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Abstract

We consider mixed-integer sets of the type MIXTU = {x : Ax ≥ b; xi integer, i ∈ I},
where A is a totally unimodular matrix, b is an arbitrary vector and I is a nonempty
subset of the column indices of A. We show that the problem of checking nonemptiness of
a set MIXTU is NP-complete even in the case in which the system describes mixed-integer
network flows with half-integral requirements on the nodes.
This is in contrast to the case where A is totally unimodular and contains at most two
nonzeros per row. Denoting such mixed-integer sets by MIX2TU , we provide an extended
formulation for the convex hull of MIX2TU whose constraint matrix is a dual network
matrix with an integral right-hand-side vector. The size of this formulation depends on
the number of distinct fractional parts taken by the continuous variables in the extreme
points of conv(MIX2TU ). When this number is polynomial in the dimension of the matrix
A, the extended formulation is of polynomial size. If, in addition, the corresponding list
of fractional parts can be computed efficiently, then our result provides a polynomial
algorithm for the optimization problem over MIX2TU . We show that there are instances
for which this list is of exponential size, and we also give conditions under which it is
short and can be efficiently computed.
Finally we show that these results for the set MIX2TU provide a unified framework
leading to polynomial-size extended formulations for several generalizations of mixing
sets and lot-sizing sets studied in the last few years.

1 Introduction

We study mixed-integer sets of the type

MIXTU = {x : Ax ≥ b; xi integer, i ∈ I},

where A is a totally unimodular (TU, for short) matrix, b is a vector that typically contains
fractional components and I is a nonempty subset of the column indices of A. (Definitions
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and properties of TU matrices can be found in [14].) The study of such sets forms part of
a recent effort to study and understand simple mixed-integer sets. In particular MIXTU

includes as a special case the mixing set

MIX = {(s, y) ∈ R+ × Zn : s + yj ≥ bj , j = 1, . . . , n},

as well as the more general mixed-integer edge-covering problem

BIP (I) = {x ∈ RV
+ : xi + xj ≥ bij , ij ∈ E; xi integer, i ∈ I}

on a bipartite graph G = (V, E) with I ⊆ V .

More specifically the motivation for this research was in part to understand the full scope
of the proof technique based on fractionalities used in studying the mixing set and its gen-
eralizations [2, 3, 5, 18, 9, 13, 16], and also to see whether TU matrices play as important a
role in mixed-integer programming as they do in pure integer programming.

From the complexity and polyhedral point of view our results are of two types. On the
one hand we show that checking nonemptiness of MIXTU is NP-complete, even if the system
is of the form {x : Ax = b; x ≥ 0; xi integer, i ∈ I} with A being the node-arc incidence
matrix of a directed graph and b is half-integral, i.e., 2b is integral. This shows that finding an
explicit inequality description of the polyhedron conv(MIXTU ) will most likely be an elusive
task, where conv(MIXTU ) denotes the convex hull of the set MIXTU .

On the other hand, if MIX2TU denotes the mixed-integer set MIXTU with the additional
restriction that A is a TU matrix with at most two nonzero entries per row, which includes the
sets MIX and BIP (I), we derive an extended formulation for the convex hull of MIX2TU ,
i.e. an inequality description of a polyhedron Q = {(x, µ) : Ax+Bµ ≥ d} in a space that uses
variables (x, µ) and includes the original x-space, so that conv(MIX2TU ) is the projection of
Q onto the x-space.

The extended formulation of the polyhedron conv(MIX2TU ) takes explicitly into account
all possible fractional parts taken by the continuous variables at the vertices of conv(MIX2TU ).
If the number of these fractional parts is small, this extended formulation is compact (of poly-
nomial size in n,A, b). In such cases optimizing a linear function over sets MIX2TU that
have this property can be carried out efficiently through linear programming if the set of
fractional parts is known. On the one hand we give conditions, including many interesting
cases, in which this formulation is compact and the fractional parts can be computed. On
the other, we show that for sets such as BIP (I) the size of our polyhedral description can be
exponential.

Also using invertible linear transformations that map mixed-integer vectors into mixed-
integer vectors, we show that a host of mixed-integer sets that have been investigated in the
past decade can be mapped with these transformations into sets of the type MIX2TU with
a small number of fractional parts taken by the continuous variables. Therefore our result
provides a general setting for the compact extended formulations of all these mixed-integer
sets.

The outline of the paper is as follows. In Section 2 we remind the reader of some ba-
sic results on network matrices. In Section 3 we show that deciding the nonemptiness of
sets MIXTU is NP-complete. In Sections 4 and 5 we derive the extended formulation for
conv(MIX2TU ). In Section 6 we show first that the length of the list of fractional values of
all the extreme point solutions can be exponential, and then describe conditions under which
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the length is of polynomial size (compact). In Section 7 we give examples of mixed-integer
sets that can be transformed into the form MIX2TU , and we finish in Section 8 with some
concluding remarks.

2 Dual network matrices

Our main result is an extended formulation of mixed-integer sets MIX2TU , which are defined
by totally unimodular matrices A having at most two nonzero entries per row. In this section,
we review some basic terminology of networks and relate such TU matrices to transposes of
node-arc incidence matrices of directed graphs.

The node-arc incidence matrix C ∈ {0,±1}V×A of a directed graph D = (V,A) has one
row for each vertex and one column for each arc of D. The column representing the arc
e = uv is zero everywhere, except in the rows corresponding to u and v. These entries are
C(u, e) = 1 and C(v, e) = −1 respectively. A minimum cost flow problem is a linear program
of the form min{cT x : Cx = b, 0 ≤ x ≤ u}, where C ∈ {0,±1}m×n is a node-arc incidence
matrix, c and u are in Rn.

A 0,±1-matrix A with at most two nonzero entries per row is a dual network matrix if A
has the following property:

If aij, aik are both nonzero and k 6= j, then aij = −aik.

Consequently a dual network matrix is the transpose of a node-arc incidence matrix plus some
singleton rows with entries of +1 or −1, and such matrices arise as the constraint matrices
of the linear-programming dual of a minimum cost flow problem without capacities. The
problem of optimizing over such matrices is often referred to as the optimal node-potential or
node-label assignment problem, see e.g. [1].

The following characterization is due to Heller and Tompkins [10], see e.g. Theorem 2.8
in [14]. Here N = {1, . . . , n} and {aj , j ∈ N} denotes the set of columns of A.

Theorem 1 Let A be a 0,±1-matrix with at most two nonzero entries per row. Then A is
totally unimodular if and only if the set N can be partitioned into two sets R and B such that
all entries of the vector

∑
j∈R aj −

∑
j∈B aj are 0,±1.

Here, we focus on mixed-integer systems defined by TU matrices which have at most two
nonzero entries per row. The next corollary shows that we can restrict our attention to dual
network matrices by substituting some variables xi by −xi.

Corollary 2 Let A be a 0,±1-matrix with at most two nonzero entries per row. Then A is
totally unimodular if and only if N contains a subset R such that the matrix Ã, obtained from
A by multiplying the columns aj , j ∈ R by −1, is a dual network matrix.

Proof: Let (R,B) be a partition of the column indices of A satisfying the condition of Theo-
rem 1. Then Ã is a dual network matrix. The converse is readily checked. 2

3 Complexity of the feasibility problem for MIXTU

In this section, we show that determining whether a mixed-integer set of the type MIXTU

is empty or not is NP-complete. More specifically, we show that feasibility of a half-integer
version of the minimum cost flow problem is NP-complete.
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Consider a mixed-integer set

{x : Cx = b/2; x ≥ 0; xi integer, i ∈ I}, (1)

where C is the node-arc incidence matrix of a directed graph D = (V,A) and b ∈ ZV is
an integral vector, which represents the requirements on the vertices of D. The set (1) is
nonempty if and only if the following set is nonempty

{x : Cx = b; x ∈ Z+; xi even, i ∈ I}. (2)

This can be seen as follows. Let x be a vertex of the convex hull of (1). Then xi is integer for
each i ∈ I and xj is half-integer, i.e. 2xj ∈ Z for each j ∈ N \ I. Consequently 2 · x is in the
set (2). On the other hand, if x′ is in the set (2), then x′/2 lies in the set (1). This discussion
shows that we can decide whether the following parity network flow problem has a solution,
given an algorithm which decides whether a mixed-integer set of type MIXTU is feasible or
not.

(Parity network flow) Given a directed graph D = (V,A), a subset S ⊆ A of the
arcs and integral vectors b ∈ ZV , u ∈ ZA, determine whether the network D with
requirements b and capacities u has a feasible integral flow under the additional
requirement that all flow-values of arcs in S are even.

Theorem 3 The problem of deciding the nonemptiness of a mixed-integer set MIXTU is
NP-complete, even if the set has the form (1).

Proof: The problem is clearly in NP. We reduce SAT to the parity network flow problem in
a manner similar to that introduced by Even et al. in the proof that the edge-disjoint paths
problem is NP-hard, see [7] and [12, p. 432].

Given a SAT formula over the variables x1, . . . , xn, consisting of clauses Z1, . . . , Zm, we
construct an instance of the parity network flow problem as follows.

• The set V of nodes of D contains a source s, a sink t and a node zj , 1 ≤ j ≤ m, that
represents the corresponding clause.
Every variable xi appearing in positive or negative form in clauses Zi1 , . . . , Zipi

is rep-
resented by a “value node” vi and nodes xin

i,i`
, xout

i,i`
, x̄in

i,i`
, x̄out

i,i`
, 1 ≤ ` ≤ pi.

Finally there is an additional value node vn+1.

• The arcs of D that are not in the set S (unspecified capacities are unlimited) are:

– The arcs sxin
i,i`

, sx̄in
i,i`

, 1 ≤ i ≤ n, 1 ≤ ` ≤ pi.

– The arcs zjt, 1 ≤ j ≤ m, having capacity 1.

– The arcs xin
i,i`

xout
i,i`

and x̄in
i,i`

x̄out
i,i`

, 1 ≤ i ≤ n, 1 ≤ ` ≤ pi, having capacity 2.

– If variable xi occurs as a positive literal in clause Zi` , there is an arc xout
i,i`

zi` . If
variable xi occurs as a negative literal in clause Zi` , there is an arc x̄out

i,i`
zi` .

• The following are the arcs in S and thus have to carry a flow of even value:

– The arcs vix
in
i,i1

and vix̄
in
i,i1

, 1 ≤ i ≤ n.

– The arcs xout
i,ipi

vi+1 and x̄out
i,ipi

vi+1 , 1 ≤ i ≤ n.
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Figure 1: The network corresponding to the SAT formula (x1 ∨ x̄2) ∧ (x2 ∨ x3). Thick arcs
are special arcs. Numbers on arcs are capacities.

– The arcs xout
i,i`

xin
i,i`+1

and x̄out
i,i`

x̄in
i,i`+1

, 1 ≤ i ≤ n, 1 ≤ ` < pi.

• The requirements on the nodes are:

– An in-flow of value m in the source s and an out-flow of value m in the sink t.

– An in-flow of value 2 at v1 and an out-flow of value 2 at vn+1.

Figure 1 shows the network relative to the SAT formula (x1 ∨ x̄2) ∧ (x2 ∨ x3).

For 1 ≤ i ≤ n, define the upper path PU
i to be vi, x

in
i,i1

, xout
i,i1

, . . . , xin
i,ipi

, xout
i,ipi

, vi+1 and the
lower path PL

i to be vi, x̄
in
i,i1

, x̄out
i,i1

, . . . , x̄in
i,ipi

, x̄out
i,ipi

, vi+1.
Observe that the arcs in S force any feasible circulation F to satisfy the following condi-

tions:

• For every 1 ≤ i ≤ n, the arcs in S of one among PU
i and PL

i carry a flow of value 2,
and the special arcs of the other carry a flow of value 0.

• For every 1 ≤ j ≤ m, F carries a flow of value 1 along a path of the type s, xin
i,j , x

out
i,j , zj , t

and the upper path PU
i is discharged (that is, its arcs in S carry a flow of value 0),

or a flow of value 1 along a path of the type s, x̄in
i,j , x̄

out
i,j , zj , t and the lower path PL

i is
discharged.
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To any truth assignment T that satisfies the SAT-formula, we assign a flow value of 2 to
PL

i if xi = true in T and a flow value of 2 to PU
i if xi = false in T . For each clause Zj

we choose any literal xi or x̄i which is true under T . Say xi occurs as a positive literal in
Zj and xi = true in T . Then PU

i is discharged and a flow of value 1 can be routed along
s, xin

i,j , x
out
i,j , zj , t.

It is immediate to see that the converse also holds: to any feasible circulation, a truth
assignment that satisfies all clauses can be derived in the above manner. 2

4 The main result

Given a real number α, let f(α) = α−bαc denote its fractional part. Let F = {f1, f2, . . . , fk}
be an arbitrary list of decreasing fractional parts (that is, 1 > f1 > · · · > fk ≥ 0), K =
{1, . . . , k} be its set of indices and N = {1, . . . , n}. Later we will make specific choices for
these values. Let XF be the set of points x ∈ Rn such that there exist µi, δi

`, i ∈ N, ` ∈ K,
satisfying the following constraints:

xi = µi +
∑k

`=1 f`δ
i
`, i ∈ N (3)

∑k
`=1 δi

` = 1, δi
` ≥ 0, i ∈ N, ` ∈ K (4)

xi − xj ≥ lij , (i, j) ∈ N e (5)
xi ≥ li, i ∈ N l (6)
xi ≤ ui, i ∈ Nu (7)

µi integer, δi
` integer, i ∈ N, ` ∈ K, (8)

where N e ⊆ N×N and N l, Nu ⊆ N . In other words, XF is the projection onto the x-space of
the mixed-integer set (3)–(8). We remark that the above system may also include constraints
of the type xi − xj ≤ uij , as this inequality is equivalent to xj − xi ≥ lij for lij = −uij . In
this section we give an extended formulation for the polyhedron conv(XF ).

Consider the following unimodular transformation:

µi
0 = µi, µi

` = µi +
∑̀

j=1

δi
j , i ∈ N, ` ∈ K. (9)

Define f0 = 1 and fk+1 = 0. For fixed i ∈ N , an equation in (3) becomes:

xi =
k∑

`=0

µi
`(f` − f`+1) (10)

and the inequalities in (4) become:

µi
k − µi

0 = 1, µi
` − µi

`−1 ≥ 0, ` ∈ K. (11)

4.1 Modeling xi ≥ li, xi ≤ ui and xi − xj ≥ lij

Let `li be the highest index ` ∈ {0, . . . , k} such that f` ≥ f(li). Now if xi, δi
`, µi

` satisfy (3),
(4), (8), (9), then xi ≥ li if and only if

µi
`li
≥ blic+ 1. (12)
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Similarly if `ui is the highest index such that f` > f(ui), then constraint xi ≤ ui is satisfied
if and only if

µi
`ui
≤ buic . (13)

Now we consider the constraint xi−xj ≥ lij . Define kij to be the highest index ` ∈ {0, . . . , k}
such that f`+f(lij) ≥ 1. Given an index t ∈ K, define kt to be the highest index ` ∈ {0, . . . , k}
such that f` ≥ f(ft + f(lij)).

Lemma 4 Assume xi, xj, δi
`, δj

` , µi
`, µj

` satisfy (3), (4), (8), (9). Then xi − xj ≥ lij if and
only if the following set of inequalities is satisfied:

µi
kt
− µj

t ≥ blijc+ 1, 1 ≤ t ≤ kij (14)

µi
kt
− µj

t ≥ blijc , kij < t ≤ k. (15)

Proof: Substituting for xi and xj , the inequality xi − xj ≥ lij becomes

µi +
k∑

`=1

f`δ
i
` ≥ µj +

k∑

`=1

f`δ
j
` + blijc+ f(lij).

First we show that the inequality (15) is valid for t > kij . As
∑

`>kt
f`δ

i
` ≤ fkt+1 and∑k

`=1 f`δ
j
` ≥

∑
`≤t f`δ

j
` ≥ ft

∑
`≤t δj

` , we obtain the valid inequality

µi +
∑

`≤kt

f`δ
i
` ≥ µj + ft

∑

`≤t

δj
` + blijc+ f(lij)− fkt+1.

Adding the valid inequality (1− ft) ≥ (1− ft)
∑

`≤t δj
` gives

µi +
∑

`≤kt

f`δ
i
` + 1− ft ≥ µj +

∑

`≤t

δj
` + blijc+ f(lij)− fkt+1.

By definition f(lij) + ft > fkt+1. Since δi
`, δ

j
` ≥ 0 for all ` ∈ K, Chvátal-Gomory rounding

gives
µi +

∑

`≤kt

δi
` ≥ µj +

∑

`≤t

δj
` + blijc , or

µi
kt
≥ µj

t + blijc .

The argument when t ≤ kij is the same, except that f(lij)− fkt+1 + ft > 1.

To establish the converse, we consider the case in which δj
t = 1. Then µj

t = µj
0 + 1,

µj
t−1 = µj

0 and

xj = µj
0 +

k∑

`=1

(µj
` − µj

`−1)f` = µj
0 + ft.

Inequality µi
kt
≥ µj

t + blijc implies that either µi
0 ≥ µj

0 + 1 + blijc or that µi
0 = µj

0 + blijc and∑
`≤kt

δi
` = 1. This implies that xi ≥ µj

0 + blijc+ fkt . Now, assuming t > kij ,

xi − xj ≥ µj
0 + blijc+ fkt − µj

0 − ft

= blijc+ fkt − ft

≥ blijc+ f(lij),

as fkt ≥ f(ft + f(lij)) and ft + f(lij) < 1. Again the other case with t ≤ kij is similar. 2
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4.2 Integrality of the extended formulation

Let QF be the polyhedron on the space of the variables {(xi, µ
i
`), i ∈ N, ` ∈ K ∪ {0}} defined

by the inequalities
(10), (11), i ∈ N

(12), i ∈ N l

(13), i ∈ Nu

(14), (15), (i, j) ∈ N e.

Theorem 5 The polyhedron conv(XF ) is the projection onto the space of the x-variables of
the polyhedron QF .

Proof: Since, for i ∈ N , variable xi is determined by the corresponding equation (10), we only
need to show that the polyhedron defined by inequalities

(11), i ∈ N
(12), i ∈ N l

(13), i ∈ Nu

(14), (15), (i, j) ∈ N e.

is integral. Let Aµ be the constraint matrix of the above system. By construction Aµ is a dual
network matrix. Since dual network matrices are totally unimodular and the right-hand-sides
of the above inequalities are all integer, the statement follows from the theorem of Hoffman
and Kruskal [11]. 2

5 An extended formulation for conv(MIX2TU)

Let X = {x : Ax ≥ b; xi integer, i ∈ I} be a mixed-integer set, where (A | b) is a rational
matrix and I is a nonempty subset of the column indices of A. A list F = {f1 > f2 > · · · > fk}
of fractional parts is complete for X if the following property is satisfied:

Every minimal face F of conv(X) contains a point x̄ such that for each i ∈ N ,
f(x̄i) = fj for some fj ∈ F and for each i ∈ I, f(x̄i) = 0.

In our applications, minimal faces are vertices and the above condition becomes:

If x̄ is a vertex of conv(X), then for each i ∈ N , f(x̄i) = fj for some fj ∈ F .

Since I is nonempty, every complete list F must include the value 0, thus fk = 0.
We now consider a mixed-integer set MIXDN = {x : Ax ≥ b; xi integer, i ∈ I}, where

A is a dual network matrix. That is, the system Ax ≥ b is constituted by inequalities of the
type (5)–(7). We assume that we are given a list F = {f1 > f2 > · · · > fk} which is complete
for MIXDN . In order to obtain an extended formulation for conv(MIXDN ), we consider the
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following mixed-integer set:

xi = µi +
∑k

`=1 f`δ
i
`, i ∈ N (16)

∑k
`=1 δi

` = 1, δi
` ≥ 0, i ∈ N, ` ∈ K (17)

δi
` = 0, i ∈ I, ` ∈ K \ {k} (18)

xi − xj ≥ lij , (i, j) ∈ N e (19)
xi ≥ li, i ∈ N l (20)
xi ≤ ui, i ∈ Nu (21)

µi integer, δi
` integer, i ∈ N, ` ∈ K, (22)

where inequalities (19)–(21) constitute the system Ax ≥ b.
Let MIXF be the set of vectors x such that there exist µi, δi

`, i ∈ N, ` ∈ K satisfying the
above constraints. Note that equations (18) force variables xi, i ∈ I to be integer valued in
MIXF .

Lemma 6 conv(MIXDN ) = conv(MIXF ).

Proof: If x̄ ∈ MIXF then x̄ satisfies the system Ax ≥ b (i.e. the inequalities (19)–(21)).
Furthermore equations (18) force xi, i ∈ I to be integer. So x̄ ∈ MIXDN . This shows
MIXF ⊆ MIXDN and therefore conv(MIXF ) ⊆ conv(MIXDN ).

To prove the reverse inclusion, we show that all rays and minimal faces of conv(MIXDN )
belong to conv(MIXF ). If x̄ is a ray of conv(MIXDN ) then the vector defined by

xi = x̄i, µi = x̄i, δi
` = 0, i ∈ N, ` ∈ K

is a ray of the polyhedron which is the convex hull of the vectors satisfying (16)–(22). This
implies that x̄ is a ray of conv(MIXF ).

Since the list F is complete, every minimal face F of conv(MIXDN ) contains a point
x̄ ∈ MIXF . Furthermore F is an affine subspace which can be expressed as {x : x =
x̄+

∑h
t=1 λtrt, λt ∈ R} for some subset of rays r1, . . . , rh of conv(MIXDN ). Since x̄ ∈ MIXF

and r1, . . . , rh are all rays of conv(MIXF ), then F ⊆ conv(MIXF ). 2

Applying the unimodular transformation (9), inequalities (16)–(17) become inequalities
(10)–(11), while inequalities (19)–(21) become inequalities (12)–(15). Let Q be the polyhedron
on the space of the variables {(xi, µ

i
`), i ∈ N, ` ∈ K∪{0}} defined by the inequalities (10)–(15)

corresponding to inequalities (16), (17), (19), (20), (21) under transformation (9) and let QI

be the face of Q defined by equations

µi
` − µi

`−1 = 0, i ∈ I, ` ∈ K \ {k},
which are equivalent to equations (18) under transformation (9).

Theorem 7 The polyhedron conv(MIXDN ) is the projection onto the space of the x-variables
of the face QI of Q.

Proof: Theorem 5 shows that every minimal face of Q contains a vector (x̄, µ̄) with integral
µ̄. So the same holds for QI , which is a face of Q. By applying the transformation which is
the inverse of (9), this shows that every minimal face of the polyhedron defined by (16)–(21)
contains a point (x̄, µ̄, δ̄) where (µ̄, δ̄) is integral. So the projection of this polyhedron onto
the x-space coincides with conv(MIXF ) and by Lemma 6 we are done. 2
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We now consider a mixed-integer set MIX2TU = {x : Ax ≥ b; xi integer, i ∈ I}, where
A is a TU matrix with at most two nonzero entries per row. By Corollary 2, A can be
transformed into a dual network matrix by changing signs of some of its columns. Then
MIX2TU is transformed into a set of the type MIXDN . Notice that if F = {f1 > · · · > fk}
is a list which is complete for MIX2TU , then the list {0; f`, 1− f`, 1 ≤ ` < k} is complete for
the transformed set MIXDN . Theorem 7 has the following implication:

If a mixed-integer set MIX2TU admits a complete list F whose size is polynomial
in the size of its description (given by the system Ax ≥ b), the extended formu-
lation of the corresponding set MIXDN given by the inequalities that define QI

is compact. Therefore the problem of optimizing a linear function over such sets
MIX2TU can be solved in polynomial time provided that the list of fractionalities
can be efficiently computed.

This implies the next corollary, since in this case a complete list of fractional parts is
{0, 1/D, . . . , (D − 1)/D}:
Corollary 8 Let A ∈ {0,±1} be a totally unimodular matrix, which has at most two nonzero
entries per row, I ⊆ N , b ∈ Zm, D ∈ Z+ \ {0} and c ∈ Rn. The mixed-integer optimization
problem

max{cT x : Ax ≥ (b/D); xi integer, i ∈ I}
can be solved in time polynomial in m,n and D.

6 On the length of a complete list

In this section we first show that a complete list of fractional parts can have exponential
length for a set of the type MIX2TU and then describe conditions ensuring that the list (and
thus the extended formulation) is compact.

6.1 A non-compact example

We prove here the following result:

Theorem 9 In the set of vertices of the polyhedron Q defined by the inequalities

σi + rj ≥ 3(j−1)n+i

3n2+1
, i, j ∈ N (23)

σi ≥ 0, rj ≥ 0, i, j ∈ N (24)

the number of distinct fractional parts taken by variable σn is exponential in n.

Observation 1 Since the constraint matrix of inequalities (23)–(24) is a TU matrix with at
most two nonzero entries per row, there exists a mixed-integer set M of the type MIX2TU

which is defined on continuous variables σi, rj , i, j ∈ N and integer variables yh, h ∈ I such
that the polyhedron conv(M) ∩ {(σ, r, y) : yh = 0, h ∈ I} is a nonempty face of conv(M)
described by inequalities (23)–(24). Therefore Theorem 9 shows that any extended formula-
tion of conv(M) that explicitly takes into account a list of all possible fractional parts of the
continuous variables will not be compact in the description of M .
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Now let bij be as in the theorem, i.e. bij = 3(j−1)n+i

3n2+1
, i, j ∈ N .

Observation 2 bij < bi′j′ if and only if (j, i) ≺ (j′, i′), where ≺ denotes the lexicographic
order. Thus b11 < b21 · · · < bn1 < b12 < · · · < bnn.

Lemma 10 (i) Suppose that α ∈ Zq
+ with αt < αt+1 for 1 ≤ t ≤ q − 1, and Φ(α) =∑q

t=1(−1)q−t3αt. Then 3
23αq > Φ(α) > 1

23αq .
(ii) Suppose that α is as above and β ∈ Zq′

+ is defined similarly. Then Φ(α) = Φ(β) if and
only if α = β.

Proof: (i)
∑αq−1

j=0 3j = 3αq−1
3−1 < 1

23αq . Now Φ(α) ≥ 3αq −∑αq−1
j=0 3j > 3αq − 1

23αq = 1
23αq , and

Φ(α) ≤ 3αq +
∑αq−1

j=0 3j < 3αq + 1
23αq = 3

23αq .
(ii) Suppose α 6= β. Wlog we assume q ≥ q′. Assume first (αq−q′+1, . . . , αq) = β. Then q > q′

(otherwise α = β) and, after defining ᾱ = (α1, . . . , αq−q′), we have Φ(α)− Φ(β) = Φ(ᾱ) > 0
by (i). Now assume (αq−q′+1, . . . , αq) 6= β. Define h = min{τ : αq−τ 6= βq′−τ} and suppose
αq−h > βq′−h (the other case is similar). If we define the vectors ᾱ = (α1, . . . , αq−h) and
β̄ = (β1, . . . , βq′−h), (i) gives Φ(α) − Φ(β) = Φ(ᾱ) − Φ(β̄) > 1

23αq−h − 3
23βq′−h ≥ 0, as

αq−h > βq′−h. 2

We now give a construction of an exponential family of vertices of Q such that at each
vertex variable σn takes a distinct fractional part. Therefore this construction proves Theo-
rem 9.

Let (i1, . . . , im) and (j1, . . . , jm−1) be two increasing subsets of N with i1 = 1 and im = n.
For i, j ∈ N , let p(i) = max{t : it ≤ i} and q(j) = max{t : jt ≤ j}, with q(j) = 0 if j < j1.

Consider the following system of equations:

σi1 = 0
σit + rjt = bitjt , 1 ≤ t ≤ m− 1

σit+1 + rjt = bit+1jt , 1 ≤ t ≤ m− 1
σiq(j)+1

+ rj = biq(j)+1j , j /∈ {j1, . . . , jm−1}
σi + rjp(i)

= bijp(i)
, i /∈ {i1, . . . , im}.

The unique solution of this system is:

σi1 = 0

σit =
t−1∑

`=1

bi`+1j`
−

t−1∑

`=1

bi`j`
, 2 ≤ t ≤ m

rjt =
t∑

`=1

bi`j`
−

t−1∑

`=1

bi`+1j`
, 1 ≤ t ≤ m− 1

σi = bijp(i)
− rjp(i)

, i /∈ {i1, . . . , im}
rj = biq(j)+1j − σiq(j)+1

, j /∈ {j1, . . . , jm−1}.

As each of these variables σi, rj takes a value of the form Φ(α)/3n2+1, by Lemma 10 (i)
we have that σit > 1

2bitjt−1 > 0 for 2 ≤ t ≤ m, rjt > 1
2bitjt > 0 for 1 ≤ t ≤ m − 1,

11



σi > 1
2bijp(i)

> 0 for i /∈ {i1, . . . , im}, and rj > 1
2biq(j)+1j > 0 for j /∈ {j1, . . . , jm−1}. Therefore

the nonnegativity constraints are satisfied.
Now we show that the other constraints are satisfied. Consider the i, j constraint with

j /∈ {j1, . . . , jm−1}. We distinguish some cases.

1. p(i) ≤ q(j). Then σi + rj ≥ rj > 1
2biq(j)+1j ≥ 1

2bip(i)+1j ≥ 3
2bij > bij .

2. p(i) > q(j) and i /∈ {i1, . . . , im}. Then σi + rj ≥ σi > 1
2bijp(i)

≥ 1
2bijq(j)+1

≥ 3
2bij > bij .

3. p(i) = q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t = q(j) + 1). In this case
the i, j constraint is satisfied at equality by construction.

4. p(i) > q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t > q(j) + 1). Then
σi + rj ≥ σi > 1

2bijt−1 ≥ 1
2bijq(j)+1

≥ 3
2bij > bij .

The argument with i /∈ {i1, . . . , im} is similar.
Finally suppose that i = it and j = ju with u /∈ {t−1, t}. If u > t, σi +rj ≥ rj > 1

2biuju ≥
3
2bitju > bij . If u < t− 1, σi + rj ≥ σi > 1

2bitjt−1 ≥ 3
2bitju > bij .

This shows that the solution is feasible and as it is unique, it defines a vertex of the above
polyhedron.

Now let aij = (j − 1)n + i, so that bij = 3aij/3n2+1 and take

α = (ai1j1 , ai2j1 , ai2j2 , ai3j2 , . . . , aimjm−1).

As σn = Φ(α)/3n2+1, it follows from Lemma 10 (ii) that in any two vertices constructed as
above by different sequences (i1, . . . , im), (j1, . . . , jm−1) and (i′1, . . . , i

′
m′), (j′1, . . . , j

′
m′−1), the

values of σn are distinct numbers in the interval (0, 1). As the number of such sequences is
exponential in n, this proves Theorem 9.

6.2 Sufficient conditions for compactness of the formulation

We now describe conditions that ensure the existence of a compact formulation for a mixed-
integer set X of the type MIX2TU . Since X is described by a linear system Ax ≥ b where A
is a TU matrix with at most two nonzero entries per row, the constraints defining X are of
the following type:

xi + xj ≥ l++
ij , (i, j) ∈ N++ (25)

xi − xj ≥ l+−ij , (i, j) ∈ N+− (26)

−xi − xj ≥ l−−ij , (i, j) ∈ N−− (27)

xi ≥ li, i ∈ N l

xi ≤ ui, i ∈ Nu

xi integer, i ∈ I,

where N++, N+−, N−− ⊆ N ×N and N l, Nu, I ⊆ N . Wlog we assume that if (i, j) ∈ N++

then (j, i) /∈ N++ and if (i, j) ∈ N−− then (j, i) /∈ N−−.
Let GX = (V, E) be the undirected graph with node set V = L = N \ I corresponding to

the continuous variables of X. E contains an edge ij for each inequality of the type (25)–(27)
with i, j ∈ L appearing in the linear system that defines X. Notice that since A is a TU
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matrix, then, for fixed i, j, the system Ax ≥ b can contain either inequalities of type (26) or
inequalities of type (25),(27), but not both. Therefore, for each pair of nodes i, j in V , E
contains at most two parallel edges connecting i and j.

We impose a bi-orientation ω on GX : to each edge e ∈ E (corresponding to an inequality
aixi + ajxj ≥ lij) and each endnode i of e, we associate the value ω(e, i) = tail if ai = 1, the
value ω(e, i) = head otherwise. Thus each edge of GX could have one head and one tail (if
corresponding to an inequality (26)), two tails (if corresponding to an inequality (25)) or two
heads (if corresponding to an inequality (27)).

Given a path P = (v0, e1, v1, e1, . . . , vt) in GX , where v0, . . . , vt ∈ V and e1, . . . , et ∈ E,
we want to define the ω-length of P , lω(P ). To do this, we first define the reverse of an edge
e ∈ E as the edge obtained by turning each head (resp. tail) of e into a tail (resp. head).

We construct a path P ′ = (v0, e
′
1, v1, e

′
1, . . . , vt) from P by reversing some edges, so that

v0 is a tail of e1, and every node vj , 1 ≤ j < t is a head of one edge of P ′ and a tail of the
other. Note that given P , the path P ′ is unique.

Now we define lω(P ) =
∑t

j=1 ε(P, ej)lej , where le is the right-hand-side of the inequality
corresponding to edge e and

ε(P, ej) =

{
−1 if ej has been reversed in P ′

+1 otherwise.

We also define the list G = {g1, . . . , g`} as the set of values f(lω(P )) for all paths P in GX .

Theorem 11 Let X be a mixed-integer set of the type MIX2TU and define G as above.
Then X admits a list which is complete whose length is O(m`), where m is the number of
inequalities in the description of X and ` = |G|.

Proof: Let = (x̄L, x̄I) be a vertex of conv(X). Then x̄L is a vertex of the polyhedron defined
by the inequalities:

aixi + ajxj ≥ l∗∗ij (i, j) ∈ N∗∗, i, j ∈ L (28)
aixi ≥ l∗∗ij − aj x̄j (i, j) ∈ N∗∗, i ∈ L, j ∈ I (29)
ajxj ≥ l∗∗ij − aix̄i (i, j) ∈ N∗∗, i ∈ I, j ∈ L (30)

xi ≥ li i ∈ L ∩N ` (31)
xi ≤ ui i ∈ L ∩Nu, (32)

where if the original inequality is of type (25), then ai = aj = 1 and ∗∗ stands for ++, and
the other cases are defined accordingly.

Let Sx̄ be a set of |L| independent inequalities among (28)–(32) that define x̄L. Then it
is well known (and easy to see) that the edges corresponding to inequalities of type (28) in
Sx̄ define a forest Fx̄ in GX . Let Cx̄ = (V (Cx̄), E(Cx̄)) be a connected component of such
a forest. Since |V (Cx̄)| = |E(Cx̄)| + 1, Cx̄ contains a unique “root” node r whose value is
determined by one of the bounds (29)–(32) and therefore the fractional part of x̄r takes O(m)
possible values, where m is the number of inequalities in the description of X.

If v is a node of Cx̄ distinct from r, then the value of x̄v is determined by the value of x̄r

and the tight inequalities (28) corresponding to the edges in the path Pvr in Cx̄ having v as
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first vertex and r as last vertex: if e is the edge in Pvr incident with r and if P ′
vr is constructed

from Pvr as described above, we have

x̄v =

{
lω(Pvr) + x̄r if r is a head of e

lω(Pvr)− x̄r otherwise.
(33)

Since the list G has ` elements, this shows that the fractional part of each variable x̄v at a
vertex can take at most O(m`) values. 2

Corollary 12 Assume that a mixed-integer set X of the type MIX2TU satisfies at least one
of the following conditions:

(i) The number of paths connecting two nodes in GX is bounded by a polynomial function
of the size of the description of X;

(ii) The number of elements in the sets {f(l∗∗ij ), (i, j) ∈ N∗∗}, where ∗∗ ∈ {++, +−,−−},
is bounded by a constant.

(iii) GX is bipartite with vertex classes U, V and the inequalities defining X which contain
two continuous variables xu, xv (u ∈ U, v ∈ V ) have the form xu +xv ≥ bv− bu for some
vector b with indices in U ∪ V .

Then X admits a complete list of fractional parts which is compact.

Proof: If (i) holds, the length of the list G is bounded by a polynomial function. Then
Theorem 11 implies that there is a complete list for X which is compact.

Now suppose that (ii) holds and assume
⋃

∗∗∈{++,+−,−−}
{f(l∗∗ij ), (i, j) ∈ N∗∗} = {f1, . . . , ft}.

Each value f(lω(Prv)) can be expressed as

f(lω(Prv)) =
t∑

h=1

αhfh,

where αh is an integer for all h. Since GX has |L| nodes, the maximum length of a path in GX

is |L|−1. This implies |αh| ≤ |L|−1 for all h. Then the length of the list G is at most (2|L|−1)t.
Thus, by Theorem 11 there is a complete list for X of size O(m(2|L| − 1)t) = O(mnt), as t is
a constant.

Finally assume that (iii) holds. In this case it is easy to verify that for v ∈ U ∪ V ,

lω(Pvr) = br − bv (34)

and thus X admits a complete list which is compact. 2

Observation 3 The example whose complete list has exponential length constructed in The-
orem 9 shows that if a mixed-integer set of the type MIX2TU does not satisfy any of the above
three conditions, then its complete list may be long.

Observation 4 If X is a mixed-integer set of the type MIX2TU such that the size of every
connected component of GX is bounded by a constant, then X satisfies condition (i) of the
above Corollary.
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7 Examples

We show that several well-studied mixed-integer sets can be transformed into sets of the type
MIX2TU , but first we give a precise meaning to the word “transformed”.

7.1 Mixed-integer linear mappings

Theorem 13 Consider the transformation defined by
(

x′

y′

)
= A

(
x
y

)
, where (x, y) ∈ Rm+n,

(x′, y′) ∈ Rm′+n′, m + n = m′+ n′ and A ∈ R(m+n)×(m′+n′) is nonsingular. The following are
equivalent:

(i) For each (x, y) ∈ Rm+n, y is integral if and only if y′ is integral.

(ii) m = m′, n = n′ and A =
[
A1 A2

0 U

]
, where A1 ∈ Rm×m is nonsingular, A2 ∈ Rm×n and

U ∈ Rn×n is unimodular.

Proof: (i)⇒(ii) Suppose A =
[
A1 A2

A3 A4

]
, where A1 ∈ Rm′×m, A2 ∈ Rm′×n, A3 ∈ Rn′×m and

A4 ∈ Rn′×n. If A3 6= 0, one of its entries is a nonzero number a. Wlog we assume that this

entry is in the first row and first column of A3. Then A

(
e1/2a

0

)
contains a component equal

to 1/2 in the entry corresponding to y′1, contradicting (i). Thus A3 = 0.

If B =
[
B1 B2

B3 B4

]
is the inverse of A (B1 ∈ Rm×m′

, B2 ∈ Rm×n′ , B3 ∈ Rn×m′
and B4 ∈ Rn×n′),

a similar argument shows that B3 = 0.
Thus we obtain y′ = A4y, y = B4y

′ for each y. We now prove that this implies n = n′.
Equation y = B4A4y for all y yields B4A4 = In, thus rkA4 ≥ n. Since A4 is n′ × n, this
implies n′ ≥ n. Similarly, starting from y′ = A4B4y

′ for all y′, one obtains n ≥ n′. Thus
n = n′ and consequently m = m′. (i) then implies that A4 is unimodular.
(ii)⇒(i) The transformation and its inverse are

{
x′ = A1x + A2y

y′ = Uy
and

{
x = A−1

1 (x′ −A2U
−1y′)

y = U−1y′
.

Since U is unimodular, these two transformations preserve the integrality of y and y′. 2

Consider an arbitrary mixed-integer set X = {x : Ax ≥ b; xi integer, i ∈ I} and let F be
a complete list of fractional parts which is compact for X. In general, if we apply a linear
mapping of the kind described in Theorem 13 to X, the transformed mixed-integer set X ′ may
not have a complete list which is compact. For instance, let X = {x : 0 ≤ xi ≤ 2−i, i ∈ N}
(so here I = ∅; similar examples with I 6= ∅ can be easily derived from this example). The
list F = {0; 2−i, i ∈ N} is complete for X and its size is linear in the size of the description
of X. The linear mapping x′1 = x2 + · · · + xn, x′i = xi, i ∈ N \ {1}, transforms X into
X ′ = {x′ : 0 ≤ x′1 − x′2 − · · · − x′n ≤ 2−1; 0 ≤ x′i ≤ 2−i, i ∈ N \ {1}}. Now, for each subset
S ⊆ N \ {1} the vector

x′i =





2−i if i ∈ S

0 if i ∈ (N \ {1}) \ S∑
j∈S 2−j if i = 1
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is a vertex of X ′. Since the values of the sum
∑

j∈S 2−j are distinct numbers in the interval
[0, 1) for each S, any complete list for X ′ contains a number of fractional parts which is
exponential in the size of the description of X.

However, for the mixed-integer sets we study below (except the sets INT in Section 7.3
and BIP (I) in Section 7.5), we will consider linear mappings of the kind of Theorem 13 which
give rise to mixed-integer sets of the type MIX2TU satisfying at least one of the conditions
of Corollary 12. Thus, in these cases the existence of a complete list which is compact is
guaranteed. Furthermore, for these sets a complete list which is compact is explicitly given.

7.2 The continuous mixing set with flows

The continuous mixing set with flows CFLOWMIX, studied in Conforti et al. [3], is

s + rj + xj ≥ bj , j ∈ N

xj ≤ yj , j ∈ N

s ≥ 0, rj ≥ 0, xj ≥ 0, yj ≥ 0 integer, j ∈ N.

As explained in [3], this set provides both a relaxation of the single item constant capacity
lot-sizing problem with backlogging and an exact formulation of the two stage stochastic
lot-sizing problem with constant capacities and backlogging.

The following observation shows that the above mixed-integer set can be transformed into
a set of the type MIX2TU . Let FLOW be the following set:

σj + xj ≥ bj , j ∈ N

xj ≤ yj , j ∈ N

s ≥ 0, σj − s ≥ 0, xj ≥ 0, yj ≥ 0 integer, j ∈ N.

Since the constraint matrix of the above system is a TU matrix with at most two nonzero
entries per row, FLOW is a mixed-integer set of the type MIX2TU .

Observation 5 The linear transformation:

s = s, σj = s + rj , xj = xj , yj = yj , j ∈ N

maps CFLOWMIX into FLOW .

Remark that if X is a mixed-integer set of the type FLOW , then the graph GX (as defined
in Section 6.2) is a tree, with leaves corresponding to variables xj . Therefore GX satisfies
condition (i) of Corollary 12. Below we explicitly give a complete list for FLOW which is
compact.

Lemma 14 The list F = {0; f(bj), j ∈ N ; f(bi − bj), i, j ∈ N} is complete for FLOW .

Proof: We use the same notation as in the proof of Theorem 11. For a connected component
Cx̄ of Fx̄, the root r corresponds to a variable which assumes an integer value. Then, by
equation (33) we only need to compute the values f(lω(P )) for all P in GX . It is easy to
check that the list F = {0; f(bj), j ∈ N ; f(bi − bj), i, j ∈ N} includes all these values. 2

Therefore the result of Section 5 provides an extended formulation of the set conv(FLOW )
which is compact. Applying the inverse of the above linear transformation gives an extended
formulation of conv(CFLOWMIX) which is compact.

We now introduce several faces of the polyhedron conv(CFLOWMIX) that have been
studied.
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7.2.1 The continuous mixing set

The continuous mixing set is the mixed-integer set CMIX defined as follows:

s + rj + yj ≥ bj , j ∈ N

s ≥ 0, rj ≥ 0, yj ≥ 0 integer, j ∈ N.

Clearly the polyhedron conv(CMIX) is the face of conv(CFLOWMIX) defined by the
equations xj = yj , j ∈ N . An extended formulation for conv(CMIX) which is compact
was given by Miller and Wolsey [13]. Later Van Vyve [16] gave a more compact extended
formulation and a linear inequality description of conv(CMIX) in the original space.

7.2.2 The mixing set with flows

The mixing set with flows FLOWMIX is defined as follows:

s + xj ≥ bj , j ∈ N

xj ≤ yj , j ∈ N

s ≥ 0, xj ≥ 0, yj ≥ 0 integer, j ∈ N.

The polyhedron conv(FLOWMIX) is the face of conv(CFLOWMIX) defined by the
equations rj = 0, j ∈ N . Conforti et al. [2] described conv(FLOWMIX) both with an
extended formulation and in the original (s, x, y)-space.

7.2.3 The ≥-mixing set

The ≥-mixing set MIX≥ is defined as follows:

s + yj ≥ bj , j ∈ N

s ≥ 0, yj ≥ 0 integer, j ∈ N.

The polyhedron conv(MIX≥) is the face of conv(FLOWMIX) defined by the equations
xj = yj , j ∈ N . By dropping the nonnegativity of y one finds the mixing set MIX defined in
the introduction, which was first studied explicitly by Günlük and Pochet [9].

The following observation shows that the ≥-mixing set admits a complete list that is
shorter than that of the set described in Lemma 14.

Observation 6 If (s̄, ȳ) is a vertex of conv(MIX≥), then s̄ = 0 or f(s̄) = f(bj) for some
j ∈ N . Therefore {0; f(bj), j ∈ N} is a complete list for MIX≥.

An identical result holds for the set MIX.

7.3 The intersection set

The intersection set INT , discussed in Conforti et al. [3], is defined as follows:

σi + rj + yj ≥ bij , i, j ∈ N

σi ≥ 0, rj ≥ 0, yj ≥ 0 integer, i, j ∈ N.
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Observation 7 The linear transformation:

yj = yj , σi = σi, ρj = rj + yj , i, j ∈ N

maps INT into the following mixed-integer set:

σi + ρj ≥ bij , i, j ∈ N

ρj − yj ≥ 0, j ∈ N

σi ≥ 0, yj ≥ 0 integer, i, j ∈ N.

The above mixed-integer set is of the type MIX2TU .

In Section 6.1 it has been shown that in general the set INT does not admit a complete
list F whose size is polynomial in the size of the description of INT (see Observation 1).

7.4 Lot-sizing

Van Vyve [17] showed that the set LOT

si + rj +
∑j

u=i+1 yu ≥ bj − bi, i, j ∈ N, j > i

si ≥ 0, rj ≥ 0, yj ∈ {0, 1}, i, j ∈ N

represents the dominant of the feasible solutions of a lot-sizing problem with constant capaci-
ties and backlogging, and provided an extended formulation for conv(LOT ) which is compact.

Observation 8 The linear transformation:

z0 = 0, zj =
j∑

u=1

yu, σi = si − zi, ρj = rj + zj , i, j ∈ N (35)

maps LOT into the following mixed-integer set:

σi + ρj ≥ bj − bi, i, j ∈ N, j > i (36)
σi + zi ≥ 0, i ∈ N

ρj − zj ≥ 0, j ∈ N

0 ≤ zj − zj−1 ≤ 1, j ∈ N

zj integer, j ∈ N

The above mixed-integer set is of the type MIX2TU .

Lemma 15 Let X be the above mixed-integer set. The list F = {0; f(bi − bj), i, j ∈ N} is
complete for X.

Proof: Again we use the same notation as in the proof of Theorem 11. The graph GX is
bipartite with one vertex class corresponding to variables σi and the other corresponding to
variables ρj . The structure of inequalities (36) shows that condition (iii) of Corollary 12 is
satisfied. Since all other constraints have integer right-hand-side, the root r corresponds to
a variable which assumes an integer value. Then, by equations (33) and (34), the list given
above contains all possible fractional parts taken by the variables at a vertex. 2
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By the above Lemma and the form of transformation (35), we immediately derive the
following result, which was shown by Van Vyve [17]:

Observation 9 The list F = {0; f(bi − bj), i, j ∈ N} is complete for LOT .

The above observation, together with the result of Section 5, provides an extended for-
mulation of conv(LOT ) which is compact.

7.5 Bipartite cover inequalities

Given a bipartite graph G = (U, V ; E), let (I, L) be a partition of U ∪ V with I 6= ∅ and let
BIP (I) be the mixed-integer set:

xu + xv ≥ buv, uv ∈ E

xu ≥ 0, u ∈ L

xu ≥ 0 integer, u ∈ I.

The set BIP (I) is obviously a set of the type MIX2TU . The example of Section 6.1 shows
that BIP (I) does not admit in general a complete list which is compact. However, such a
list exists in the following two special cases.

The first case is the set BIP (U) (i.e. the integer variables correspond to the nodes of one
side of the bipartition of G): Miller and Wolsey [13] show that for the set BIP (U) the list
{0; f(buv), uv ∈ E} is complete and they also give a formulation of BIP (U) in the x-space.

The second case is the set BIP (I) with the additional condition that 2buv is integer for
all uv ∈ E, that is, f(buv) is either 0 or 1/2 for all uv ∈ E: this set satisfies condition (ii) of
Corollary 12. Conforti et al. [4] give a formulation in the x-space of this set.

8 Concluding remarks

One outstanding question that remains concerns the complexity of the optimization problem
over the sets MIX2TU when the list of fractional parts has exponential size. More specifically,
whether the polyhedron conv(MIX2TU ) admits an extended formulation which is compact,
even when the list of fractional parts has exponential size. In particular, can Corollary 8 be
strengthened such that one has a polynomial algorithm in m,n and log D or even only in m
and n?

Another intriguing challenge is to understand under what conditions the formulation for
conv(MIX2TU ) in the original x-space can be explicitly described (possibly by projecting
the extended formulation introduced in this paper). A fundamental result of this type is the
formulation of conv(MIX≥) in the original space of Günlük and Pochet [9]. Other results
for bipartite cover inequalities (i.e. for conv(BIP (I))) can be found in [4] and [13]. Van
Vyve [16] gives the formulation for conv(CMIX). Conforti et al. [2] give the formulation for
conv(FLOWMIX). The formulation of conv(MIX2TU ) in the original space when there is
a single integer variable was given by Di Summa [6]. To the best of our knowledge, this is
what is known so far.

Another aspect is the fact that a set MIX2TU is equivalent to a set MIXDN and that the
extended formulation introduced in this paper involves a system of inequalities A(x, µ) ≥ b
where A is a dual network matrix and b is an integral vector. The associated optimization
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problem can therefore be solved in the extended space as a dual of a network flow problem.
Can this be used to develop new algorithms for optimization and/or separation? Computa-
tionally, what is the most effective use of the formulation for MIX2TU , when the description
of a set MIX2TU is a relaxation of a more complicated mixed-integer set? Should one use
the dual network formulation (11)–(15), the same formulation but with the δ variables as in
(3)–(8) rather than the µ variables, cutting planes and separation, or other?

A last question concerns the extension of our model. Recently it has been shown that
several problems that involve the optimization of a linear function over a generalization of
the mixing set MIX≥, but whose description does not involve a TU matrix, are solvable in
polynomial time. Two such sets are the mixing set with divisible capacities in Conforti and
Wolsey [5] and the mixing-MIR set with divisible capacities (Van Vyve [15], de Farias and
Zhao [18]). To what extent, if any, can the results here be extended to these problems?
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