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Abstract

An all-different constraint on some discrete variables imposes the condition that no two variables take the same value.
A linear-inequality description of the convex hull of solutions to a system of all-different constraints is known under the
so-called inclusion property: the convex hull is the intersection of the convex hulls of each of the all-different constraints
of the system. We give a short proof of this result, which in addition shows the total dual integrality of the linear system.
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1. Introduction

In many combinatorial optimization problems one needs
to impose one or more all-different constraints, i.e., condi-
tions of the following type: for a given finite (sub)family
of discrete variables, no two variables can be assigned the
same value. All-different constraints arise, for instance,
in problems related to timetabling, scheduling, manufac-
turing, and in several variants of the assignment problem
(see, e.g., [6, 9] and the references therein).
Though all-different constraints are mainly studied in

the context of Constraint Programming (see, e.g., [8]),
when dealing with a problem that can be modeled as an in-
teger linear program it is useful to have information on the
polyhedral structure of the feasible solutions to a system
of all-different constraints. For this reason, several authors
studied linear-inequality formulations for the convex hull
of solutions to a single all-different constraint or a system
of all-different constraints [3, 5, 6, 9]. We remark that in
some cases these descriptions are extended formulations,
i.e., they make use of additional variables; however, here
we are only interested in the description of the convex hull
in the original space of variables.
If n variables x1, . . . , xn can take values in a finite do-

main D ⊆ R and an all-different constraint is imposed on
them, we will write (following the notation in [6])

{x1, . . . , xn} 6= (1)

x1, . . . , xn ∈ D. (2)

Williams and Yan [9] proved that if D = {1, . . . , d} for
some positive integer d, then the convex hull of the vectors
that satisfy (1)–(2) is described by the linear system

∑

j∈S

xj ≥ f(S), S ⊆ [n], (3)

∑

j∈S

xj ≤ g(S), S ⊆ [n], (4)

where [n] = {1, . . . , n} and, for S ⊆ [n],

f(S) =
|S|(|S|+ 1)

2
, g(S) = |S|(d+ 1)− f(S). (5)

Note that f(S) is the sum of the |S| smallest positive inte-
gers, while g(S) is the sum of the |S| largest integers that
do not exceed d, therefore inequalities (3)–(4) are certainly
valid for every vector x satisfying (1)–(2). This result ex-
tends to an arbitrary finite domain D ⊆ R (with |D| ≥ n)
by defining f(S) (resp., g(S)) as the sum of the |S| small-
est (resp., largest) elements in D, for every S ⊆ [n]. Note
however that in the following we assume D = {1, . . . , d}
for some positive integer d, while we will consider the case
of a generic finite domain D in a final remark.
Williams and Yan [9] showed that if d > n then all in-

equalities (3)–(4) are facet-defining, thus the convex hull
of (1)–(2) needs an exponential number of inequalities to
be described in the original space of variables x1, . . . , xn.
However, they also gave polynomial-size extended formu-
lations for the convex hull of (1)–(2).
When d = n, (1)–(2) is the set of permutations of the el-

ements in [n], and its convex hull is called permutahedron.
In this case, the whole family of inequalities (4) can be
dropped and replaced by the equation

∑

j∈[n] xj = f([n]).
The permutahedron admits an extended formulation with
O(n log n) constraints and variables [2].
System (3)–(4) not only defines an integral polyhedron,

but it also has the stronger property of being totally dual
integral. We recall that a linear system of inequalities
Ax ≤ b is said to be totally dual integral if for every integer
vector c such that the linear program max{cx : Ax ≤ b}
has finite optimum, the dual linear program has an opti-
mal solution with integer components. It is known that
if Ax ≤ b is totally dual integral and b is an integer vec-
tor, then the polyhedron defined by Ax ≤ b is integral
(see, e.g., [7, Theorem 5.22]). The total dual integrality of
system (3)–(4) follows immediately from the fact that f
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(resp., g) is a supermodular (resp., submodular) function,
along with a classical result on polymatroid intersection
[1] (see also [7, Theorem 46.2]). An explicit proof of the
total dual integrality of (3)–(4) is given in [5].
In a more general setting, we might have m ≥ 1 all-

different constraints, each enforced on a different subset
of variables Ni ⊆ [n], i ∈ [m]. In this case, we have the
system of conditions

{xj : j ∈ Ni} 6=, i ∈ [m], (6)

x1, . . . , xn ∈ D. (7)

The following inequalities are of course valid for the convex
hull of solutions to (6)–(7):

∑

j∈S

xj ≥ f(S), S ⊆ Ni, i ∈ [m], (8)

∑

j∈S

xj ≤ g(S), S ⊆ Ni, i ∈ [m]. (9)

However, the above constraints do not give, in general,
the convex hull of the vectors that satisfy (6)–(7). Fur-
thermore, there are even examples in which some integer
solutions to system (8)–(9) do not lie in the convex hull of
the points satisfying (6)–(7). Therefore it is natural to ask
which conditions ensure that the above system provides
the convex hull of the vectors satisfying (6)–(7).
A special case, studied in [6], in which constraints (8)–

(9) do yield the convex hull of solutions to (6)–(7) is now
described. Define N = [n] and assume that N = T ∪ U ,
where T and U are disjoint nonempty subsets of N . Define
Ti = Ni ∩ T and Ui = Ni ∩ U for i ∈ [m]. If the Ti’s
form a monotone family of subsets (T1 ⊇ T2 ⊇ · · · ⊇ Tm)
and the Ui’s are pairwise disjoint, then Magos et al. [6]
say that the inclusion property holds. They showed that
in this case inequalities (8)–(9) provide the convex hull
of solutions to (6)–(7). We remark that (to the best of
the author’s knowledge) this is the only nontrivial case in
which formulation (8)–(9) is known to define the convex
hull of the all-different system.
The proof of Magos et al. [6] is rather lengthy and in-

volved (overall, it consists of about 25 pages). The pur-
pose of this note is to give a shorter proof of their result.
Indeed, we show something more: we prove that, under
the inclusion property, system (8)–(9) is totally dual inte-
gral. Our proof is an extension of the classical approach to
show the total dual integrality of polymatroids (see, e.g.,
[7, Chapter 44]). Specifically, in Section 2 we describe a
greedy algorithm that solves linear optimization over (8)–
(9), under the inclusion property. The correctness of the
algorithm is shown in Section 3 by completing the feasible
solution returned by the algorithm with a dual solution
such that the complementary slackness conditions are sat-
isfied. The result of Section 3 also implies the total dual
integrality of system (8)–(9), as the dual solution is integer
whenever the primal objective function coefficients are all
integers. We conclude in Section 4 with an extension of

the result, which in particular can be used to deal with a
generic finite domain D.

2. Primal algorithm

Assume that the inclusion property holds for an all-
different system (6)–(7). Recall that:

- N = [n] = T ∪U , with T and U disjoint and nonempty;

- Ti = Ni ∩ T and Ui = Ni ∩ U for i ∈ [m];

- T1 ⊇ · · · ⊇ Tm;

- Ui ∩ Uj = ∅ for all distinct i, j ∈ [m].

Wlog, N = N1 ∪ · · · ∪ Nm and T = T1 = [t] for some
positive integer t. Also, recall that D = [d]. We assume
that d ≥ maxi∈[m] |Ni|, otherwise both (6)–(7) and (8)–(9)
are infeasible. We use the notation ti = |Ti| and ui = |Ui|
for i ∈ [m]. Furthermore, we will sometimes identify an
index j ∈ N with the corresponding variable xj ; e.g., we
will indifferently say “the indices in T ” or “the variables
in T ”.
Consider the problem of minimizing a linear objective

function cx over the polytope defined by (8)–(9), where c is
a row-vector in R

n. If we define S =
⋃

i∈[m]{S : S ⊆ Ni},
the problem can be written as follows:

min cx (10)

s.t.
∑

j∈S

xj ≥ f(S), S ∈ S, (11)

−
∑

j∈S

xj ≥ −g(S), S ∈ S. (12)

We give a greedy algorithm that solves the above linear
program for an arbitrary c ∈ R

n. Since the polyhedron
defined by (11)–(12) contains all vectors satisfying (6)–
(7), and since we will show that the solution returned by
the algorithm satisfies (6)–(7), this will prove that system
(11)–(12) (i.e., system (8)–(9)) defines the convex hull of
(6)–(7). The algorithm that we present can be seen as an
extension of the greedy algorithm for polymatroids (see,
e.g., [7, Chapter 44]), and also as an extension of the al-
gorithm given in [5] for the case m = 1.
The procedure is shown in Algorithm 1 and is now il-

lustrated. Throughout the algorithm, we maintain d clus-
ters of variables V1, . . . , Vd, i.e., d (possibly empty) dis-
joint subsets of N gathering those variables that will be
assigned the same value at the end of the algorithm. At
the beginning (lines 2–3) we have t nonempty clusters
V1, . . . , Vt, where Vj = {j} for j ∈ [t], while the other
clusters Vt+1, . . . , Vd are empty. Thus every variable in
T = [t] is assigned to a different cluster (as these variables
are not allowed to take the same value because of the first
all-different constraint), while the variables in U are not
assigned to any cluster. During the execution of the algo-
rithm, each variable in U will be assigned to a cluster, and
no variable will be ever moved from one cluster to another.
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Notation r(j) indicates the index of the cluster to which
variable xj is assigned. With each cluster Vj , j ∈ [d], we
associate a pseudo-cost γj , which is the sum of the costs of
all variables in the cluster. The pseudo-cost of an empty
cluster is zero.

For i = 1, . . . ,m, at the ith iteration of the algorithm
we assign each variable in Ui to a different cluster (lines
4–11), as we now explain. Because of the ith all-different
constraint, a variable in Ui cannot be assigned to a clus-
ter containing a variable in Ti. Note that for j ∈ Ti, the
cluster containing j is Vj . Therefore only the clusters Vj
with j ∈ [d] \ Ti are feasible for the variables in Ui. Lines
5–6 order the feasible clusters (including the empty ones)
and the variables in Ui according to their pseudo-costs and
costs, respectively (with ties broken arbitrarily). This is
needed to assign the variables in Ui to the feasible clus-
ters in a greedy fashion (lines 8–9): among the variables
with nonnegative cost, the one with the highest cost is
assigned to the feasible cluster with the highest pseudo-
cost (independently of the sign of the pseudo-cost), then
the variable with the second highest cost is assigned to
the feasible cluster with the second highest pseudo-cost,
and so on; on the other hand, among the variables with
negative cost, the one with the smallest cost is assigned to
the feasible cluster with the smallest pseudo-cost, then the
variable with the second smallest cost is assigned to the
feasible cluster with the second smallest pseudo-cost, and
so on. Lines 10 and 11 consequently update the clusters
and the pseudo-costs.

At the end of the above procedure, we simply assign
value 1 to the variables in the cluster with the highest
pseudo-cost, value 2 to those in the cluster with second
highest pseudo-cost, and so forth (lines 12–13).

Algorithm 1: Greedy algorithm for linear optimiza-
tion over an all-different system with the inclusion
property.

1 begin

2 for each j ∈ [t] do Vj := {j}, γj := cj , r(j) := j;
3 for each j ∈ [d] \ [t] do Vj := ∅, γj := 0;
4 for i = 1, . . . ,m do

5 define a bijection σ : [d− ti] → [d] \ Ti such
that γσ(1) ≥ · · · ≥ γσ(d−ti);

6 define a bijection π : [ui] → Ui such that
cπ(1) ≥ · · · ≥ cπ(ui);

7 for each j ∈ [ui] do
8 if cπ(j) ≥ 0 then r(π(j)) := σ(j);
9 else r(π(j)) := σ((d − ti)− (ui − j));

10 Vr(π(j)) := Vr(π(j)) ∪ {π(j)};
11 γr(π(j)) := γr(π(j)) + cπ(j);

12 define a bijection σ : [d] → [d] such that
γσ(1) ≥ · · · ≥ γσ(d);

13 for each j ∈ N do x̄j := σ−1(r(j));
14 return x̄

Note that if two variables belong to the same set Ni

for some i ∈ [m], then they are assigned to different clus-
ters, and therefore they receive different values. This im-
plies that the solution returned by the algorithm satisfies
the given all-different system (6)–(7), and thus also (11)–
(12). The optimality of the solution will follow from the
existence of a dual solution satisfying the complementary
slackness conditions, as proven in the next section.

3. Dual solution and total dual integrality

In this section we prove the correctness of Algorithm 1
and, at the same time, we show that inequalities (8)–(9)
define the convex hull of the vectors satisfying (6)–(7), un-
der the inclusion property. Before proceeding, it is useful
to note that if, for a given instance of the problem, Algo-
rithm 1 is run with different tie-breaking choices at lines
5, 6, and 12, then the solutions returned have the same
cost. To see this, define at every stage of the algorithm the
pseudo-cost pattern as the d-dimensional vector containing
the pseudo-costs of all clusters (with repetition and includ-
ing empty clusters), listed in non-increasing order. At the
end of every iteration of loop 4–11, the pseudo-cost pat-
tern does not depend on the tie-breaking rule used at lines
5 and 6. Also note that at every iteration the elements
contained in a specific cluster are not relevant: what mat-
ters is only the pseudo-cost pattern. Finally, given the
pseudo-cost pattern, lines 12–13 produce a solution whose
cost does not depend on the tie-breaking rule.
Therefore, for every instance of the linear program (10)–

(12), it is sufficient to prove the correctness of Algorithm 1
under a specific tie breaking rule. Furthermore, as ob-
served above, the final pseudo-cost pattern does not de-
pend on the rule chosen.

Theorem 1. Under the inclusion property, inequalities
(8)–(9) define the convex hull of the vectors satisfying (6)–
(7).

Proof. It is sufficient to show that every instance of the
linear program (10)–(12) has an optimal solution that sat-
isfies (6)–(7). For this purpose, given an instance of (10)–
(12), let p be the number of distinct nonzero costs of the
variables in Um, and q be the number of distinct pseudo-
costs at the end of Algorithm 1:

p = |{cj : cj 6= 0, j ∈ Um}|, q = |{γj : j ∈ [d]}|.

(As observed above, the value of q does not depend on the
tie-breaking rule.) Assume by contradiction that for some
instances the algorithm returns a solution that is not op-
timal. Among all instances for which the algorithm does
not return an optimal solution, we choose an instance I
such that the vector (m, p + q) is lexicographically mini-
mum. (Note thatm ≥ 2, as form = 1 Algorithm 1 reduces
to the algorithm given in [5] and thus returns an optimal
solution.) From now on, I will be a minimal instance ac-
cording to the above definition, and x̄ will be the solution
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returned by Algorithm 1 (with any fixed tie-breaking rule).
Recall that x̄ is a feasible solution to (10)–(12).
Consider the dual problem of (10)–(12):

max
∑

S∈S

(

f(S)yS − g(S)zS
)

s.t.
∑

S∈S:j∈S

(yS − zS) = cj , j ∈ N,

yS , zS ≥ 0, S ∈ S.

Since x̄ is feasible but not optimal for I, there is no dual
feasible solution (ȳ, z̄) such that x̄ and (ȳ, z̄) satisfy the
complementary slackness conditions, which read as fol-
lows:

(a′) for every S ∈ S, if ȳS > 0 then
∑

j∈S x̄j = f(S);

(b′) for every S ∈ S, if z̄S > 0 then
∑

j∈S x̄j = g(S).

Note that since x̄ satisfies (6)–(7),
∑

j∈S x̄j = f(S) if and
only if {x̄j : j ∈ S} = {1, . . . , |S|}, and

∑

j∈S x̄j = g(S) if
and only if {x̄j : j ∈ S} = {d − |S| + 1, . . . , d}. Then we
can rewrite conditions (a′) and (b′) as follows:

(a) for every S ∈ S, if ȳS > 0 then {x̄j : j ∈ S} =
{1, . . . , |S|};

(b) for every S ∈ S, if z̄S > 0 then {x̄j : j ∈ S} =
{d− |S|+ 1, . . . , d}.

Therefore there is no dual feasible solution (ȳ, z̄) such that
(a) and (b) are fulfilled.

Case 1. Suppose that cj = 0 for all j ∈ Um. If we re-
move the mth all-different constraint and variables xj for
j ∈ Um, we obtain a new instance I ′ with m−1 constraints
(note that m− 1 ≥ 1). Clearly, I ′ has the inclusion prop-
erty. If we apply Algorithm 1 to I ′ (by making the same
tie-breaking choices as we did for I), we execute exactly
the same operations as in the first m− 1 iterations of the
algorithm applied to instance I. Then, since cj = 0 for
all j ∈ Um, the final pseudo-costs are the same for I and
I ′. Thus we obtain a solution x̄′ for I ′ which is identical
to x̄, except that x̄′ does not have the entries with index
j ∈ Um. By the minimality of I, instance I ′ admits a dual
solution (ȳ, z̄) that satisfies (a) and (b). If this dual solu-
tion is extended by setting ȳS = z̄S = 0 for every S ⊆ Nm

such that S ∩ Um 6= ∅, we obtain a dual feasible solution
for I, and conditions (a) and (b) are still satisfied. This is
a contradiction.

Case 2. Suppose that cj > 0 for some j ∈ Um. Define
c∗ = max{cj : j ∈ Um} > 0 and C = {j ∈ Um : cj =
c∗}. Recall that, for j ∈ N , r(j) denotes the index of the
cluster containing j. We extend this notation to subsets by
defining r(J) = {r(j) : j ∈ J} for J ⊆ N . Let A = r(C)
and γ0 = min{γj : j ∈ A}.

Claim. If γj ≥ γ0 for some j /∈ A, then j ∈ Tm.

Proof of claim. Assume by contradiction that there is an
index j /∈ A ∪ Tm such that γj ≥ γ0. Since j /∈ A, Vj was
not assigned any variable in C; and since j /∈ Tm, cluster
Vj was feasible at the mth iteration of the algorithm. This
implies that before the execution of the mth iteration, the
pseudo-cost γj was at most as large as γk for every k ∈ A.
But then the final pseudo-cost γj would be smaller than
the final pseudo-cost γk for k ∈ A: this is because if Vj
was assigned some variable at the mth iteration, the cost
of this variable is smaller than c∗ (as Vj was not assigned
any variable in C), while Vk was assigned a variable of
cost c∗, as k ∈ A. If we choose k to be an index in A such
that γk = γ0, we obtain a contradiction, as we assumed
γj ≥ γ0 = γk. ⋄

Define B = {j ∈ Tm : γj ≥ γ0}. Note that r(B) = B,
as B ⊆ T . By the claim, γj ≥ γ0 if and only if j ∈ A ∪B.
Then, since r(B ∪ C) = A ∪ B, independently of the tie-
breaking rules we have

{x̄j : j ∈ B ∪C} = {1, . . . , |B ∪ C|}. (13)

Let ĉ = max{cj : cj < c∗, j ∈ Um}, with ĉ = −∞ if
cj = c∗ for all j ∈ Um, and γ̂ = max{γj : γj < γ0}, with
γ̂ = −∞ if γ0 is the minimum of all pseudo-costs. Define
δ = min{c∗, c∗ − ĉ, γ0 − γ̂} > 0.
Construct a new instance I ′ that is identical to I, except

that the costs now are

c′j =

{

cj − δ, j ∈ B ∪C,

cj , j /∈ B ∪C.

We claim that by applying the algorithm to I ′, we obtain
the same solution x̄′ = x̄. To see this, note that the first
m − 1 iterations of the algorithm are identical for I and
I ′ (if every tie is broken with the same criterion as that
adopted when solving I). Indeed, we only changed the
costs of some variables in Nm, and since Tm ⊆ Ti for all
i ∈ [m − 1], this does not affect the pseudo-costs of the
feasible clusters during the first m − 1 iterations. At the
mth iteration, at line 6 we can choose the same ordering
of the variables in Um as we did when solving instance I:
this is because the only variables in Um whose cost has
changed are the xj ’s with j ∈ C, and c′j = c∗ − δ ≥ ĉ for
j ∈ C. Since, after the (m − 1)th iteration, the pseudo-
costs of the clusters Vj with j /∈ Tm are the same as they
were for instance I, we can assign the elements in Um to
the feasible clusters exactly as we did for I. It follows that
after the mth iteration the pseudo-costs for I ′ are

γ′j =

{

γj − δ, j ∈ A ∪B,

γj , j /∈ A ∪B.

Since γ′j = γj − δ ≥ γ0 − δ ≥ γ̂ for all j ∈ A∪B, at line 12
we can choose the same ordering as we did for I. We then
obtain the same solution as for instance I, as claimed.
By the choice of δ, for I ′ either the number of distinct

nonzero costs of the variables in Um is p−1 (this happens if
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δ ∈ {c∗, c∗ − ĉ}), or the number of distinct pseudo-costs is
q−1 (this happens if δ = γ0− γ̂). Then, by the minimality
of instance I, there is a dual solution (ȳ, z̄) that satisfies
conditions (a) and (b) for I ′. By increasing ȳB∪C by δ, we
obtain a dual solution for I, with conditions (a) and (b)
still satisfied because of (13). This is a contradiction.

Case 3. If cj < 0 for all j ∈ Um, the proof is similar to
that of Case 2. Specifically, one defines c∗ = min{cj :
j ∈ Um} < 0, C = {j ∈ Um : cj = c∗}, A = r(C), and
γ0 = max{γj : j ∈ A}. The claim now states that if
γj ≤ γ0 for some j /∈ A, then j ∈ Tm. One then defines
B = {j ∈ Tm : γj ≤ γ0} and checks that {x̄j : j ∈
B ∪ C} = {d − |B ∪ C| + 1, . . . , d}. After defining ĉ =
min{cj : cj > c∗, j ∈ Um}, γ̂ = min{γj : γj > γ0}, and
δ = min{−c∗, ĉ − c∗, γ̂ − γ0} > 0, the costs of the new
instance I ′ are given by

c′j =

{

cj + δ, j ∈ B ∪ C,

cj , j /∈ B ∪ C.

Finally, the dual solution (ȳ, z̄) of I ′ is modified by increas-
ing z̄B∪C by δ. �

Corollary 2. Under the inclusion property, system (8)–
(9) is totally dual integral.

Proof. The above proof shows that if c is an integer vector
then there is an optimal dual solution with integer com-
ponents. (The existence of such a solution when m = 1,
which is needed in the base step of the proof, was shown
in [5].) �

The proof of Theorem 1 can be straightforwardly con-
verted into a recursive algorithm that, given the output of
Algorithm 1, constructs an optimal dual solution.

3.1. A remark

One might wonder whether Theorem 1 and Corollary 2
can be proved more directly via the theory of submodular
functions. We recall that a set function ψ : 2N → R is
submodular if

ψ(S1) + ψ(S2) ≥ ψ(S1 ∪ S2) + ψ(S1 ∩ S2)

for every S1, S2 ⊆ N , while a set function ϕ : 2N → R is
supermodular if

ϕ(S1) + ϕ(S2) ≤ ϕ(S1 ∪ S2) + ϕ(S1 ∩ S2) (14)

for every S1, S2 ⊆ N . It is known that if ϕ (resp., ψ) is a
supermodular (resp., submodular) function defined on 2N ,
then the polyhedron described by the inequalities

∑

j∈S

xj ≥ ϕ(S), S ⊆ N, (15)

∑

j∈S

xj ≤ ψ(S), S ⊆ N, (16)

is totally dual integral: this is a classical result on poly-
matroids [1] (see also [7, Theorem 46.2]).
In our system (8)–(9), we do not have constraints for

every S ⊆ N , but only for S ∈ S =
⋃m

i=1{S : S ⊆ Ni}.
Thus the definitions of f and g given in (5) only apply to
S ∈ S, while the value of f and g on the subsets in 2N \ S
might be defined in a different way, if needed. Assume
that, under the inclusion property, f (resp., g) can be ex-
tended to a supermodular function ϕ (resp., submodular
function ψ) defined on 2N in such a way that the integer
solutions to (15)–(16) are precisely the integer vectors in
the convex hull of (6)–(7). Then Theorem 1 and Corol-
lary 2 would follow immediately. However, we now show
that in general such an extension does not exist.
Consider the all-different system with N = {1, 2, 3},

m = 2, N1 = {1, 2}, N2 = {2, 3}. The inclusion prop-
erty is clearly satisfied. We show that if ϕ, ψ : 2N → R are
extensions of f, g such that the integer solutions to (15)–
(16) are precisely the integer vectors in the convex hull
of (6)–(7), then ϕ violates inequality (14) for S1 = N1

and S2 = N2. First, note that ϕ(N1) = f(N1) = 3,
ϕ(N2) = f(N2) = 3, and ϕ(N1 ∩ N2) = f(N1 ∩ N2) = 1.
On the other hand, the value of ϕ(N1 ∪N2) = ϕ(N) can-
not be determined a priori, as N /∈ S. However, since the
vector (x̄1, x̄2, x̄3) = (1, 2, 1) must be a feasible solution,
(15) holds only if ϕ(N1 ∪ N2) ≤ x̄1 + x̄2 + x̄3 = 4. Then
ϕ(N1)+ϕ(N2) = 6 and ϕ(N1∪N2)+ϕ(N1∩N2) ≤ 5, and
therefore ϕ violates inequality (14).

4. An extension

We finally present an extension of Theorem 1 and Corol-
lary 2, which can be used, for instance, to deal with the
case of an all-different system with the inclusion property
and an arbitrary finite domain D ⊆ R. In what follows, we
say that a function φ : N → R is convex (resp., concave)
if the piecewise linear interpolation of φ is convex (resp.,
concave).
Consider a system of the form

∑

j∈S

xj ≥ f(S), S ⊆ Ni, i ∈ [m], (17)

−
∑

j∈S

xj ≥ −g(S), S ⊆ Ni, i ∈ [m], (18)

where f(S) = α(|S|) for some convex function α : N → R,
g(S) = β(|S|) for some concave function β : N → R, and
α(0) = β(0) = 0. We assume that α(k) ≤ β(k) for all
k ∈ N, otherwise the system is infeasible. Note that system
(8)–(9) and the functions defined in (5) are of this form.
When m = 1, system (17)–(18) is totally dual integral:

this follows from the fact that f is a supermodular function
and g is a submodular function (see [4, Proposition 5.1]),
along with the result on polymatroids mentioned in Sec-
tion 3.1. However, in general the above system is not to-
tally dual integral for m > 1. We now observe that we
have total dual integrality if the inclusion property holds.
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Theorem 3. Assume that f(S) = α(|S|) for some convex
function α : N → R, and g(S) = β(|S|) for some concave
function β : N → R, with α(k) ≤ β(k) for all k ∈ N and
α(0) = β(0) = 0. Then, under the inclusion property,
system (17)–(18) is totally dual integral. Thus, if α and
β are integer-valued, the polyhedron defined by inequalities
(17)–(18) is integral.

Proof. We extend Algorithm 1 so that it solves linear
optimization over (17)–(18). For easiness of notation, here
we write rj instead of r(j) to denote the index of the cluster
containing xj .
The only modification of the algorithm is at line 13,

where we now set

x̄j =

{

α
(

σ−1(rj)
)

− α
(

σ−1(rj)− 1
)

if γrj ≥ 0,

β
(

σ−1(rj)
)

− β
(

σ−1(rj)− 1
)

if γrj < 0.

Note that when f and g are the functions defined in (5),
this assignment coincides with that in line 13 of Algo-
rithm 1.
In the following we prove that the solution returned by

the modified algorithm is feasible for (17)–(18), and then
we observe that it can be completed with a dual solution
satisfying the complementary slackness conditions.
We show that x̄ satisfies (17) for every S ⊆ Ni, i ∈ [m].

First we observe that since α is a convex function,

α(k) − α(k − 1) ≤ α(h)− α(h− 1) for h ≥ k ≥ 1. (19)

Now fix S ⊆ Ni for some i ∈ [m]. If we define S+ = {j ∈
S : γrj ≥ 0} and S− = {j ∈ S : γrj < 0}, then

∑

j∈S

x̄j =
∑

j∈S+

(

α
(

σ−1(rj)
)

− α
(

σ−1(rj)− 1
))

+
∑

j∈S−

(

β
(

σ−1(rj)
)

− β
(

σ−1(rj)− 1
))

≥
∑

j∈S

(

α
(

σ−1(rj)
)

− α
(

σ−1(rj)− 1
))

≥

|S|
∑

k=1

(

α(k) − α(k − 1)
)

= α(|S|) = f(S),

(20)

where the first inequality holds because α(k) ≤ β(k) for
all k ∈ N, and the second inequality follows from (19)
along with the fact that the indices σ−1(rj) for j ∈ S
are pairwise distinct. This shows that x̄ satisfies (17); for
inequalities (18), the proof is similar.
The rest of the proof is the same as the proof of The-

orem 1, except that conditions (a) and (b) need to be
adapted to this more general context. Note that the
complementary slackness conditions take again the form
(a′)–(b′) of the proof of Theorem 1. By (20), it follows
that

∑

j∈S x̄j = f(S) if and only if {x̄j : j ∈ S} =
{α(k) − α(k − 1) : k = 1, . . . , |S|}. Similarly, one proves
that

∑

j∈S x̄j = g(S) if and only if {x̄j : j ∈ S} =
{β(k) − β(k − 1) : k = 1, . . . , |S|}. Therefore, the com-
plementary slackness conditions can be written in the fol-
lowing form:

(a) for every S ∈ S, if ȳS > 0 then {x̄j : j ∈ S} =
{α(k)− α(k − 1) : k = 1, . . . , |S|};

(b) for every S ∈ S, if z̄S > 0 then {x̄j : j ∈ S} =
{β(k)− β(k − 1) : k = 1, . . . , |S|}.

The proof now proceeds similarly to that of Theorem 1.
�

Remark 4. The above result implies in particular that
Theorem 1 and Corollary 2 also hold if D is an arbitrary
finite subset of R (with |D| ≥ n), provided that f(S) (resp.,
g(S)) is defined as the sum of the |S| smallest (resp.,
largest) elements in D, for every S ⊆ N . (These func-
tions f and g are easily checked to satisfy the conditions
of Theorem 3.)
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