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Abstract
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1 Introduction

In two recent papers Guan et al. have examined the problem of stochastic uncapacitated lot-
sizing based on a tree of scenarios. In the first paper [5], using a mixed integer programming
formulation of the problem, the authors developed a family of valid inequalities, called (Q, SQ)
inequalities, and carried out some computational experiments to demonstrate their utility. In
the second [6] they showed that the (Q, SQ) inequalities suffice to describe the convex hull of
the set of solutions when there is just one period with uncertain outcomes. More recently in
[7] Guan and Miller have also developed a polynomial dynamic programming algorithm for
the same problem. The goal here is to clarify and extend these results on the use of valid
inequalities to tighten formulations to problems with constant capacities using an underlying
model of lot-sizing on a tree, and to show the role of mixing sets in providing strong relaxations
for the problem (see also [4]).

Specifically in Section 2 we introduce the problem of lot-sizing on a tree. We then demon-
strate two ways to obtain mixing set relaxations. In Section 3 we present a simple description
of the (Q, SQ) inequalities and then prove that these inequalities are all mixing inequalities.
In Section 4 we consider when the mixing sets suffice to describe the convex hull of the lot-
sizing problem on a tree and in particular we show that this holds for a discrete version of
the one period newsboy problem with constant capacities.

Finally in Section 5 we present limited computational results. Even though the default
cutting planes (such as flow cover and path inequalities) of the MIP solvers increase the lower
bounds considerably on the instances tried, for a fixed running time the mixing set reformu-
lations and inequalities lead to significantly improved lower and upper bounds compared to
those of the original formulation.

2 Lot-Sizing on a Tree and Mixing Sets

Given a rooted directed out-tree T = (V, A), let D(v) be the set of direct successors of v, S(v)
the set of all successors of v, and P (j, k) with k ∈ S(j) the set of nodes on the path from j
to k. Node r = 0 ∈ V is the root. L = {v ∈ V : S(v) = ∅} are the leaves. We add a dummy
node −1 and an arc (−1, 0). Let p(v) be the unique predecessor of v for all v ∈ V .

The lot-sizing problem on a tree LS-TREE is defined as the following mixed integer
program,

min
∑

v∈V (Pvxv + Qvyv) +
∑

v∈V ∪{−1} Hvsv

sp(v) + xv = dv + sv for all v ∈ V (1)

xv ≤ Cvyv for all v ∈ V (2)

s ∈ R
|V |+1
+ , x ∈ R

|V |
+ , y ∈ {0, 1}|V |, (3)

with production costs Pv, fixed costs Qv, demands dv and capacity Cv for all v ∈ V , and
storage costs Hv for all v ∈ V ∪{−1}. Note the special form of the balance constraints (1), in
which the flow sv out of node v ∈ V \L is the inflow to each direct successor node w ∈ D(v),
see Figure 1.

Note that an alternative formulation is obtained if we replace the balance constraints (1)
by the equations (we write s instead of s−1)

s +
∑

u∈P (0,v)

xu = d0v + sv for all v ∈ V
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Figure 1: Lot-sizing on a tree.

or by the inequalities

s +
∑

u∈P (0,v)

xu ≥ d0v for all v ∈ V,

where we set duv =
∑

w∈P (u,v) dw.
To treat the stochastic lot-sizing problem, where the tree structure corresponds to the

multistage structure of production decisions and demand observations, the problem of mini-
mizing total expected cost can be modeled by weighting the terms in the objective function
by appropriate probabilities.

Mixing Sets

The convex hull of the mixing set

XMIX = {(x, z) ∈ R+ × Z
n
+ : x + zt ≥ bt for t = 1, . . . , n}

has been studied in several papers. In particular a compact extended formulation appears
in [9]. The mixing inequalities that suffice to describe the convex hull in the original (x, z)
space are presented in [8] and an O(n log n) separation algorithm for these inequalities is given
in [11].

The result that we use below is for the special case in which bt ≤ 1 for all t.

Proposition 1 Consider the rescaled “uncapacitated” mixing set

XMIX
U = {(x, z) ∈ R+ × Z

n
+ : x + Mzt ≥ bt for t = 1, . . . , n},

where 0 = b0 ≤ b1 ≤ · · · ≤ bn < M . Let T = {i1, . . . , i|T |} ⊆ {1, . . . , n} with ij < ij+1 for
j = 1, . . . , |T | − 1, and i0 = 0. Then the simple mixing inequalities

x ≥
∑|T |

t=1(bit − bit−1
)(1 − zit)

(together with zt ≥ 0) give the convex hull of XMIX
U .
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2.1 Mixing Set Relaxations with Constant Capacities

Here we suppose that the capacities are constant at each node: Cv = C for all v ∈ V .
Given two distinct nodes v, w, let µ(v, w) be the common root, i.e. the root of the smallest

subtree containing both v and w. Also given a path P (u, v), let P̄ (u, v) = P (u, v) \ {u}.

Proposition 2 For all v ∈ V ∪ {−1}, the mixing set XMIX
1 (v) :

sv + Czvw ≥ d0w − d0v, zvw ∈ Z+ for all w ∈ W (v), sv ∈ R+,

where W (v) = {w ∈ V : d0w − d0v > 0} and zvw =
∑

u∈P̄ (µ(v,w),w) yu, is a relaxation of the

set XLS−TREE defined by (1)–(3).

Proof: The inequality is obtained by combining the equation sµ(v,w) +
∑

u∈P̄ (µ(v,w),v) xu =
∑

u∈P̄ (µ(v,w),v) du + sv obtained as the sum of the balance constraints (1) along the path

P̄ (µ(v, w), v), and the inequality sµ(v,w) +
∑

u∈P̄ (µ(v,w),w) Cyu ≥
∑

u∈P̄ (µ(v,w),w) du obtained as

the surrogate of the sum of the balance constraints along the path P̄ (µ(v, w), w), together with
the non-negativity of xu and the fact that

∑

u∈P̄ (µ(v,w),w) du −
∑

u∈P̄ (µ(v,w),v) du = d0w − d0v.
2

Starting from the initial balance constraints (1), we can also include any subset of the xv

variables in the continuous variable in order to build other mixing set relaxations.

Proposition 3 For all v ∈ V ∪ {−1} and U ⊆ V , the mixing set XMIX
2 (v, U):

sU
v + CζU

vw ≥ d0w − d0v, ζU
vw ∈ Z+ for all w ∈ W (v), sU

v ∈ R+,

where sU
v = sv+

∑

u∈U xu and ζU
vw =

∑

u∈P̄ (µ(v,w),w)\U yu, is a relaxation of the set XLS−TREE.

3 (Q, SQ) Inequalities

Let Q ⊆ V be such that no two nodes of Q lie on the same path from the root. This
defines a unique rooted subtree TQ = (VQ, AQ) having the nodes of Q as leaves and 0 as
the root node. We suppose that the N + 1 nodes of this tree are (re-)numbered from 0 to
N , where 0 corresponds to the root and the leaves following a prefix ordering are numbered
N−K+1, . . . , N , where |Q| = K. Note that given a planar representation of the tree, a prefix
or infix ordering on the nodes always leads to the same ordering of the leaves. In addition we
must satisfy the condition that d0,N−K+1 < · · · < d0,N .

For nodes v ∈ VQ of the tree TQ, we use the notation:
m(v) = max{q ∈ Q ∩ VQ(v)}, where VQ(v) is the subtree of TQ rooted at v;
ρ(v) = max{q ∈ Q : q < min[t ∈ Q ∩ VQ(v)]}.

If {q ∈ Q : q < min[t ∈ Q ∩ VQ(v)]} = ∅, then ρ(v) is undefined and we set d0,ρ(v) = −∞.
Note that this happens if and only if v ∈ P (0, N −K + 1). See Figure 2a), where we assume
that the order of the leaves is increasing starting from the top of the tree.

In the rest of this section we will use the following property, that is easily checked: if
u ∈ P (0, v) then ρ(u) ≤ ρ(v).

We can now present the (Q, SQ) inequality. Note that we set d0,p(0) = d0,−1 = 0.
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Figure 2: a) Tree indicators. b) Induction step.

Proposition 4 [5] For any subset SQ ⊆ VQ, the (Q, SQ) inequality

s +
∑

u∈SQ

xu +
∑

u∈VQ\SQ

(

d0,m(u) − max[d0,p(u), d0,ρ(u)]
)

yu ≥ d0,m(0) (4)

is valid for the uncapacitated problem with Cv = M large for all v ∈ VQ.

We now show that this inequality is a mixing inequality.
We define W = {v ∈ VQ : d0,v > d0,ρ(v)}. Clearly Q ∪ P (0, n − K + 1) ⊆ W . We define

an ordering W = {j0, . . . , jw} of the nodes of W by nondecreasing values of d0,jt . We now
explain how this order can be made unique.

Suppose there exist two indices i, k such that ji, jk ∈ W and d0,ji
= d0,jk

. We show that
then either ji ∈ P (0, jk) or jk ∈ P (0, ji). If neither of the two nodes is a successor of the other
then m(ji) 6= m(jk). We assume w.l.o.g. m(ji) < m(jk). Then m(ji) < min{v ∈ Q∩ VQ(jk)},
which implies ρ(jk) ≥ m(ji). Then d0,ρ(jk) ≥ d0,m(ji) ≥ d0,ji

= d0,jk
and thus jk /∈ W , a

contradiction.
Therefore, ji and jk lie on the same path from the root, say jk ∈ P (0, ji). Then we assume

that the ordering satisfies k < i. Note that j0 = 0 and jw = m(0).

Lemma 5 Given v ∈ VQ, v ∈ P (0, ji) if and only if ℓ ≤ i ≤ k, where ℓ = min{t : v ∈ P (0, jt)}
and jk = m(v).

Proof: The proof uses induction on the number |Q| of leaves. The case of |Q| = 1 is immediate.
Consider now the tree TQ. Let v∗ = µ(N − 1, N). The tree T ′ obtained from TQ by removing
the path P̄ (v∗, N) has |Q| − 1 leaves.

We assume the inductive hypothesis for T ′, and show that it still holds for TQ.
For all nodes of T ′ except those on the path P (0, v∗), the values of ρ and m do not change.

For nodes v ∈ P (0, v∗), m(v) = N − 1 in T ′ and m(v) = N in TQ, but ρ(v) is unchanged.
For the new nodes in P̄ (v∗, N), m(v) = N and ρ(v) = N − 1. In addition the k ≥ 1 nodes
in P̄ (v∗, N) for which d0,v > d0,N−1 are added to W giving W = {j0, . . . , jw, jw+1, . . . , jw+k},
see Figure 2b).

Now it is easily checked that the condition holds for all nodes on the path P (0, N). 2

The above proof also shows the following.

Corollary 6 If i 6= 0 then ji−1 =

{

p(ji) if d0,p(ji) > d0,ρ(ji),

ρ(ji) otherwise.
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We can now prove the main result of this section.

Proposition 7 For any subset SQ ⊆ VQ, the (Q, SQ) inequality (4) is (dominated by) a
mixing inequality.

Proof: Choose M ≥ max{d0,u : u ∈ V }, define W = {j0, . . . , jw} as above and r = max{i :
P (0, ji) ⊆ SQ}. (If j0 = 0 /∈ SQ, set r = −1 and d0,jr = d0,j−1

= 0.)
Taking v = −1 and U = SQ, Proposition 3 shows that the following inequalities are valid:

s +
∑

u∈SQ

xu + M
∑

u∈P (0,ji)\SQ

yu ≥ d0,ji
for i = r + 1, . . . , w.

Then, if we set s̄ = s +
∑

u∈SQ
xu − d0,jr and zi =

∑

u∈P (0,ji)\SQ
yu, we obtain that the

following mixing set relaxation is valid:

s̄ + Mzi ≥ d0,ji
− d0,jr , zi ∈ Z+ for i = r + 1, . . . , w, s̄ ≥ 0, (5)

where constraint s̄ ≥ 0 follows from the definition of r.
The mixing inequality using all inequalities (5) is (see Corollary 1)

s̄ ≥
w

∑

i=r+1

(d0,ji
− d0,ji−1

)(1 − zi). (6)

In the original variables, the inequality is s +
∑

u∈SQ
xu − d0,jr ≥

∑w
i=r+1(d0,ji

− d0,ji−1
)
(

1 −
∑

u∈P (0,ji)\SQ
yu

)

, or equivalently s+
∑

u∈SQ
xu +

∑

u/∈SQ

[
∑

i:i>r,u∈P (0,ji)
(d0,ji

−d0,ji−1
)
]

yu ≥
d0,m(0).

We show that this inequality dominates (4). Specifically, we show that for each u ∈ VQ\SQ

∑

i:i>r,u∈P (0,ji)

(d0,ji
− d0,ji−1

) ≤ d0,m(u) − max{d0,p(u), d0,ρ(u)}. (7)

If u = 0 then the left-hand-side of inequality (7) is
∑w

i=r+1(d0,ji
− d0,ji−1

) = d0,m(0) − d0,jr

and the right-hand-side is d0,m(0) − max{d0,p(0), d0,ρ(0)} = d0,m(0) − max{0,−∞} = d0,m(0),
thus inequality (7) holds.

Now assume u ∈ VQ \ SQ, u 6= 0. Define ℓ = min{i : u ∈ P (0, ji)}. Note that ℓ > 0 as
u 6= 0. Then by Corollary 6, d0,jℓ−1

= max{d0,p(jℓ), d0,ρ(jℓ)}. By Lemma 5, {i : u ∈ P (0, ji)} =
{ℓ, . . . , k}, where jk = m(u).

This implies that if ℓ > r then
∑

i:i>r,u∈P (0,ji)
(d0,ji

−d0,ji−1
) = d0,m(u)−d0,jℓ−1

= d0,m(u)−
max{d0,p(jℓ), d0,ρ(jℓ)} ≤ d0,m(u) − max{d0,p(u), d0,ρ(u)}, where the inequality follows from the
inequalities d0,p(u) ≤ d0,p(jℓ) and d0,ρ(u) ≤ d0,ρ(jℓ), which both hold since u ∈ P (0, jℓ). Thus
inequality (7) is satisfied if ℓ > r.

Now suppose ℓ ≤ r. Then
∑

i:i>r,u∈P (0,ji)
(d0,ji

−d0,ji−1
) = d0,m(u)−d0,jr ≤ d0,m(u)−d0,jℓ

≤
d0,m(u) − max{d0,p(jℓ), d0,ρ(jℓ)} ≤ d0,m(u) − max{d0,p(u), d0,ρ(u)}, where the second inequality
holds because d0,jℓ

> d0,ρ(jℓ) as jℓ ∈ W , and d0,jℓ
≥ d0,p(jℓ) as djℓ

≥ 0. Thus inequality (7) is
also satisfied when ℓ ≤ r and the proof is complete. 2

In the proof of Proposition 7 we have constructed a mixing inequality which dominates a
given (Q, SQ) inequality. In Section 4 we will give an example in which a mixing inequality
constructed as above is not implied by the (Q, SQ) inequalities.
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Figure 3: a) (Q, SQ) tree. b) One period newsboy problem. c) Two period instance.

Example 1 We consider the instance shown in Figure 3a). The conditions required for
a (Q, SQ) inequality hold as d04 = 7 < d05 = 9 < d06 = 14 < d07 = 17. Calculating
p = (−1, 0, 0, 2, 1, 1, 3, 2), m = (7, 5, 7, 6, 4, 5, 6, 7) and ρ = (∅, ∅, 5, 5, ∅, 4, 5, 6), the (Q, ∅)
inequality is

s + (17 − max[0,−∞])y0 + (9 − max[2,−∞])y1 + (17 − max[2, 9])y2 + (14 − max[7, 9])y3

+(7 − max[5,−∞])y4 + (9 − max[5, 7])y5 + (14 − max[10, 9])y6 + (17 − max[7, 14])y7 ≥ 17,

that is, s + 17y0 + 7y1 + 8y2 + 5y3 + 2y4 + 2y5 + 4y6 + 3y7 ≥ 17.
Now we generate the inequality as a mixing inequality. Note that 3 ∈ W as d03 = 10 >

d0,ρ(3) = d05 = 9, and 0, 1 ∈ W as ρ(0), ρ(1) are undefined. Thus W = Q ∪ {0, 1, 3}. The
ordering of W is {0, 1, 4, 5, 3, 6, 7} with d0u = (2, 5, 7, 9, 10, 14, 17), and the corresponding
mixing inequality (6) is the same inequality as above.

4 Strength of the Mixing Reformulations

Here we consider briefly when the addition of the convex hulls of the mixing sets proposed in
Propositions 2 and 3 suffices to give the convex hull of the lot-sizing problem on a tree. On the
positive side we see that for a discrete version of the one-period newsboy problem, the convex
hull is obtained in the constant capacity case with and without backlogging. On the negative
side we show a two-period uncapacitated instance for which the mixing set reformulations are
insufficient.

First we examine a variant of the classical newsboy problem, see for instance Ch. 10
in [10]. An initial amount s can be produced at time 0 at a unit cost of h without any fixed
cost. Then with probability pv the vth outcome in period 1 is observed. This consists of the
demand dv, as well as the new production costs involving a unit production cost cv, a fixed
cost qv per batch of size C and a unit disposal cost of hv for v = 1, . . . , n. The corresponding
lot-sizing tree is shown in Figure 3b).

A mixed integer programming formulation for this discrete newsboy problem is now

min hs0 +
∑n

v=1 pv(cvxv + qvyv + hvsv)

s0 + xv = dv + sv, xv ≤ Cyv for v = 1, . . . , n, s ∈ R
n+1
+ , x ∈ R

n
+, y ∈ Z

n
+.

After elimination of the variables sv for v = 1, . . . , n, we obtain the feasible region XN1:

s0 + xv ≥ dv, xv ≤ Cyv for v = 1, . . . , n, s0 ∈ R+, x ∈ R
n
+, y ∈ Z

n
+.
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Proposition 8 [6] In the uncapacitated case, when C is large and y ∈ {0, 1}n, conv(XN1) is
completely described by the initial constraints and (Q, SQ) inequalities.

For the case with constant C, the set XN1 has been studied recently by Conforti et
al. under the name of mixing set with flows. They show that the initial constraints plus
the convex hulls of the n + 1 mixing set relaxations described in Proposition 2 give a tight
extended formulation of the convex hull.

Proposition 9 [1]

conv(XN1) = proj(s0,x,y) ∩
n
v=0 conv(XMIX

v ) ∩ {(x, y) : 0 ≤ x ≤ Cy},

where XMIX
v = {(sv, y) ∈ R+ × Z

n
+ : sv + Cyk ≥ dk − dv for all k such that dk > dv} for

v = 0, . . . , n, with d0 = 0 and s0 + xv = dv + sv.

If one allows backlogging once the demands are known, the formulation becomes

min hs0 +
∑n

v=1 pv(cvxv + qvyv + hvsv + bvrv)

s0 + xv = dv + sv − rv, xv ≤ Cyv for v = 1, . . . , n, s ∈ R
n+1
+ , x, r ∈ R

n
+, y ∈ Z

n
+,

which, after elimination of the variables sv for v = 1, . . . , n, gives the feasible region

s0 + rv + xv ≥ dv, xv ≤ Cyv for v = 1, . . . , n, s0 ∈ R+, r, x ∈ R
n
+, y ∈ Z

n
+,

denoted XN2, known as a continuous mixing set with flows.

Proposition 10 [2] In the constant capacity case, there is a polynomial size extended for-
mulation for conv(XN2) and a polynomial time optimization algorithm.

To complete this section we present a small instance showing that mixing inequalities are
insufficient to give a complete description of the convex hull of the solution set as soon as
there is a second period with random outcomes. The instance is shown in Figure 3c). We
take C = 20, so the problem is uncapacitated, and we assume that there is no initial stock,
i.e. s = 0.

Since d0 = 1, x0 > 0 and y0 = 1 in any feasible solution, we can eliminate variables x0 and
y0 from the model and formulate the instance in terms of variables s0, x1, . . . , x3, y1, . . . , y3.

Two of the fifteen nontrivial facet-defining inequalities are listed below (the complete list
can be found in [3]). The first is clearly not a mixing or (Q, SQ) inequality. We show below
that the second one is a mixing inequality but not a (Q, SQ) inequality.

s0 +3
8x1 +25

8 y1 +5y2 +3y3 ≥ 13
s0 +x1 +5y2 +3y3 ≥ 13

To obtain the second inequality, it suffices to mix the inequalities

s0 + 20y1 ≥ 5, s0 + 20y2 ≥ 10, s0 + 20(y1 + y3) ≥ 13, s0 ≥ 0,

corresponding to the paths P (0, 1), P (0, 2) and P (0, 3). The resulting inequality s0 ≥ 5(1 −
y1) + 5(1− y2) + 3(1− y1 − y3), is precisely the required inequality. Substituting for s0, using
x0 = s0 + d0, the inequality reads x0 + 8y1 + 5y2 + 3y3 ≥ 14. If this inequality were a (Q, SQ)
inequality (4), then necessarily Q = {2, 3} and SQ = {0}. However the corresponding (Q, SQ)
inequality is the facet-defining inequality x0 + 3y1 + 10y2 + 3y3 ≥ 14.

8



5 Computation

Here we report briefly on the effectiveness of the mixing sets in solving the lot-sizing problem
on a tree. For a problem with T periods, we take ∆ outcomes in each period giving a ∆-ary
tree with ∆T−1 scenarios (leaves) and a total of N = ∆T−1

∆−1 nodes. The data is randomly
generated with dt a random integer in [0,100], ht a random integer in [1,11], pt a random
integer in [0,20], qt 25 times a random integer in [0,80], and at each node the ∆ random
outcomes have equal probability 1

∆ (in other words, the costs at distance k from the root are
weighted by ∆−k).

For each value ∆ ∈ {2, 3, 4}, we have generated four instances: two with capacity C = 100
and two with capacity C = 500, that are essentially uncapacitated. For each ∆, we chose T
so that the total number of nodes N (which is also the number of binary variables) was close
to 1000.

All computations were carried out under IVE version 1.16.00, Mosel version 1.7.8 using
Xpress-MP as the mixed integer programming solver, version 16.01.01, running on an IBM
Thinkpad with a 1.6GHz Intel Pentium processor.

What strategy to use when possibly combining extended formulations for mixing sets,
separation of mixing inequalities, system cuts and branch-and-bound is not at all obvious a
priori. Extended formulations lead to improved bounds, but much larger linear programs.
Cuts also lead to improved bounds, but the mixing inequalities may be dense. So there is
a real trade-off between the strengthening of the bounds and the difficulty in solving the
resulting linear programs during the branch-and-bound/cut process.

After some preliminary tests we adopted one strategy for the instances with ∆ ∈ {2, 3} and
another for those with ∆ = 4. For the instances with ∆ ∈ {2, 3}, we start with the formulation
(1)–(3). Then, for each non-leaf node v ∈ V , we add a tight extended formulation [9] of the
mixing set described in Proposition 2. However, in the construction of the mixing set W (v)
is restricted to the nodes in the subtree rooted at v and the distance between v and w is
restricted to at most 4. This gives the reformulated mixed integer programming formulation
that is fed to the optimizer. We solve the linear program at the top node and add Xpress-MP
system cuts conservatively (cutstrategy=1) for ten rounds. Next for another ten rounds we
call the mixing inequality separation routine [8, 11] for the same mixing sets as above, but
without any restrictions on W (v), and finally we run default branch-and-cut.

For the instances with ∆ = 4, we use the extended formulations of the same sets as above,
with W (v) restricted to the nodes in the subtree rooted at v, but with no restriction on the
path length between v and w. System cuts are then added aggressively (cutstrategy=3) for
ten rounds, followed by default branch-and-cut. This strategy was adopted because, although
the addition of mixing cuts improves the bounds significantly, the resulting linear programs
become significantly slower to solve and thus the overall performance deteriorates.

In Table 1 there are two lines for each instance ∆-seed-[o,r], where seed denotes the random
number used to generate the instance, and o,r denote the original and the reformulated
problem respectively. The first line gives the results for default Xpress-MP on the original
formulation (1)–(3), except that the cut strategy is aggressive (cutstrategy=3). In the second
line we give the results for the reformulated instance using the strategy described above. The
first column indicates the name of the instance and the next two columns indicate the capacity
C and the total number of nodes (binary variables) N . The next two give the number r of
rows and the number c of columns of the initial LP matrix. The values LP , XLP1, XLP2,
BLB and BIP indicate the linear programming value of the reformulation, the value XLP1
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after the addition of the system cuts of Xpress-MP, XLP2 the value after the addition of the
mixing cuts (if generated), BLB the value of the best lower bound on termination and BIP
the value of the best integer solution found. secs gives the total run time and gap, given by
BIP−BLB

BIP · 100, is the percentage duality gap on termination.
For each instance 15-20 seconds are required to generate the reformulation including the

extended formulations. For each instance we give the results obtained after 300 seconds, or
the total run time, excluding matrix generation time, if optimality is proven.

C N r c LP XLP1 XLP2 BLB BIP secs gap

2-5612o 100 1023 2046 3070 9430.2 1119.6 11094.0 11178.8 300 0.76%

2-5612r 100 1023 7147 8171 11119.5 11144.7 11159.6 11160.6 11160.6 49 0

2-4567o 100 1023 2046 3070 9495.8 11552.8 11608.9 11819.2 300 1.78%

2-4567r 100 1023 7143 8167 11706.7 11733.9 11751.7 11755.9 11755.9 116 0

2-1234o 500 1023 2046 3070 5729.7 9880.8 9947.4 10052.6 300 1.05%

2-1234r 500 1023 7149 8173 9893.8 9985.7 1022.5 10033.5 10033.5 53 0

2-7777o 500 1023 2046 3070 5617.9 9448.0 9521.3 9616.4 300 0.99%

2-7777r 500 1023 7145 8169 9467.4 9547.6 9570.5 9583.3 9583.3 148 0

3-1238o 100 1093 2186 3280 6333.2 7752.8 7880.7 8055.7 300 2.17%

3-1238r 100 1093 7263 8357 7923.0 7957.4 7965.2 7972.3 7972.3 121 0

3-1240o 100 1093 2186 3280 7362.6 9212.2 9259.2 9347.1 300 0.94%

3-1240r 100 1093 7263 8357 9303.7 9322.7 9325.3 9327.1 9327.1 115 0

3-1241o 500 1093 2186 3280 3195.7 5722.6 5774.3 5929.9 300 2.62%

3-1241r 500 1093 7266 8360 5808.3 5852.3 5875.1 5885.3 5885.3 258 0

3-1242o 500 1093 2186 3280 3972.7 7012.2 7173.8 7232.6 300 0.81%

3-1242r 500 1093 7268 8362 7180.2 7215.6 7222.1 7232.6 7232.6 174 0

4-2224o 100 1365 2730 4096 6141.0 7769.9 7960.2 8056.4 300 1.19%

4-2224r 100 1365 11142 12508 8007.4 8025.7 8034.1 8034.1 228 0

4-2225o 100 1365 2730 4096 4012.9 4922.1 4964.6 5114.0 300 0.97%

4-2225r 100 1365 11147 12513 5038.5 5063.7 5077.3 5077.3 131 0

4-2222o 500 1365 2730 4096 2975.2 5759.5 5776.2 5961.7 300 3.11%

4-2222r 500 1365 11147 12513 5820.8 5858.9 5877.0 5890.8 300 0.23%

4-2223o 500 1365 2730 4096 3251.3 5896.0 6039.5 6407.0 300 5.74%

4-2223r 500 1365 11145 12511 6167.3 6209.7 6226.3 6348.2 300 1.92%

Table 1: Instances of LS-TREE.

For the twelve instances considered, the system cuts used significantly strengthen the
initial LP bounds. When the aggressive option is chosen, they include path inequalities that
are well-adapted to such problems. However the mixing inequalities appear necessary if one
wishes to prove optimality. Running the two unsolved instances for 900 seconds rather than
just 300 leads to a gap of 0.10% for instance 4-2222r and of 1.02% for 4-2223r.

What these very preliminary results suggest is that the combining of extended formulations
and cutting planes in tackling other problems is an intriguing research topic.
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