, w)
defined by setting wy; = 1 and all other entries equal to zero is the only extreme
ray of (18)—(19) with w; # 0. However, since p = [,, — a < 0 in the former case
and A = [, —a —1 < 0 in the latter case, these rays need not be considered. A
similar argument applies to inequality x,, < u,. This shows that we can ignore
the all-zero rows of system (18).

Now, system (18) describes flow-conservation constraints on a directed graph
‘H with vertex set {0,...,n— 1}, where 0 is a dummy node, and arc set defined



as follows: for every row of M containing a +1 in column ¢ and a —1 in column
Jj, there is an arc (i,j); for every row with a +1 (resp., —1) in column ¢ and
all other entries equal to 0, there is an arc (¢,0) (resp., (0,7)). Note that H
and the graph G introduced in Section 2 are defined on the same vertex set.
Furthermore, every row of M generates an arc of G and a pair of opposite arcs
of H. If an arc e of G corresponds to the pair of opposite arcs €', e” of H, we
say that e is the arc underlying ¢’ and €¢”. Given any subset of arcs of H, the
underlying subset of arcs of G is defined similarly.

It is well-known [7] that the extreme rays of (18)—(19) are the 0-1 vectors
(up to multiplication by a positive scalar) whose supports define directed cycles
in H.

Let D be a directed cycle in H defined by an extreme ray (v, w) of (18)—(19).
If D consists of a pair of opposite arcs that correspond to the same arc of G,
then v = w. This implies that A = 0 and thus we can ignore this ray.

Therefore from now on we assume that D is a directed cycle of H with at
least three arcs. Let C be the underlying undirected cycle in G. We denote the
sequence of arcs of C by eg,...,e,, where k > 2; furthermore, ig = iy is the
node shared by arcs eg and e, and for 1 <t < k, 4 is the node shared by arcs
ei—1 and e;.

Since the support of v (resp., w) corresponds to the arcs of D for which the
underlying arcs of C are in Eér (resp., £ ), we have

vb = b}, wb = b . (20)

Define ¢ := va, and € := wa,,. Since the support of column a,, corresponds
to arcs of G of type (b) (see Section 2 for the definition of types (a)—(d)), we
have the following:

The value 0 is the difference between the number of arcs of type (b)
in Eg leaving node 0 and the number of arcs of type (b) in Eg
entering node 0. Similarly, the value ¢ is the difference between the
number of arcs of type (b) in E; leaving node 0 and the number of
arcs of type (b) in E; entering node 0.

In particular, it follows that d,e € {0,+1}, and if they are both nonzero, they
are either both 1 or both —1. Thus |6 — ¢| < 1. Also note that

vb® = vb — Sa,  wb*T = wb — e(a + 1). (21)

Define p := vb® — wb®T!. Since p = —\ + 6 = u + €, the condition A, x> 0
is equivalent to € < p < §, which is possible only if § > ¢ + 1. Now, because
|0 — | <1, we necessarily have § = ¢ 4 1. Then, using (21) and (20),

p=uvb* —wb*t =vb—wb—a+e=b} —b; —at+e=Pc—a+te,

thus p — e = B¢ — a. Now, since 0 < p —e < J —e = 1 and since € and « are
integer numbers, we have a = | ¢ | and p = e+ f(B¢).

We now show that C satisfies the conditions of Theorem 1 and inequality (17)
coincides with inequality (5).



Asd,e € {0,£1} and 6 = e+1, eitherd =lande =0,or§ =0 and e = —1.
Recalling the meaning of the values § and ¢ pointed out above, we see that in
both cases node 0 is part of the cycle and thus we can assume that ig = 0. Also,
in both cases arc eq is of type (b), while ey, is either of type (c) or of type (d).
Furthermore if § = 1 and € = 0 then ey € EZ, while if § = 0 and € = —1 then
eo € E; . Thus C satisfies the conditions of Theorem 1 and ¢ = ec.

Since av = [f¢] and § = ¢ + 1, the first equation in (21) gives

vb® = vb— (e + 1)a =bf — (e +1)[fc] = by + Be — (e +1)[Bc].
Then, recalling that p = ¢ + f(0¢), the right-hand side of (17) is

vb® + pa =bg + fe — (e + 1) Bel + (e + f(Be)) Bel] = bz + f(Be)|Be + 1],

which is exactly the right-hand side of inequality (5).
One can also verify that vMz) = ZteTg (w3, — x4, ), with the convention

that x¢p = 0. Finally, the coefficient of x,, in inequality (17) is vb® — wb®Tt =
p=c+ f(Bc) =ec+ f(Bc). Thus (17) and (5) coincide. O

We can now prove the Theorem 1.

Proof of Theorem 1. By Lemma 2, all split cuts for P are inequalities of the
form (17). To conclude, one needs just to observe that every inequality of the
form (5) is valid for conv(X). This can be done as follows. Starting from the
sequence of arcs C, construct the unique directed cycle D in H whose underlying
undirected cycle in G is C. Let (v, w) be the characteristic vector of D and set
a = |fBc|. By using the same arguments as in the proof of Lemma 2, one shows
that A, x> 0 and inequalities (17) and (5) coincide. Therefore inequality (5) is
a split cut for P. O
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