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Abstract. Recently there has been considerable research on simple mixed-integer sets, called
mixing sets, and closely related sets arising in uncapacitated and constant capacity lot-sizing. This in
turn has led to study of more general sets, called network-dual sets, for which it is possible to derive
extended formulations whose projection gives the convex hull of the network-dual set. Unfortunately
this formulation cannot be used (in general) to optimize in polynomial time. Furthermore the
inequalities defining the convex hull of a network-dual set in the original space of variables are
known only for some special cases.

Here we study two new cases, in which the continuous variables of the network-dual set are linked
by a bi-directed path. In the first case, which is motivated by lot-sizing problems with (lost) sales,
we provide a description of the convex hull as the intersection of the convex hulls of 2n mixing sets,
where n is the number of continuous variables of the set. However optimization is polynomial as
only n+ 1 of the sets are required for any given objective function. In the second case, generalizing
single arc flow sets, we describe again the convex hull as the intersection of an exponential number
of mixing sets and also give a combinatorial polynomial-time separation algorithm.
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1. Introduction. In the last 10–15 years there has been an increasing interest in
the polyhedral study of simple-structured mixed-integer sets, for which several authors
have derived convex hull descriptions, cutting planes and separation algorithms. This
kind of research is motivated both by the theoretical interest in having as deep an
understanding as possible of the polyhedral structure of simple mixed-integer sets,
and by the fact that these sets often arise as substructures or strong relaxations of
practical problems, such as fixed-charge flow problems and lot-sizing models [20].

One of the most basic mixed-integer sets studied in the recent literature is the
mixing set

MIX> = {(s, x) ∈ R+ × Zm : s− xi ≥ bi, 1 ≤ i ≤ m},

which was introduced by Günlük and Pochet [12] as an abstraction of some single-
item lot-sizing models. Günlük and Pochet [12] gave a linear-inequality description
of the convex hull of this set consisting of an exponential number of facet-defining
inequalities, which can be separated in polynomial time [12, 19, 20].

Among the numerous variants of the mixing set that were studied recently [3,
4, 5, 7, 8, 9, 11, 13, 21, 22], there are a number of models (e.g., those appearing in
[3, 4, 7, 8, 21] as well as the mixing set itself) that, under a simple change of variables,
belong to a family of mixed-integer sets studied by Conforti et al. [2], which we refer
to as network-dual sets. A network-dual set is a mixed-integer set of the form

N = {(u, v) ∈ Rp × Zq : Au+Bv ≤ d}, (1)

where [A | B] is a network-dual matrix, i.e., the transpose of a network-flow matrix. In
other words, each row of [A | B] has at most one +1 and at most one −1, and all other
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entries are equal to zero. Note that ignoring the rows with a single nonzero entry,
[A | B] is the arc-node incidence matrix of a directed graph, whose nodes are called
continuous or integer depending on whether the corresponding variable is continuous
or integer.

Though Conforti et al. [2] provided a linear-inequality description for the convex
hull of any network-dual set by using additional variables (extended formulation),
this description is not (in general) of polynomial size, and thus it cannot be used
to optimize in polynomial time. Furthermore, a linear-inequality description in the
original variables is available only for some special cases [4, 6, 8, 10, 21]. In particular,
thanks to the results of [2] and [8], such a description is known whenever no row of
A contains two nonzero entries, i.e., no inequality involving two continuous variables
appears in the definition of N : in this case the convex hull of N is obtained by
intersecting the convex hulls of a small number of mixing sets.

In this paper we explore what happens when inequalities involving two continuous
variables are part of the description of N , at least for the special case in which A is the
arc-node incidence matrix of a bi-directed path, i.e., a digraph consisting of a directed
path plus the same path with all the arcs reversed.

The rest of the paper is organized as follows. In §2 we recall some results concern-
ing mixing sets and network-dual sets. In §3 we consider a network-dual set (1) where
(i) matrix A defines a bi-directed path and (ii) the arcs linking continuous nodes with
integer nodes are either all oriented from the continuous node to the integer node or
all oriented the other way round. We show that the convex hull of this set is given
by the intersection of the convex hulls of an exponential number of mixing sets, each
obtained as a relaxation of the original set. However optimization is polynomial, as
only a small number of mixing sets are required for any given objective function. We
also point out that this set models a single-item discrete lot-sizing problem with sales.

In §4 we consider a network-dual set (1) in which (i) matrix A defines a bi-directed
path P and (ii) the arcs linking a continuous node to an integer node can now be
oriented arbitrarily, but they all have the last node of P as one of their endpoints.
We describe the convex hull of this set again as the intersection of the convex hulls of
an exponential number of mixing sets, and we show that optimization is polynomial
also for this set. In this case we also show how the inequalities describing the convex
hull can be separated in polynomial time.

Finally, we conclude in §5 by discussing some open questions.
Throughout the paper we use the following notation. Given a nonnegative integer

n, we define [n] = {1, . . . , n}, with [n] = ∅ if n = 0. Given a vector a with indices in
[n] and a subset T ⊆ [n], we define a(T ) =

∑
k∈T at. When T = {i, i + 1, . . . , j}, we

sometimes write ai,j instead of a(T ). In other words, ai,j =
∑j

k=i ak.

2. Mixing sets and network-dual sets. In this section we recall some results
concerning mixing sets and network-dual sets.

The mixing set MIX> is defined as the following mixed-integer set:

s− xi ≥ bi, i ∈ [m], (2)

MIX> : s ≥ 0, (3)

xi ∈ Z, i ∈ [m], (4)

for some rational numbers b1, . . . , bm. This set was introduced formally by Günlük
and Pochet [12]. (We note that in the standard mixing set, inequality (2) is usually
written in the form s+xi ≥ bi; however this is just a change of the sign of the integer
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variables.) The following result gives a linear-inequality description for the convex
hull of MIX>, denoted conv(MIX>).

Proposition 2.1. [12] Define fi = bi− (⌈bi⌉−1). The polyhedron conv(MIX>)
is described by s ≥ 0 and the two families of mixing inequalities

s−
q∑

r=1

(fir − fir−1)(xir + ⌈bir⌉) ≥ 0, (5)

s−
q∑

r=1

(fir − fir−1)(xir + ⌈bir⌉)− (1− fiq )(xi1 + ⌈bi1⌉ − 1) ≥ 0, (6)

for all sequences of indices i1, . . . , iq such that fi1 ≤ · · · ≤ fiq , with fi0 = 0.
When inequality s ≥ 0 is omitted in the definition of MIX>, the convex hull is

given only by (6).
By Proposition 2.1, the polyhedron conv(MIX>) is described by an exponen-

tial number of inequalities. However, inequalities (5)–(6) can be separated in time
O(m logm) (this was first observed in [19] for the case of binary x-variables and later
extended to the case of general integer x-variables [12, 20]). Furthermore, Miller and
Wolsey [17] gave a tight extended formulation for conv(MIX>) with O(m) variables
and constraints.

If one defines the reversed mixing set MIX< by the constraints

s− yj ≤ cj , j ∈ [n],

MIX< : s ≤ u,

yj ∈ Z, j ∈ [n],

for rational numbers c1, . . . , cn, u, then it is clear that, under a simple change of
variables, this set is essentially equivalent to a mixing set (2)–(4). It follows that the
convex hull of the above set is also described by mixing inequalities.

We call generalized mixing set a combination of the two sets given above, namely
a set GMIX of the form

s− xi ≥ bi, i ∈ [m],

GMIX : s− yj ≤ cj , j ∈ [n],

l ≤ s ≤ u,

xi, yj ∈ Z, i ∈ [m], j ∈ [n].

As shown in [8], the convex hull of the above set is given by the intersection of the
convex hulls of the sets MIX> and MIX<, plus some simple linear constraints on
the integer variables.

Proposition 2.2. [8]

conv(GMIX) = conv(MIX>) ∩ conv(MIX<) ∩Q,

where Q is the polyhedron defined by the following inequalities:

− xi ≥ ⌈bi − u⌉ , i ∈ [m], (7)

− yj ≤ ⌊cj − l⌋ , j ∈ [n], (8)

yj − xi ≥ ⌈bi − cj⌉ , i ∈ [m], j ∈ [n]. (9)
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A very similar result holds if one or both bounds on s are omitted in GMIX:
if no lower (resp., upper) bound on s is given, then (8) (resp., (7)) disappears. We
also remark that inequalities (7)–(9) describe the projection of conv(GMIX) onto
the (x, y)-space.

The sets MIX>, MIX< and GMIX are special cases of a larger family of sets
studied by Conforti et al. [2], namely the family of all mixed-integer sets of the form

N = {(u, v) ∈ Rp × Zq : Au+Bv ≤ d}, (10)

where [A | B] is a network-dual matrix, i.e., the transpose of a network-flow matrix.
In other words, each row of [A | B] has at most one +1 and at most one −1, and all
other entries are equal to zero. We refer to sets of this type as network-dual sets. As
mentioned in §1, several sets studied in the recent literature [3, 4, 7, 8, 12, 21], most of
which have applications in production planning, can be transformed into network-dual
sets.

Conforti et al. [2] gave an extended formulation for the convex hull of any network-
dual set. The particular form of the extended formulation easily implies the following
result.

Proposition 2.3. [2] Let N = {(u, v) ∈ Rp × Zq : Au+ Bv ≤ d} be a network-
dual set and let Dv ≤ β be a linear system involving only the integer variables, where
D is a network-dual matrix and β is an integer vector. Then

conv(N ∩ {(u, v) : Dv ≤ β}) = conv(N) ∩ {(u, v) : Dv ≤ β}.

Given a network-dual set (10) and assuming that one is looking for a linear-
inequality description of conv(N), Proposition 2.3 implies that one can assume the
following without loss of generality.

(i) System Au+Bv ≤ d does not contain any inequality involving only integer
variables (in other words, A does not have any all-zero row). Otherwise, if some
inequalities of this type appear in the system, one can remove them, find the convex
hull of the resulting set and then put back the inequalities that have been removed
with their right-hand sides rounded up.

(ii) Every integer variable appears with nonzero coefficient in at most one in-
equality of system Au + Bv ≤ d. Otherwise, if an integer variable vt appears in
two inequalities, let N ′ be the set obtained from N by replacing one of the two
occurrences of vt with a new integer variable v′t. Then N is equivalent to the set
N ′∩{(u, v, v′t) : vt−v′t = 0}. Since, by Proposition 2.3, conv(N ′∩{(u, v, v′t) : vt−v′t =
0}) = conv(N ′) ∩ {(u, v, v′t) : vt − v′t = 0}, it is sufficient to find a linear-inequality
description for conv(N ′) and then identify variables vt and v′t.

(iii) No inequality of system Au + Bv ≤ d involves only one variable. Oth-
erwise, it is easy to introduce a dummy integer variable v0 in such a way that
all the inequalities involve two variables. If the resulting set is called N ′, then
N is equivalent to the set N ′ ∩ {(u, v, v0) : v0 = 0}. Since, by Proposition 2.3,
conv(N ′ ∩ {(u, v, v0) : v0 = 0}) = conv(N ′) ∩ {(u, v, v0) : v0 = 0}, it is sufficient to
find a linear-inequality description for conv(N ′) and then remove variable v0.

Altogether, the above observations show that one can always assume that [A | B]
is the arc-node incidence matrix of a digraph in which there is no arc linking two
integer nodes, and all the integer nodes have degree one.
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In the particular case in which there is in addition no arc linking two continuous
nodes, a network-dual set can be written as follows:

st − xt
i ≥ bti, t ∈ [ℓ], i ∈ [mt], (11)

st − ytj ≤ ctj , t ∈ [ℓ], j ∈ [nt], (12)

xt
i, y

t
j ∈ Z, t ∈ [ℓ], i ∈ [mt], j ∈ [nt]. (13)

For each fixed t ∈ [ℓ], the above is a generalized mixing set without bounds on the
continuous variables. Therefore (11)–(13) is the intersection of ℓ generalized mixing
sets defined on disjoint sets of variables, and thus its convex hull is simply given
by the intersection of the convex hulls of these ℓ generalized mixing sets. Then a
linear-inequality description for the convex hull of (11)–(13) follows immediately.

To study a totally general network-dual set, one has to consider the intersection of
generalized mixing sets (11)–(13) plus network-dual inequalities linking the continuous
variables. In this paper we address this study by focusing on some special cases. In
particular, we assume that the continuous variables are linked by a bi-directed path.
In other words, we consider a network-dual set of the type

st − xt
i ≥ bti, t ∈ [ℓ], i ∈ [mt], (14)

st − ytj ≤ ctj , t ∈ [ℓ], j ∈ [nt], (15)

lt ≤ st − st−1 ≤ ut, t ∈ [ℓ], (16)

xt
i, y

t
j ∈ Z, t ∈ [ℓ], i ∈ [mt], j ∈ [nt], (17)

with s0 = 0.
Since, as illustrated later in §5, finding a linear-inequality description for (14)–(17)

seems to be hard in general, we will consider two special cases in §§3–4.

3. Mixing sets linked by a bi-directed path.

3.1. The convex hull. Here we consider the case of a network-dual set obtained
as the intersection of mixing sets of the type MIX>, with the continuous variables
linked by a bi-directed path. In other words, we study a set of the form (14)–(17)
where there is no inequality (15):

st − xt
i ≥ bti, t ∈ [ℓ], i ∈ [mt], (18)

lt ≤ st − st−1 ≤ ut, t ∈ [ℓ], (19)

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt]. (20)

We initially assume that all of the constraints (19) are part of the system, and we will
discuss later how the formulation changes when only some of them are enforced, i.e
ut = +∞ and/or lt = −∞ for one or several t. We assume that lt ≤ ut for t ∈ [ℓ], as
otherwise there is no feasible solution.

Under the change of variables σt = st − st−1 for t ∈ [ℓ], (18)–(20) takes the form

σ1,t − xt
i ≥ bti, t ∈ [ℓ], i ∈ [mt], (21)

X : lt ≤ σt ≤ ut, t ∈ [ℓ], (22)

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt]. (23)

Let X denote the set defined by (21)–(23). For each ∅ ̸= T ⊆ [ℓ] the following
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set XT is a valid relaxation for X:

σ(T )− xt
i ≥ bti + l(T \ [t])− u([t] \ T ), t ∈ [ℓ], i ∈ [mt], (24)

XT : σ(T ) ≥ l(T ), (25)

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt]. (26)

Constraint (24) is valid for X because it is obtained by summing (21) with inequalities
σk ≥ lk for k ∈ T \ [t] and −σk ≥ −uk for k ∈ [t] \ T .

Since σ(T ) can be treated as a single continuous variable in (24)–(26), each re-
laxation XT is essentially a mixing set, and thus a linear-inequality description for its
convex hull is known (see Proposition 2.1).

When T = ∅, a similar relaxation can be constructed:

− xt
i ≥ bti − u1,t, t ∈ [ℓ], i ∈ [mt],

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt].

This is not a mixing set, as there is no continuous variable. The convex hull of the
above set is obviously described by the inequalities

Q : −xt
i ≥ ⌈bti − u1,t⌉ , t ∈ [ℓ], i ∈ [mt]. (27)

We denote by Q the polyhedron defined by (27). It is immediate to see that Q is the
projection of conv(X) onto the x-space.

The next proposition shows that by taking the convex hulls of all the relaxations
XT , along with inequalities (27) and the original upper bounds on the continuous
variables, one finds the convex hull of (21)–(23).

Proposition 3.1.

conv(X) =
∩

∅ ̸=T⊆[ℓ]

conv(XT ) ∩Q ∩ {(σ, x) : σt ≤ ut, t ∈ [ℓ]}. (28)

Proof. Let P be the polyhedron on the right-hand side of equality (28). It is
clear that conv(X) ⊆ P . Since conv(X) and P have the same rays, to prove that
P ⊆ conv(X) we proceed as follows: we take any linear objective function pσ + qx
such that the optimization problem min{pσ + qx : (σ, x) ∈ X} has finite optimum,
and show that then the problem

min{pσ + qx : (σ, x) ∈ P} (29)

has an optimal solution that belongs to X.
We first assume that p ≥ 0 and then consider the case in which some entries of p

are negative.

Case 1: p ≥ 0.
Let t1, . . . , tℓ be a reordering of the elements in [ℓ] such that 0 =: pt0 ≤ pt1 ≤ · · · ≤

ptℓ , and for h ∈ [ℓ] define Th = {th, th+1, . . . , tℓ}. In order to show that problem (29)
has an optimal solution belonging to X, we prove that the relaxed linear program

min

{
pσ + qx : (σ, x) ∈

∩
h∈[ℓ]

conv(XTh
) ∩Q

}
(30)

has an optimal solution that belongs to X.
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Under the change of variables ρh = σ(Th) for h ∈ [ℓ], problem (30) takes the form

min

{ ∑
h∈[ℓ]

(pth − pth−1
)ρh + qx : (ρ, x) ∈

∩
h∈[ℓ]

conv(ZTh
) ∩Q

}
, (31)

where the sets ZTh
are defined as follows:

ρh − xt
i ≥ bti + l(Th \ [t])− u([t] \ Th), t ∈ [ℓ], i ∈ [mt], (32)

ZTh
: ρh ≥ l(Th), (33)

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt]. (34)

All the extreme points of the feasible region of problem (31) have integer x-
components, as this polyhedron is the intersection of mixing sets defined on disjoint
sets of variables, plus some bounds on the integer variables (see Proposition 2.3). It
follows that problem (31) has an optimal solution (ρ̄, x̄) with x̄ integer. Since the
coefficients of variables ρ1, . . . , ρℓ in the objective function are all nonnegative, we can
assume that ρ̄1, . . . , ρ̄ℓ are minimal.

In the three claims below, we prove that the point (σ̄, x̄) that corresponds to (ρ̄, x̄)
under the change of variables satisfies (21)–(23). For this purpose, define βt

i = x̄t
i + bti

for t ∈ [ℓ] and i ∈ [mt]. In order to reduce the number of cases that need to be
analyzed, we would like to be able to treat constraints (32)–(33) as a single family of
inequalities. To do so, it is convenient to define β0

1 = 0 and m0 = 1. Then (32)–(33)
evaluated at (ρ̄, x̄) give the following single family of inequalities:

ρ̄h ≥ βt
i + l(Th \ [t])− u([t] \ Th), h ∈ [ℓ], t ∈ {0} ∪ [ℓ], i ∈ [mt]. (35)

Also note that (27) implies that

βt
i ≤ u1,t, t ∈ {0} ∪ [ℓ], i ∈ [mt]. (36)

Claim 1: σ̄th ≥ lth for h ∈ [ℓ].
Proof of claim. If h = ℓ, the inequality to be verified is ρ̄ℓ ≥ ltℓ . However this
condition is clearly satisfied, as it is included in (35) (with h = ℓ and t = 0). So we
assume h < ℓ. Then the inequality to be verified is ρ̄h− ρ̄h+1 ≥ lth . By the minimality
of ρ̄h+1, we have ρ̄h+1 = βt

i + l(Th+1 \ [t]) − u([t] \ Th+1) for some indices t and i.
Together with inequality ρ̄h ≥ βt

i + l(Th \ [t])− u([t] \ Th), this implies that

ρ̄h − ρ̄h+1 ≥

{
lth if th > t,

uth otherwise.

Thus ρ̄h − ρ̄h+1 ≥ lth in all cases.

Claim 2: σ̄th ≤ uth for h ∈ [ℓ].
Proof of claim. If h = ℓ, the inequality is ρ̄ℓ ≤ utℓ . By the minimality of ρ̄ℓ, we have
ρ̄ℓ = βt

i + l(Tℓ \ [t])− u([t] \ Tℓ) for some indices t and i, i.e.,

ρ̄ℓ =

{
βt
i + ltℓ − u1,t if tℓ > t,

βt
i + utℓ − u1,t otherwise.

Inequality (36) then implies that ρ̄ℓ ≤ utℓ . So we assume h < ℓ. Then the inequality
to be checked is ρ̄h − ρ̄h+1 ≤ uth . By the minimality of ρ̄h, we have ρ̄h = βt

i +
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l(Th \ [t]) − u([t] \ Th) for some indices t and i. Together with inequality ρ̄h+1 ≥
βt
i + l(Th+1 \ [t])− u([t] \ Th+1), this implies that

ρ̄h − ρ̄h+1 ≤

{
lth if th > t,

uth otherwise.

Thus ρ̄h − ρ̄h+1 ≤ uth in all cases.

Claim 3: σ̄1,t − x̄t
i ≥ bti for t ∈ [ℓ] and i ∈ [mt].

Proof of claim. Given k ∈ [ℓ] we define hk as the unique index h ∈ [ℓ] such that
th = k. In other words, the two mappings h 7→ th and k 7→ hk are inverse of each
other. Then the inequality that we want to check can be written as∑

k∈[t]

(ρ̄hk
− ρ̄hk+1) ≥ βt

i . (37)

We prove (37) by induction on t.
Let t ∈ [ℓ] and i ∈ [mt] be fixed. If ρ̄hk

− ρ̄hk+1 = uk for all k ∈ [t], then∑
k∈[t](ρ̄hk

− ρ̄hk+1) = u1,t ≥ βt
i by (36), and inequality (37) is satisfied. Therefore

we assume that ρ̄hk
− ρ̄hk+1 < uk for at least one index k ∈ [t], and we define π as

the index such that hπ = mink∈[t]{hk : ρ̄hk
− ρ̄hk+1 < uk}, where ρ̄ℓ+1 = 0.

If hπ < ℓ, by the minimality of ρ̄hπ+1 we have

ρ̄hπ+1 = βτ
j + l(Thπ+1 \ [τ ])− u([τ ] \ Thπ+1) (38)

for some indices τ and j. We claim that π > τ . To see this, observe that since
ρ̄hπ ≥ βτ

j + l(Thπ \ [τ ])− u([τ ] \ Thπ ) and since Thπ = Thπ+1 ∪ {thπ} = Thπ+1 ∪ {π},
condition π ≤ τ would imply ρ̄hπ − ρ̄hπ+1 ≥ uπ, contradicting the definition of π.
Thus π > τ . If hπ = ℓ instead, we define τ = 0, so that (38) still holds.

Now, using τ < π ≤ t, inequality

ρ̄hπ ≥ βt
i + l(Thπ \ [t])− u([t] \ Thπ )

and (38), we find

ρ̄hπ − ρ̄hπ+1 ≥ βt
i − βτ

j − l
(
Thπ+1 ∩ ([t] \ [τ ])

)
− u

(
([t] \ [τ ]) \ Thπ

)
. (39)

Observe that an index k satisfies k /∈ Thπ if and only if k = tr for some r < hπ, or in
other words hk = r < hπ. Thus, by the definition of π, we have ρ̄hk

− ρ̄hk+1 = uk for
k /∈ Thπ . Now, if we sum (39) with inequalities ρ̄hk

− ρ̄hk+1 ≥ uk for k ∈ ([t]\ [τ ])\Thπ

and ρ̄hk
− ρ̄hk+1 ≥ lk for k ∈ Thπ+1 ∩ ([t] \ [τ ]), we obtain∑

k∈[t]\[τ ]

(ρ̄hk
− ρ̄hk+1) ≥ βt

i − βτ
j .

If t = 1 (base step of the induction), as τ < π ≤ t, we have τ = 0. Then βτ
j = 0

and (37) holds. If t > 1 instead, the conclusion follows as by induction we have∑
k∈[τ ](ρ̄hk

− ρ̄hk+1) ≥ βτ
j . This concludes the proof of Claim 3 and the analysis of

Case 1.

Case 2: p has some negative components.
Recall that our target is to show that problem (29) has an optimal solution that

belongs to X. The proof is by induction on the number of negative entries of p. The
base case (i.e., no negative entry in p) has been considered in Case 1 above.
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Assume that p has some negative entries and choose one of them, say pr < 0.
Then σr = ur in any optimal solution of problem (29), and thus problem (29) is
equivalent to

min{pσ + qx : (σ, x) ∈ F}, (40)

where F is the face of P induced by inequality σr ≤ ur, i.e., F = {(σ, x) ∈ P : σr =
ur}.

Let X ′ be the mixed-integer set obtained by replacing σr with ur in (21)–(23).
The set X ′ has one variable less than X, but it is still a set of the type (21)–(23). So
it makes sense to consider the relaxations X ′

T for ∅ ̸= T ⊆ [ℓ] \ {r}, as well as the
polyhedron Q′, which is the analogue of Q. Let σ′ and p′ denote the vectors σ and p
respectively, with the r-th component removed. If we define

P ′ =
∩

∅ ̸=T⊆[ℓ]\{r}

conv(X ′
T ) ∩Q′ ∩ {(σ′, x) : σ′

t ≤ ut, t ∈ [ℓ] \ {r}},

then by induction the optimization problem

min{p′σ′ + qx : (σ′, x) ∈ P ′} (41)

has an optimal solution (σ̄′, x̄) that belongs to X ′. If vector (σ̄′, x̄) is extended to
(σ̄, x̄) by setting σ̄r = ur, we find a vector belonging to X ∩ F .

To conclude, we show that (σ̄, x̄) is an optimal solution to problem (29), or,
equivalently, to problem (40). To see this, note that for each ∅ ̸= T ⊆ [ℓ] \ {r}, the
setsXT andX ′

T coincide. Furthermore, Q and Q′ are defined by the same inequalities.
It follows that F ⊆ P ′ (or, more formally, for any (σ, x) ∈ F , we have (σ′, x) ∈ P ′).
Then problem (41) is a relaxation of problem (40). Since (σ̄, x̄) ∈ F , it follows that
(σ̄, x̄) is an optimal solution to problem (40), and thus also to problem (29). This
proves that (29) has an optimal solution that belongs to X when some components
of p are negative.

Note that from the proof of Proposition 4 it follows that linear optimization over
X can be carried out in polynomial time as a linear program over the convex hull of
n mixing sets (plus some network-dual constraints on the integer variables).

Corollary 3.2. There is a polynomial-time algorithm to solve linear optimiza-
tion over the set X.

The result of Proposition 3.1 can be extended to the case in which only some
of the bounds (22) are part of the description of X, as we now illustrate. Let L
(respectively, U) be the set of indices t for which a lower (respectively, upper) bound
on σt is enforced. So the mixed-integer set under consideration is now the following:

σ1,t − xt
i ≥ bti, t ∈ [ℓ], i ∈ [mt],

σt ≥ lt, t ∈ L,

σt ≤ ut, t ∈ U,

xt
i ∈ Z, t ∈ [ℓ], i ∈ [mt].

The relaxations XT can still be constructed, but now some of the inequalities
become meaningless. Specifically, it is possible to write inequality (24) if and only if
T \ [t] ⊆ L and [t] \ T ⊆ U ; similarly, it is possible to write inequality (25) if and
only if T ⊆ L. However, the relaxations that one obtains are still mixing sets (with or
without a lower bound on the continuous variable), thus their convex hulls are given
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by mixing inequalities. Analogously, Q is now defined by (27) only for the indices t
such that [t] ⊆ U . With these modifications in mind, one can see that the same result
as that of Proposition 3.1 holds.

3.2. An application: discrete lot-sizing with sales. We show here that the
single-item discrete lot-sizing problem with sales can be modeled as a mixed-integer
set of the type (18)–(20).

The single-item discrete lot-sizing problem with sales is as follows. Given a horizon
of n periods and lower and upper bounds lt and ut respectively on the amount that
can be sold in period t, one has to decide in which periods to produce in order to
maximize the total profit, i.e., the difference between the revenue from sales and the
costs of production and storage. In each period the production is either 0 or at full
capacity C, say C = 1 without loss of generality. The per-unit production and holding
costs are denoted pt and ht respectively, while the sales price of the item is rt. This
problem can be formulated as the following mixed-integer program:

max
n∑

t=1

(rtvt − ptxt − htst)− h0s0 (42)

subject to st−1 + xt = vt + st, t ∈ [n], (43)

st ≥ 0, lt ≤ vt ≤ ut, t ∈ [n], (44)

xt ∈ {0, 1}, t ∈ [n], (45)

where for each period t, xt is the amount produced, vt is the amount sold, and st is
the stock at the end of the period (with s0 being the initial stock variable). After
using (43) to eliminate variable st for t ∈ [n], the feasible region of the above problem
becomes

s0 + x1,t ≥ v1,t, t ∈ [n], (46)

s0 ≥ 0, lt ≤ vt ≤ ut, t ∈ [n], (47)

xt ∈ {0, 1}, t ∈ [n]. (48)

Defining σt = v1,t − s0 for t ∈ {0} ∪ [n] and yt = x1,t, (46)–(48) can be rewritten as

σt − yt ≤ 0, t ∈ [n], (49)

lt ≤ σt − σt−1 ≤ ut, t ∈ [n], (50)

0 ≤ yt − yt−1 ≤ 1, t ∈ [n], (51)

yt ∈ Z, t ∈ [n], (52)

with σ0 ≤ 0, y0 = 0.

After changing the sign of the inequalities (49) and ignoring for the moment
constraints (51), the above is a mixed-integer set of the type (18)–(20). Thus Propo-
sition 3.1 gives the convex hull of the above set when inequalities (51) are omitted.
However, by Proposition 2.3 we know that it is sufficient to intersect this convex hull
with constraints (51) to obtain the convex hull of (49)–(52). Thus the result of this
section yields a linear-inequality description for the convex hull of the feasible region
of the single-item discrete lot-sizing problem with sales. Furthermore, Corollary 3.2
implies that the single-item discrete lot-sizing problem with sales can be solved in
polynomial time.
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In earlier work Loparic [14] showed the polynomiality of the constant-capacity
lot-sizing problem with sales using a dynamic programming algorithm based on re-
generation intervals. For the uncapacitated version, Loparic et al. [15] gave a valid
inequality description of the convex hull of solutions. The corresponding inequalities
can, not surprisingly, be viewed as uncapacitated versions of the mixing inequalities
that can be obtained for the discrete lot-sizing set with sales described above.

4. General mixing sets linked by a bi-directed path.

4.1. The convex hull. The second special case that we study is a set of the
form (14)–(17) in which only the generalized mixing set associated with the last node
of the path appears in the system, i.e., the case mt = nt = 0 for t < ℓ. Writing m
(resp., n) instead of mℓ (resp., nℓ), and xi (resp., yj) instead of xℓ

i (resp., yℓj), the
model is

sℓ − xi ≥ bi, i ∈ [m],

sℓ − yj ≤ cj , j ∈ [n],

lt ≤ st − st−1 ≤ ut, t ∈ [ℓ],

xi, yj ∈ Z, i ∈ [m], j ∈ [n],

where s0 = 0 and lt ≤ ut for t ∈ [ℓ]. Using the same change of variables as in §3, i.e.,
σt = st − st−1 for t ∈ [ℓ], the above set takes the form

σ1,ℓ − xi ≥ bi, i ∈ [m], (53)

Y : σ1,ℓ − yj ≤ cj , j ∈ [n], (54)

lt ≤ σt ≤ ut, t ∈ [ℓ], (55)

xi, yj ∈ Z, i ∈ [m], j ∈ [n]. (56)

Let Y be the set defined by (53)–(56). For each ∅ ̸= T ⊆ [ℓ] the following sets
Y >
T and Y <

T are valid relaxations for Y :

σ(T )− xi ≥ bi − u([ℓ] \ T ), i ∈ [m], (57)

Y >
T : σ(T ) ≥ l(T ), (58)

xi ∈ Z, i ∈ [m], (59)

and

σ(T )− yj ≤ cj − l([ℓ] \ T ), j ∈ [n],

Y <
T : σ(T ) ≤ u(T ),

yj ∈ Z, j ∈ [n].

Since the former set is a mixing set and the latter is a reversed mixing set, their
convex hulls are known.

It is also easy to see that the following inequalities are valid for Y :

− xi ≥ ⌈bi − u1,ℓ⌉ , i ∈ [m], (60)

Q′ : − yj ≤ ⌊cj − l1,ℓ⌋ , j ∈ [n], (61)

yj − xi ≥ ⌈bi − cj⌉ , i ∈ [m], j ∈ [n]. (62)

We denote by Q′ the polyhedron defined by (60)–(62).
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Much as in §3, we prove that by taking the convex hulls of all the relaxations Y >
T

and Y <
T along with inequalities (60)–(62), one finds the convex hull of (53)–(56).

Proposition 4.1.

conv(Y ) =
∩

∅ ̸=T⊆[ℓ]

conv(Y >
T ) ∩

∩
∅̸=T⊆[ℓ]

conv(Y <
T ) ∩Q′. (63)

Proof. Let P be the polyhedron on the right-hand side of equality (63). It is
clear that conv(Y ) ⊆ P . As in the proof of Proposition 3.1, in order to prove that
P ⊆ conv(Y ) we show that if pσ+ qx+ ry is a linear objective function such that the
optimization problem min{pσ + qx + ry : (σ, x) ∈ Y } has finite optimum, then the
problem

min{pσ + qx+ ry : (σ, x, y) ∈ P} (64)

has an optimal solution that belongs to Y .
Assume that p1 ≤ · · · ≤ pℓ and define τ = min{h : ph ≥ 0}, with τ = ℓ + 1 if

pℓ < 0. For h ∈ [ℓ], let Sh = {1, . . . , h} and Th = {h, . . . , ℓ}. In order to show that
problem (64) has an optimal solution belonging to Y , we prove that the relaxed linear
program

min

{
pσ + qx+ ry : (σ, x, y) ∈

τ−1∩
h=1

conv(Y <
Sh

) ∩
ℓ∩

h=τ

conv(Y >
Th
) ∩Q′

}
(65)

has an optimal solution that belongs to Y .
Under the change of variables

ρh =

{
σ1,h if 1 ≤ h < τ,

σh,ℓ if τ ≤ h ≤ ℓ,

problem (65) takes the form

min

{
p̃ρ+ qx+ ry : (ρ, x, y) ∈

τ−1∩
h=1

conv(Z<
Sh

) ∩
ℓ∩

h=τ

conv(Z>
Th
) ∩Q′

}
, (66)

where

p̃ρ =
τ−2∑
h=1

(ph − ph+1)ρh + pτ−1ρτ−1 + pτρτ +
ℓ∑

h=τ+1

(ph − ph−1)ρh (67)

(with p0 = pℓ+1 = 0), and the sets Z>
Th

and Z<
Sh

are defined as follows:

ρh − xi ≥ bi − u1,h−1, i ∈ [m], (68)

Z>
Th

: ρh ≥ lh,ℓ, (69)

xi ∈ Z, i ∈ [m], (70)

and

ρh − yj ≤ cj − lh+1,ℓ, j ∈ [n], (71)

Z<
Sh

: ρh ≤ u1,h, (72)

yj ∈ Z, j ∈ [n]. (73)



MIXING SETS LINKED BY BI-DIRECTED PATHS 13

All the extreme points of the feasible region of problem (66) have integral x- and y-
components, as this polyhedron is the intersection of mixing sets and reversed mixing
sets defined on disjoint sets of variables, plus some bounds on the integer variables
(see Proposition 2.3). Then problem (66) has an optimal solution (ρ̄, x̄, ȳ) with x̄
and ȳ integer. As the coefficients of variables ρ1, . . . , ρτ−1 in the objective function
are negative, while those of variables ρτ , . . . , ρℓ are nonnegative, we can assume that
ρ̄1, . . . , ρ̄τ−1 are maximal and ρ̄τ , . . . , ρ̄ℓ are minimal.

We now prove that the point (σ̄, x̄, ȳ) that corresponds to (ρ̄, x̄, ȳ) under the
change of variables, satisfies (53)–(56). For this purpose, define βi = x̄i + bi for
i ∈ [m], and γj = ȳj + cj for j ∈ [n]. Note that inequalities (60)–(62) imply that

βi ≤ u1,ℓ, i ∈ [m], (74)

γj ≥ l1,ℓ, j ∈ [n], (75)

βi ≤ γj , i ∈ [m], j ∈ [n]. (76)

First we prove that σ̄h ≥ lh for h ∈ [ℓ].
1. Assume first that h < τ . If h = 1, the inequality to be verified is ρ̄1 ≥ l1.

By the maximality of ρ̄1, we have either ρ̄1 = γj − l2,ℓ for some j or ρ̄1 = u1. In
the former case inequality (75) implies that ρ̄1 ≥ l1, while in the latter case we have
ρ̄1 = u1 ≥ l1. So we assume 1 < h < τ . Then the inequality can be written as
ρ̄h− ρ̄h−1 ≥ lh. By the maximality of ρ̄h, we have either ρ̄h = γj− lh+1,ℓ for some j or
ρ̄h = u1,h. In the former case inequality ρ̄h−1 ≤ γj − lh,ℓ implies that ρ̄h − ρ̄h−1 ≥ lh,
while in the latter case inequality ρ̄h−1 ≤ u1,h−1 implies that ρ̄h − ρ̄h−1 ≥ uh ≥ lh.

2. Now assume that h ≥ τ . If h = ℓ, the inequality to be verified is ρ̄ℓ ≥ lℓ.
However this inequality is part of conditions (69). So we assume τ ≤ h < ℓ. Then the
inequality is ρ̄h−ρ̄h+1 ≥ lh. By the minimality of ρ̄h+1, we have either ρ̄h+1 = βi−u1,h

for some i or ρ̄h+1 = lh+1,ℓ. In the former case inequality ρ̄h ≥ βi − u1,h−1 implies
that ρ̄h − ρ̄h+1 ≥ uh ≥ lh, while in the latter case inequality ρ̄h ≥ lh,ℓ implies that
ρ̄h − ρ̄h+1 ≥ lh.

With a symmetric argument one proves that σ̄h ≤ uh for h ∈ [ℓ].
Finally, we have to show that (σ̄, x̄, ȳ) satisfies (53)–(54). If τ = 1, inequality (53)

is equivalent to ρ1 ≥ βi, which is part of the constraints defining the feasible region
of (66) (see the set Z>

T1
). If τ = ℓ + 1, inequality (53) is equivalent to ρℓ ≥ βi. By

the maximality of ρ̄ℓ, we have either ρ̄ℓ = γj for some j or ρ̄ℓ = u1,ℓ. In the former
case inequality (76) implies that ρ̄ℓ ≥ βi, while in the latter case inequality (74)
establishes the claim. So we now assume 1 < τ ≤ ℓ. Then inequality (53) is equivalent
to ρτ−1 + ρτ ≥ βi. By the maximality of ρ̄τ−1, we have either ρ̄τ−1 = γj − lτ,ℓ for
some j or ρ̄τ−1 = u1,τ−1. In the former case inequality ρ̄τ ≥ lτ,ℓ and (76) imply that
ρ̄τ−1 + ρ̄τ ≥ βi, while in the latter case inequality ρ̄τ ≥ βi − u1,τ−1 establishes the
claim. This proves that (σ̄, x̄, ȳ) satisfies (53). A perfectly symmetric argument shows
that (σ̄, x̄, ȳ) satisfies (54).

This concludes the proof for the case p1 ≤ · · · ≤ pℓ. When the pk’s satisfy a
different ordering, the proof is the same and one finds the other sets Y >

T and Y <
T .

As for the set X discussed in §3, the above proof shows the following.
Corollary 4.2. There is a polynomial-time algorithm to solve linear optimiza-

tion over the set Y .
The extension of Proposition 4.1 to the case in which only some of the bounds on

the continuous variables are enforced in (53)–(56) is similar to that described in the
previous section.
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4.1.1. Strengthening of the result. In this subsection we present a stronger
version of Proposition 4.1, showing that many of the mixing inequalities defining the
convex hulls of the mixing sets Y >

T and Y <
T are not facet-defining for the polyhedron

conv(Y ). We show this for the mixing sets of the type Y >
T , as the argument for the

reversed mixing sets Y <
T is perfectly symmetric.

To describe the mixing inequalities that define the convex hull of the sets Y >
T , we

need some notation, which will also be used in the next subsection. First of all, by
translating the σ-variables, we can assume without loss of generality that lt = 0 for
t ∈ [ℓ] (this will simplify notation). Let (σ̄, x̄, ȳ) be a point satisfying the initial linear
system (53)–(55). Given a subset T ⊆ [ℓ] and an index i ∈ [m], we denote by bTi the
right-hand side of (57), i.e., bTi = bi − u([ℓ] \ T ). We also define fT

i = bTi − (
⌈
bTi

⌉
− 1)

and BT
i = x̄i +

⌈
bTi

⌉
. Finally, given a subset of indices ∅ ̸= I ⊆ [m], we define MT,I

1

and MT,I
2 as the left-hand sides of the mixing inequalities for Y >

T associated with
subset I, evaluated at (σ̄, x̄, ȳ):

MT,I
1 = σ̄(T )−

q∑
r=1

(fT
ir − fT

ir−1
)BT

ir , (77)

MT,I
2 = MT,I

1 − (1− fT
iq )(B

T
i1 − 1), (78)

where i1, . . . , iq is an ordering of the elements in I such that fT
i1

≤ · · · ≤ fT
iq
, with fT

i0
=

0. We will refer to inequalities of the form (77) (resp., (78)) as mixing inequalities of
the first (resp., second) type.

Lemma 4.3. MT,I
2 ≤ MV,I

2 for any ∅ ̸= I ⊆ [m] and any two subsets ∅ ̸= V ⊆
T ⊆ [ℓ].

Proof. It is sufficient to consider the case |T | = |V | + 1. Let τ be the unique
element in T \ V and define φ = uτ − ⌊uτ⌋. Let i1, . . . , iq be an ordering of the
elements in I such that fT

i1
≤ · · · ≤ fT

iq
and assume that fT

iπ−1
≤ φ < fT

iπ
for some

index π ∈ [q], where fT
i0

= 0 (the case φ ≥ fT
iq

can be treated similarly). Since

bVi = bTi − uτ for i ∈ [m], we have

fV
ir =

{
fT
ir
− φ if r ≥ π,

fT
ir
− φ+ 1 otherwise,

and BV
ir =

{
BT

ir
− ⌊uτ⌋ if r ≥ π,

BT
ir
− ⌊uτ⌋ − 1 otherwise.

It follows that fV
iπ

≤ · · · ≤ fV
iq

≤ fV
i1

≤ · · · ≤ fV
iπ−1

. Then

MV,I
2 = σ̄(V )− (fT

iπ − φ)(BT
iπ − ⌊uτ⌋)−

q∑
r=π+1

(fT
ir − fT

ir−1
)(BT

ir − ⌊uτ⌋)

− (fT
i1 − fT

iq + 1)(BT
i1 − ⌊uτ⌋ − 1)−

π−1∑
r=2

(fT
ir − fT

ir−1
)(BT

ir − ⌊uτ⌋ − 1)

− (1− (fT
iπ−1

− φ+ 1))(BT
iπ − ⌊uτ⌋ − 1)

= MT,I
2 − σ̄τ + ⌊uτ⌋+ φ = MT,I

2 − σ̄τ + uτ ≥ MT,I
2 ,

where the second equality follows from tedious but straightforward calculation, and
the inequality holds because (σ̄, x̄, ȳ) satisfies (55).

The above lemma implies that out of all the mixing inequalities of the typeMT,I
2 ≥

0, only those having T = [ℓ] are needed in the description of conv(Y ). Keeping in mind
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that a similar result can be proven for the mixing inequalities defining the polyhedra
conv(Y <

T ), we have the following strengthening of Proposition 4.1.

Corollary 4.4. In the description of conv(Y ) given in (63), the mixing in-
equalities of the second type for the sets Y >

T and Y <
T with T ̸= [ℓ] can be dropped.

4.2. Separation of the inequalities. Both sets X (defined by (21)–(23)) and
Y (defined by (53)–(56)) are generalizations of the splittable flow arc set studied by
Magnanti et al. [16] and Atamtürk and Rajan [1] as a relaxation of some multi-
commodity flow capacitated network design problems. The splittable flow arc set is
defined by the constraints

σ1,ℓ − x ≥ b, (79)

lt ≤ σt ≤ ut, t ∈ [ℓ], (80)

x ∈ Z. (81)

This set is the special case of (21)–(23) in which mℓ = 1 and mt = 0 for all t < ℓ, and
also the special case of (53)–(56) in which m = 1 and n = 0.

Magnanti et al. [16] proved that the convex hull of (79)–(81) is described by an
exponential family of inequalities, called residual capacity inequalities, which can be
viewed as simple MIR-inequalities (see [18]) derived from suitable relaxations of (79)–
(81). Their result is a special case of both Propositions 3.1 and 4.1. Atamtürk and
Rajan [1] gave a separation algorithm for these inequalities, whose running time is
O(ℓ).

Since simple MIR-inequalities are a special case of mixing inequalities and since,
for a given mixing set, the mixing inequalities can be separated in polynomial time [20],
it is natural to wonder whether the separation algorithm of Atamtürk and Rajan [1]
can be extended to the more general sets studied in this paper. As for the residual
capacity inequalities, the main difficulty is due to the fact that though separation
is easy for a fixed mixing set, here we have polyhedra described by an exponential
number of mixing sets, and the problem of selecting the right mixing set is nontrivial.
However, we show below that for the set Y it is possible to determine a priori which
mixing sets can provide a most violated inequality. Then it is sufficient to apply the
mixing-inequalities separation algorithm to those particular mixing sets.

Let (σ̄, x̄, ȳ) be a point satisfying the initial linear system (53)–(55). We show
how to check in polynomial time whether (σ̄, x̄, ȳ) belongs to the convex hull of (53)–
(56). Recall that by Proposition 4.1 the convex hull is

∩
T conv(Y >

T )∩
∩

T conv(Y <
T )∩

Q′. Here we consider only the inequalities defining
∩

T conv(Y >
T ). Indeed, the sets∩

T conv(Y <
T ) can be treated similarly thanks to symmetry arguments, and it is trivial

to check in polynomial time whether (σ̄, x̄, ȳ) satisfies the inequalities defining Q′.

Thus we only have to show how one can check in polynomial time whether one
of the inequalities defining

∩
T conv(Y >

T ) is violated by (σ̄, x̄) (the y-variables can be
ignored). As in the previous subsection, we assume without loss of generality that
lt = 0 for t ∈ [ℓ]. Then, by Corollary 4.4, our separation problem concerns all the

inequalities MT,I
1 ≥ 0 for ∅ ̸= T ⊆ [ℓ] and ∅ ̸= I ⊆ [m], and all the inequalities

MT,I
2 ≥ 0 for T = [ℓ] and ∅ ̸= I ⊆ [m].

When dealing with mixing inequalities of the second type, we only have to consider
the mixing set Y >

[ℓ] . Thus one can decide in O(m logm) time whether there is an

inequality of this type violated by (σ̄, x̄) by applying the separation algorithm for the
mixing inequalities of the second type (see [20]) to the set Y >

[ℓ] .
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We now assume that (σ̄, x̄) violates no mixing inequality of the second type and
turn to the mixing inequalities of the first type. We will show that if (σ̄, x̄) violates
an inequality of this type, then there is a most violated inequality with T being one
of the sets Si, i ∈ [m], where each Si is a subset whose definition depends only on
(σ̄, x̄):

Si = {k ∈ [ℓ] : σ̄k − uk(x̄i − ⌈x̄i⌉+ 1) < 0}.

Let MT,I
1 be the left-hand side of a most violated mixing inequality of the first

type, where the cardinality of I is as small as possible. Let i1, . . . , iq be an ordering of
the elements in I such that fT

i1
≤ · · · ≤ fT

iq
, with fT

i0
= 0. Note that, by the minimality

of |I|, we have fT
i1

< · · · < fT
iq
. Furthermore, since no mixing inequality of the second

type is violated, we have fT
iq

< 1.

Lemma 4.5. The following chain of inequalities holds: 0 < BT
iq

< BT
iq−1

< · · · <
BT

i1
< 1.

Proof. With J = I \ {iq}, inequality MT,J
1 −MT,I

1 > 0 gives (fT
iq
− fT

iq−1
)BT

iq
> 0,

thus BT
iq

> 0. For 1 ≤ r ≤ q − 1 and J = I \ {ir}, inequality MT,J
1 − MT,I

1 > 0

gives (fT
ir
− fT

ir−1
)(BT

ir
− BT

ir+1
) > 0, thus BT

ir
> BT

ir+1
. Finally, summing inequality

−MT,I
1 > 0 with MT,I

2 ≥ 0 gives −(1− fT
iq
)(BT

i1
− 1) > 0, thus BT

i1
< 1.

Recalling that BT
i = x̄i +

⌈
bTi

⌉
for i ∈ [m], Lemma 4.5 implies that ⌈x̄ir⌉ =

−
⌈
bTir

⌉
+ 1 for r ∈ [q], thus Sir = {k ∈ [ℓ] : σ̄k − ukB

T
ir

< 0} for r ∈ [q]. To simplify
notation, define

S = Si1 =
{
k ∈ [ℓ] : σ̄k − ukB

T
i1 < 0

}
. (82)

The next two lemmas show that T = S.
Lemma 4.6. T ⊆ S.
Proof. Assume first that fT

iπ−1
≤ u(T \ S) < fT

iπ
for some π ∈ [q]. We show that

if T ̸⊆ S, then MT∩S,J
1 < MT,I

1 for some J ⊆ I, contradicting the fact that MT,I
1 is

the left-hand side of a most violated inequality.
Since bT∩S

i = bTi − u(T \ S) for i ∈ [m], we have

fT∩S
ir =

{
fT
ir
− u(T \ S) if r ≥ π,

fT
ir
− u(T \ S) + 1 otherwise,

and BT∩S
ir =

{
BT

ir
if r ≥ π,

BT
ir
− 1 otherwise.

It follows that fT∩S
iπ

< · · · < fT∩S
iq

< fT∩S
i1

< · · · < fT∩S
iπ−1

. Define J = {iπ, . . . , iq}.
Then

MT∩S,J
1 = σ̄(T ∩ S)− (fT

iπ − u(T \ S))BT
iπ −

q∑
r=π+1

(fT
ir − fT

ir−1
)BT

ir

and thus

MT,I
1 −MT∩S,J

1 = σ̄(T \ S)−
π−1∑
r=1

(fT
ir − fT

ir−1
)BT

ir − (u(T \ S)− fT
iπ−1

)BT
iπ

≥ σ̄(T \ S)−
π−1∑
r=1

(fT
ir − fT

ir−1
)BT

i1 − (u(T \ S)− fT
iπ−1

)BT
i1

=
∑

k∈T\S

(σ̄k − ukB
T
i1) > 0,
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where the first inequality follows from Lemma 4.5, and the last one holds because of
the definition of S and the fact that T \ S ̸= ∅.

We now suppose that u(T \S) ≥ fT
iq
and show that this contradicts the assumption

that MT,I
1 < 0. Rearranging (77), we have that

MT,I
1 = σ̄(T ∩ S) +

∑
k∈T\S

(σ̄k − ukB
T
i1)− (fT

i1 − u(T \ S))BT
i1 −

q∑
r=2

(fT
ir − fT

ir−1
)BT

ir

≥ − (fT
i1 − u(T \ S))−

q∑
r=2

(fT
ir − fT

ir−1
) = u(T \ S)− fT

iq ≥ 0,

where the first inequality holds because of the nonnegativity of σ̄, the definition of S
and Lemma 4.5.

Lemma 4.7. S ⊆ T .
Proof. By Lemma 4.6, T ⊆ S. Assume that the inclusion is strict. Define

a = ⌊u(S \ T )⌋ and φ = u(S \ T )− a.

Assume first that 1 − fT
iπ

< φ ≤ 1 − fT
iπ−1

for some π ∈ [q]. We show that if

T ( S, then MS,I
2 < 0, contradicting the initial assumption that no mixing inequality

of the second type is violated by (σ̄, x̄).
Since bSi = bTi + u(S \ T ) for i ∈ [m], we have

fS
ir =

{
fT
ir
+ φ if r < π,

fT
ir
+ φ− 1 otherwise,

and BS
ir =

{
BT

ir
+ a if r < π,

BT
ir
+ a+ 1 otherwise.

It follows that fS
iπ

< · · · < fS
iq

< fS
i1

< · · · < fS
iπ−1

. Then

MS,I
2 = σ̄(S)− (fT

iπ + φ− 1)(BT
iπ + a+ 1)−

q∑
r=π+1

(fT
ir − fT

ir−1
)(BT

ir + a+ 1)

− (fT
i1 − fT

iq + 1)(BT
i1 + a)−

π−1∑
r=2

(fT
ir − fT

ir−1
)(BT

ir + a)

− (1− fT
iπ−1

− φ)(BT
iπ + a)

= MT,I
1 + σ̄(S \ T )− (1− fT

iq )B
T
i1 − (fT

iq − 1 + φ+ a)

= MT,I
1 + σ̄(S \ T )− (1− fT

iq )(B
T
i1 − 1)− u(S \ T )

= MT,I
1 +

∑
k∈S\T

(σ̄k − ukB
T
i1)− (1− fT

iq − u(S \ T ))(BT
i1 − 1) < 0,

where the inequality holds because of the following: (i) MT,I
1 < 0 by assumption; (ii)

σ̄k − ukB
T
i1

< 0 for all k ∈ S; (iii) 1 − fT
iq
− u(S \ T ) ≤ 1 − fT

iπ
− a − φ < 0 by the

definition of π and because a ≥ 0; (iv) BT
i1
− 1 < 0 by Lemma 4.5.

Now assume that 0 ≤ φ ≤ 1−fT
iq
. A calculation similar to that carried out above

gives again

MS,I
2 = MT,I

1 +
∑

k∈S\T

(σ̄k − ukB
T
i1)− (1− fT

iq − u(S \ T ))(BT
i1 − 1).
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However, in this case we can conclude that MS,I
2 < 0 only if u(S \ T ) ≥ 1 − fT

iq
.

Therefore it remains to consider the case when 0 ≤ u(S \ T ) ≤ 1 − fT
iq
. In this case

we have

MS,I
1 = σ̄(S)− (fT

i1 + u(S \ T ))Bi1 −
q∑

r=2

(fT
ir − fT

ir−1
)BT

ir

= MT,I
1 + σ̄(S \ T )− u(S \ T )BT

i1

= MT,I
1 +

∑
k∈S\T

(σ̄k − ukB
T
i1) < MT,I

1 ,

where the inequality follows from the definition of S and the fact that S \ T is

nonempty. However, this contradicts the fact that MT,I
1 is the left-hand side of a

most violated inequality.

Therefore T = Si1 . Since i1 is unknown but certainly lies in [m], it suffices to
consider all the sets Si for i ∈ [m].

We then have the following algorithm for checking whether (σ̄, x̄) violates one of
the inequalities defining

∩
T conv(Y >

T ):

1. Apply the separation algorithm for mixing inequalities of the second type
[20] to the set Y >

[ℓ] ; if there is a violated inequality, return it and stop.

2. For i ∈ [m], apply the separation algorithm for mixing inequalities of the
first type [20] to the set Y >

T with T = Si = {k ∈ [ℓ] : σ̄k − uk(x̄i − ⌈x̄i⌉+ 1) < 0}. If
there is a violated inequality, return it and stop.

3. If no violated inequality has been found during the above steps, there is no
violated inequality.

If Step 2 is executed for all i ∈ [m] rather than stopping when a violated inequality
is found, this algorithm finds a most violated inequality (if a violated inequality exists).

Step 1 can be carried out in time O(m logm). In Step 2, before applying the
separation algorithm for the mixing inequalities, one has to determine the set Si

and the right-hand sides of the mixing set Y >
Si

for i ∈ [m]. For this purpose, it
is convenient to have on ordering i1, . . . , im of the elements of [m] such that x̄i1 −
⌈x̄i1⌉ ≤ · · · ≤ x̄im − ⌈x̄im⌉, and an ordering k1, . . . , kℓ of the elements of [ℓ] such that
σ̄k1/uk1 ≤ · · · ≤ σ̄kℓ

/ukℓ
. These orderings can be obtained with O(m logm + ℓ log ℓ)

operations. Then Si1 ⊆ · · · ⊆ Sim , and with another O(m + ℓ) operations one can
obtain all the sets and the right-hand sides needed. Finally, for each i ∈ [m] the
execution of the separation algorithm for the set Y >

Si
requires O(m logm) operations.

Thus the overall running time of the above algorithm is O(ℓ log ℓ+m2 logm).

With a similar algorithm the inequalities defining
∩

T conv(Y <
T ) be separated

in time O(ℓ log ℓ + n2 log n). The inequalities defining Q′, i.e., (60)–(62), can be
separated in time O(mn). Thus the overall running time of the separation algorithm
is O(ℓ log ℓ+m2 logm+ n2 log n).

Proposition 4.8. The inequalities defining the polyhedron conv(Y ) can be sep-
arated in time O(ℓ log ℓ+m2 logm+ n2 logn).

5. Concluding remarks and open questions. For the two sets studied in
§§3–4, the convex hull turns out to be essentially the intersection of the convex hulls
of (generalized) mixing sets. A natural question is whether a similar result holds for
the more general set (14)–(17). However, this seems to be false even for very small
instances. For example, it can be checked that one of the facet-inducing inequalities
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for the convex hull of the set

s1 − x1 ≥ 4.8, s1 − x2 ≥ 5.4,

s2 − y1 ≤ 2.6, s2 − y2 ≤ 2.8,

s1 − s2 ≥ 0, x1, x2, y1, y2 ∈ Z

is the inequality s1 − s2 − 0.2x1 − 0.6x2 + 0.2y1 + 0.6y2 ≥ 2.4, which does not seem
to be a mixing inequality for any (reasonable) relaxation of the set. This indicates
that mixing sets are not enough to describe the convex hull of a general set of the
type (14)–(17). (It is interesting to note that if inequality s2 − s1 ≥ 0 is replaced
by the equation s2 − s1 = 0 in the above constraints, then the resulting set is just a
generalized mixing set.)

Even though the convex hull of (14)–(17) cannot be described in terms of mixing
sets, still it would be interesting to prove some result showing that the convex hull
of (14)–(17) is equal to the intersection of simpler sets. However, our efforts in this
direction have been vain so far.

Furthermore, it is not clear whether the separation algorithm described in §4.2
can be extended to the set X. The results presented in §4.2 rely upon the fact that
the “cyclic ordering” of the fractional parts of the right-hand sides of inequalities (24)
is the same for all relaxations Y >

T . Since this is not the case for the relaxations
XT considered in §3, it appears hard to extend the result. However, since linear
optimization over X can be carried out in polynomial time (see Corollary 3.2), it is
reasonable to hope that a polynomial-time combinatorial algorithm for solving the
separation problem exists.

A final open question concerns the lot-sizing model with sales of §3.2. When the
amount produced in each period can take any fractional value between 0 and 1, one
obtains the constant-capacity single-item lot-sizing model with sales:

max

n∑
t=1

(rtvt − ptxt − qtyt − htst)− h0s0 (83)

subject to st−1 + xt = vt + st, t ∈ [n], (84)

st ≥ 0, lt ≤ vt ≤ ut, t ∈ [n], (85)

0 ≤ xt ≤ yt, yt ∈ {0, 1}, t ∈ [n], (86)

where yt is a set-up variable indicating whether production takes place in period t,
and qt is the associated set-up cost (the meaning of the other variables and parameters
is as in §3.2). For each fixed k ∈ [n], the following mixed-integer set is a relaxation of
(84)–(86):

sk−1 + yk,t ≥ vk,t, k ≤ t ≤ n,

sk−1 ≥ 0, lt ≤ vt ≤ ut, k ≤ t ≤ n,

yt ∈ {0, 1}, k ≤ t ≤ n.

Note that this set is the feasible region of a discrete lot-sizing problem with sales of the
form (46)–(48). If we denote it by XDLSI−CC−SL

k , then the set
∩n

k=1 X
DLSI−CC−SL
k

is a relaxation of (84)–(86), called the Wagner-Whitin relaxation of the problem and
denoted XWW−CC−SL. Based on analogous results valid for other lot-sizing models
(see, e.g., [20]), it is reasonable to conjecture that

conv
(
XWW−CC−SL

)
=

n∩
k=1

conv
(
XDLSI−CC−SL

k

)
.
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Currently we do not have any counterexample to this conjecture.

Acknowledgments. The authors are grateful to two anonymous referees for
their helpful suggestions.

REFERENCES

[1] A. Atamtürk and D. Rajan, On splittable and unsplittable flow capacitated network design
arcset polyhedra, Mathematical Programming, 92 (2002), pp. 315–333.

[2] M. Conforti, M. Di Summa, F. Eisenbrand, and L. A. Wolsey, Network formulations of
mixed-integer programs, Mathematics of Operations Research, 34 (2009), pp. 194–209.

[3] M. Conforti, M. Di Summa, and L. A. Wolsey, The intersection of continuous mixing
polyhedra and the continuous mixing polyhedron with flows, in Integer Programming and
Combinatorial Optimization, M. Fischetti and D. P. Williamson, eds., vol. 4513 of Lecture
Notes in Computer Science, Springer, 2007, pp. 352–366.

[4] , The mixing set with flows, SIAM Journal on Discrete Mathematics, 21 (2007), pp. 396–
407.

[5] , The mixing set with divisible capacities, in Integer Programming and Combinatorial
Optimization, A. Lodi, A. Paconensi, and G. Rinaldi, eds., vol. 5035 of Lecture Notes in
Computer Science, Springer, 2008, pp. 435–449.

[6] M. Conforti, B. Gerards, and G. Zambelli, Mixed-integer vertex covers on bipartite
graphs, in Integer Programming and Combinatorial Optimization, M. Fischetti and D. P.
Williamson, eds., vol. 4513 of Lecture Notes in Computer Science, Springer, 2007, pp. 324–
336.

[7] M. Conforti and L. A. Wolsey, Compact formulations as a union of polyhedra, Mathematical
Programming, 114 (2008), pp. 277–289.

[8] M. Conforti, L. A. Wolsey, and G. Zambelli, Projecting an extended formulation for mixed-
integer covers on bipartite graphs, Mathematics of Operations Research, 35 (2010), pp. 603–
623.

[9] M. Constantino, A. J. Miller, and M. Van Vyve, Mixing MIR inequalities with two divisible
coefficients, Mathematical Programming, 123 (2010), pp. 451–483.

[10] M. Di Summa, On a class of mixed-integer sets with a single integer variable, Operations
Research Letters, 38 (2010), pp. 556–558.

[11] F. Eisenbrand and T. Rothvoß, New hardness results for diophantine approximation, in
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, I. Dinur, K. Jansen, S. Naor, and J. Rolim, eds., vol. 5687 of Lecture Notes in
Computer Science, Springer, 2009, pp. 98–110.
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