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Abstract. In this paper we investigate two generalizations of the con-
tinuous mixing set studied by Miller and Wolsey [5] and Van Vyve [7]:
the intersection set

XI = {(σ, r, y) ∈ IRn
+ × IRn

+ × ZZn
+ : σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n}

and the continuous mixing set with flows

XCMF = {(s, r, x, y) ∈ IR+ × IRn
+ × IRn

+ × ZZn
+ :

s+ rt + xt ≥ bt, xt ≤ yt, 1 ≤ t ≤ n} ,

which appears as a strong relaxation of some single-item lot-sizing prob-
lems. We give two extended formulations for the convex hull of each of
these sets. In particular, for XCMF the sizes of the extended formula-
tions are polynomial in the size of the original description of the set,
thus proving that the corresponding linear optimization problem can be
solved in polynomial time.

Keywords: integer programming.

1 Introduction

In the last 5-10 years several mixed-integer sets have been studied that are
interesting in their own right as well as providing strong relaxations of single-
item lot-sizing sets. One in particular is the continuous mixing set XCM:

s+ rt + yt ≥ bt, 1 ≤ t ≤ n

s ∈ IR+, r ∈ IRn
+, y ∈ ZZn

+ .

The continuous mixing polyhedron conv(XCM), which is the convex hull of
the above set, was introduced and studied by Miller and Wolsey in [5], where

⋆ This work was partly carried out within the framework of ADONET, a European
network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.



an extended formulation of conv(XCM) with O(n2) variables and O(n2) con-
straints was given. Van Vyve [7] gave a more compact extended formulation
of conv(XCM) with O(n) variables and O(n2) constraints and a formulation of
conv(XCM) in its original space.

We study here two generalizations of the continuous mixing set. First we
consider the intersection set XI, the intersection of several continuous mixing
sets with distinct σk variables and common r and y variables:

σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n (1)

σ ∈ IRn
+, r ∈ IRn

+, y ∈ ZZn
+ . (2)

Then we consider XCMF, the “flow version” of the continuous mixing set:

s+ rt + xt ≥ bt, 1 ≤ t ≤ n (3)

xt ≤ yt, 1 ≤ t ≤ n (4)

s ∈ IR+, r ∈ IRn
+, x ∈ IRn

+, y ∈ ZZn
+ . (5)

We now show two links between the continuous mixing set with flows XCMF

and lot-sizing. The first is to the single-item constant capacity lot-sizing problems
with backlogging over n periods, which can be formulated (including redundant
equations) as:

sk−1 +
∑t

u=k wu + rt =
∑t

u=k du + st + rk−1, 1 ≤ k ≤ t ≤ n

wu ≤ Czu, 1 ≤ u ≤ n; s ∈ IRn+1
+ , r ∈ IRn+1

+ , w ∈ IRn
+, z ∈ {0, 1}n .

Here du is the demand in period u, su and ru are the stock and backlog at the end
of period u, zu takes value 1 if there is a set-up in period u allowing production
to take place, wu is the production in period u and C is the capacity (i.e. the
maximum production). To see that this set has a relaxation as the intersection
of n continuous mixing sets with flows, take C = 1 wlog, fix k, set s = sk−1,
xt =

∑t
u=k wu, yt =

∑t
u=k zu and bt =

∑t
u=k du, giving a first relaxation:

s+ xt + rt ≥ bt, k ≤ t ≤ n (6)

0 ≤ xu − xu−1 ≤ yu − yu−1 ≤ 1, k ≤ u ≤ n (7)

s ∈ IR+, r ∈ IRn−k+1
+ , x ∈ IRn−k+1

+ , y ∈ ZZn−k+1 . (8)

Now summing (7) over k ≤ u ≤ t (for each fixed t = k, . . . , n) and dropping the
upper bound on yt, one obtains precisely the continuous mixing set with flows
XCMF.

The set XCMF also provides an exact model for the two stage stochastic lot-
sizing problem with constant capacities and backlogging. Specifically, at time 0
one must choose to produce a quantity s at a per unit cost of h. Then in period 1,
n different outcomes are possible. For 1 ≤ t ≤ n, the probability of event t is ϕt,
the demand is bt and the unit production cost is pt, with production in batches
of size up to C; there are also a fixed cost of qt per batch and a possible bound
kt on the number of batches. As an alternative to production there is a linear



backlog (recovery) cost et. Finally the goal is to satisfy all demands and minimize
the total expected cost. The resulting problem is

min hs+
∑n

t=1 ϕt(ptxt + qtyt + etrt)

s.t. s+ rt + xt ≥ bt, 1 ≤ t ≤ n (9)

xt ≤ Cyt, yt ≤ kt, 1 ≤ t ≤ n (10)

s ∈ IR+, r ∈ IRn
+, x ∈ IRn

+, y ∈ ZZn
+ . (11)

When kt = 1 for all t, this is a standard lot-sizing problem, and in general
(assuming C = 1 wlog) this is the set XCMF ∩ {(s, r, x, y) : yt ≤ kt, 1 ≤ t ≤ n}.

Now we describe the contents of this paper. Note that throughout, a formu-
lation of a polyhedron P ⊆ IRn is an external description of P in its original
space. It consists of a finite set of inequalities Ax ≤ d such that P = {x ∈
IRn : Ax ≤ d}. A formulation of P is extended whenever it gives an external
description of P in a space IRn+m that includes the original space, so that, given
Q = {(x,w) ∈ IRn+m : A′x + B′w ≤ d′}, P is the projection of Q onto the
x-space. Given a mixed-integer set X, an extended formulation of conv(X) is
compact if the size of the matrix (A′ | B′ | d′) is polynomial in the size of the
original description of X.

In Sect. 2 we give two extended formulations for the polyhedron conv(XI).
In the first one, we split XI into smaller sets, where the fractional parts of the
σ variables are fixed. We then find an extended formulation for each of these
sets and we use Balas’ extended formulation for the convex hull of the union of
polyhedra [1] to obtain an extended formulation of conv(XI).

To construct the second extended formulation, we introduce extra variables
to represent all possible fractional parts taken by the continuous variables at a
vertex of conv(XI). We then strengthen the original inequalities and show that
the system thus obtained yields an extended formulation of conv(XI).

When bkt = bt−bk, 1 ≤ t, k ≤ n, the intersection set is called a difference set,
denoted XDIF. For conv(XDIF), we prove in Sect. 3 that our two extended for-
mulations are compact. On the other hand, we show in Sect. 4 that the extended
formulations of conv(XI) are not compact when the values bkt are arbitrary.

We then study the polyhedron conv(XCMF). We show in Sect. 5 that there is
an affine transformation which maps the polyhedron conv(XCMF) into the inter-
section of a polyhedron conv(XDIF) with a polyhedron that admits an easy exter-
nal description. This yields two compact extended formulations for conv(XCMF),
showing in particular that one can optimize over XCMF in polynomial time.

2 Two Extended Formulations for the Intersection Set

The intersection set XI is the mixed-integer set defined by (1)–(2). Note that XI

is the intersection of n continuous mixing sets XCM
k , each one associated with a

distinct variable σk and having common variables r, y.
In order to obtain extended formulations for conv(XI), we introduce two

versions of the intersection set in which the fractional parts of the continuous
variables σk, rt are restricted in value.



In the following we call fractional part any number in [0, 1). Also, for a
number a ∈ IR, f(a) = a− ⌊a⌋ denotes the fractional part of a, and for a vector
v = (v1, . . . , vq), f(v) is the vector (f(v1), . . . , f(vq)).

In the first case, we consider a list Lσ = {f1, . . . , f ℓ} of n-vectors whose
components are fractional parts and a list Lr = {g1, . . . , gm} of fractional parts
and define the set

XI
1 = {(σ, r, y) ∈ XI : f(σ) ∈ Lσ, f(rt) ∈ Lr, 1 ≤ t ≤ n} .

We say that the lists Lσ,Lr are complete for XI if for every vertex (σ̄, r̄, ȳ) of
conv(XI), f(σ̄) ∈ Lσ and f(r̄t) ∈ Lr, 1 ≤ t ≤ n.

Remark 1. If Lσ,Lr are complete lists for XI then conv(XI
1) = conv(XI).

In the second case, we consider a single list L = {f1, . . . , fℓ} of fractional
parts and define the set

XI
2 = {(σ, r, y) ∈ XI : f(σk) ∈ L, f(rt) ∈ L, 1 ≤ k, t ≤ n} .

We say that the list L is complete for XI if for every vertex (σ̄, r̄, ȳ) of conv(XI)
and for every 1 ≤ k, t ≤ n, f(σ̄k) ∈ L and f(r̄t) ∈ L.

Remark 2. If L is a complete list for XI then conv(XI
2) = conv(XI).

2.1 An Extended Formulation for conv(XI
1)

We give an extended formulation of conv(XI
1) with O(ℓmn) variables and O(ℓn2)

constraints.

For each fixed vector f i ∈ Lσ, let X
I
1,i = {(σ, r, y) ∈ XI

1 : f(σ) = f i}. Notice

that XI
1 =

∪ℓ
i=1 X

I
1,i. First we find an extended formulation for each of the sets

conv(XI
1,i), 1 ≤ i ≤ ℓ, and then, since conv(XI

1) = conv
(∪ℓ

i=1 conv(X
I
1,i)

)
, we

use Balas’ extended formulation for the convex hull of the union of polyhedra [1],
in the fashion introduced in [3].

In the following we assume wlog g1 > g2 > · · · > gm. The set XI
1,i can be

modeled as the following mixed-integer set:

σk = µk + f i
k, 1 ≤ k ≤ n

rt = νt +
∑m

j=1 gjδtj , 1 ≤ t ≤ n

µk + νt +
∑m

j=1 gjδtj + yt ≥ bkt − f i
k, 1 ≤ k, t ≤ n∑m

j=1 δtj = 1, 1 ≤ t ≤ n

µk, νt, yt, δtj ≥ 0, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m

µk, νt, yt, δtj integer, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m .



Using Chvátal-Gomory rounding, the above system can be tightened to

σk = µk + f i
k, 1 ≤ k ≤ n (12)

rt = νt +
∑m

j=1 gjδtj , 1 ≤ t ≤ n (13)

µk + νt +
∑

j:gj≥f(bkt−fi
k)
δtj + yt ≥ ⌊bkt − f i

k⌋+ 1, 1 ≤ k, t ≤ n (14)∑m
j=1 δtj = 1, 1 ≤ t ≤ n (15)

µk, νt, yt, δtj ≥ 0, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m (16)

µk, νt, yt, δtj integer, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m . (17)

Let A be the constraint matrix of (14)–(15). We show that A is a totally
unimodular (TU) matrix.

Order the columns of A according to the following ordering of the variables:

µ1, . . . , µn; y1, ν1, δ11, . . . , δ1m; y2, ν2, δ21, . . . , δ2m; . . . ; yn, νn, δn1, . . . , δnm .

For each row of A, the 1’s that appear in a block [yt, νt, δt1, . . . , δtm] are consec-
utive and start from the first position. Furthermore, for each row of A only one
of these blocks contains nonzero elements.

Consider an arbitrary column submatrix of A. We give color red to all the µi

(if any) and then, for each of the blocks [yt, νt, δt1, . . . , δtm], we give alternating
colors, always starting with blue, to the columns of this block which appear in
the submatrix. Since this is an equitable bicoloring, the theorem of Ghouila-
Houri [4] shows that A is TU. Since the right-hand side of the constraints is
integer, the theorem of Hoffman and Kruskal implies that (14)–(15) (along with
the nonnegativity conditions) define an integral polyhedron.

Since (12)–(13) just define variables σk, rt, we can remove the integrality con-
straints from (12)–(17), thus obtaining an extended formulation for conv(XI

1,i):

conv(XI
1,i) = {(σ, r, y) such that there exist δ, µ satisfying (12)–(16)} .

Note that this formulation involves O(mn) variables and O(n2) constraints.
Using Balas’ description for the union of polyhedra [1], we obtain:

Theorem 3. The following linear system is an extended formulation of the poly-
hedron conv(XI

1) with O(ℓmn) variables and O(ℓn2) constraints:

σk =
∑ℓ

i=1 σ
i
k, 1 ≤ k ≤ n

rt =
∑ℓ

i=1 r
i
t, 1 ≤ t ≤ n

yt =
∑ℓ

i=1 y
i
t, 1 ≤ t ≤ n∑ℓ

i=1 λ
i = 1

σi
k = µi

k + f i
kλ

i, 1 ≤ k ≤ n, 1 ≤ i ≤ ℓ

rit = νit +
∑m

j=1 gjδ
i
tj , 1 ≤ t ≤ n, 1 ≤ i ≤ ℓ

µi
k + νit +

∑
j:gj≥f(bkt−fi

k)
δitj + yit ≥ (⌊bkt − f i

k⌋+ 1)λi, 1 ≤ k, t ≤ n, 1 ≤ i ≤ ℓ∑m
j=1 δ

i
tj = λi, 1 ≤ t ≤ n, 1 ≤ i ≤ ℓ

µi
k, ν

i
t , y

i
t, δ

i
tj , λ

i ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ m, 1 ≤ i ≤ ℓ .



By Remark 1 we then obtain:

Corollary 4. If the lists Lσ,Lr are complete for XI then the linear system given
in Theorem 3 is an extended formulation of conv(XI).

2.2 An Extended Formulation for conv(XI
2)

We give an extended formulation for conv(XI
2) with O(ℓn) variables and O(ℓn2)

constraints. We include zero in the list L. Also, for technical reasons we define
f0 = 1. Wlog we assume 1 = f0 > f1 > · · · > fℓ = 0.

The set XI
2 can be modeled as the following mixed-integer set:

σk = µk +
∑ℓ

j=1 fjδ
k
j , 1 ≤ k ≤ n (18)

rt = νt +
∑ℓ

j=1 fjβ
t
j , 1 ≤ t ≤ n (19)

σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n (20)∑ℓ
j=1 δ

k
j = 1, 1 ≤ k ≤ n (21)∑ℓ

j=1 β
t
j = 1, 1 ≤ t ≤ n (22)

σk ≥ 0, rt ≥ 0, yt ≥ 0, 1 ≤ k, t ≤ n

δkj , β
t
j ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ ℓ

µk, νt, yt, δ
k
j , β

t
j integer, 1 ≤ k, t ≤ n, 1 ≤ j ≤ ℓ .

Now define the unimodular transformation

µk
0 = µk, µk

j = µk +
∑j

h=1 δ
k
h, 1 ≤ k ≤ n, 1 ≤ j ≤ ℓ

νt0 = νt + yt, ν
t
j = νt + yt +

∑j
h=1 β

t
h, 1 ≤ t ≤ n, 1 ≤ j ≤ ℓ .

Then (18) and (19) become

σk =
∑ℓ−1

j=0(fj − fj+1)µ
k
j , 1 ≤ k ≤ n

rt = −yt +
∑ℓ−1

j=0(fj − fj+1)ν
t
j , 1 ≤ t ≤ n ,

while (21)–(22) become µk
ℓ − µk

0 = 1, 1 ≤ k ≤ n, and νtℓ − νt0 = 1, 1 ≤ t ≤ n.
Constraints δkj ≥ 0, 1 ≤ k ≤ n, 1 ≤ j ≤ ℓ, can be modeled as µk

j − µk
j−1 ≥ 0.

Similarly βt
j ≥ 0, 1 ≤ t ≤ n, 1 ≤ j ≤ ℓ, can be modeled as νtj − νtj−1 ≥ 0.

Inequalities σk ≥ 0, 1 ≤ k ≤ n, become µk
0 ≥ 0, while rt ≥ 0, 1 ≤ t ≤ n,

become νt0 − yt ≥ 0.
We now model (20). Define ℓkt = max{τ : fτ ≥ f(bkt)}. Also, for an index

0 ≤ j ≤ ℓkt − 1, define hj
kt = max{τ : fτ ≥ 1 + f(bkt)− fj+1} and for an index

ℓkt ≤ j ≤ ℓ− 1, define hj
kt = max{τ : fτ ≥ f(bkt)− fj+1}.

Lemma 5. Assume that a point (σ, r, y) satisfies (18), (19), (21) and (22). Then
(σ, r, y) satisfies (20) if and only if the following inequalities are valid for (σ, r, y):

µk
hj
kt

+ νtj ≥ ⌊bkt⌋, 0 ≤ j ≤ ℓkt − 1 (23)

µk
hj
kt

+ νtj ≥ ⌊bkt⌋+ 1, ℓkt ≤ j ≤ ℓ− 1 . (24)



Proof. We first assume that (σ, r, y) satisfies (18)–(22). Suppose 0 ≤ j ≤ ℓkt −
1. Constraint (20) can be written as µk + νt + yt +

∑ℓ
i=1 fiδ

k
i +

∑ℓ
i=1 fiβ

t
i ≥

(⌊bkt⌋− 1)+ 1+ f(bkt). Since the δki ’s (resp. β
t
i ’s) are binary variables such that∑ℓ

i=1 δ
k
i = 1 (resp.

∑ℓ
i=1 β

t
i = 1), this implies µk+νt+yt+

∑hj
kt

i=1 fiδ
k
i +fhj

kt+1+∑j
i=1 fiβ

t
i + fj+1 ≥ (⌊bkt⌋ − 1) + 1 + f(bkt), thus µ

k
hj
kt

+ νtj ≥ (⌊bkt⌋ − 1) + 1 +

f(bkt)− fhj
kt+1 − fj+1. As 1+ f(bkt)− fhj

kt+1 − fj+1 > 0 for 0 ≤ j ≤ ℓkt − 1 and

as µk
hj
kt

+ νtj is an integer, (23) is valid.

Suppose now ℓkt ≤ j ≤ ℓ − 1. Constraint (20) can be written as µk + νt +

yt +
∑ℓ

i=1 fiδ
k
i +

∑ℓ
i=1 fiβ

t
i ≥ ⌊bkt⌋ + f(bkt). Similarly as before, this implies

µk
hj
kt

+ νtj ≥ ⌊bkt⌋ + f(bkt) − fhj
kt+1 − fj+1. As f(bkt) − fhj

kt+1 − fj+1 > 0 for

ℓkt ≤ j ≤ ℓ− 1 and as µk
hj
kt

+ νtj is an integer, (24) is valid.

Now assume that (σ, r, y) satisfies (18), (19), (21) and (22), along with (23)–
(24). Specifically, assume σk = µk + fi and rt = νt + fl.

Suppose l ≤ ℓkt. Inequality (23) for j = l − 1 is µk
hl−1
kt

+ νt + yt ≥ ⌊bkt⌋.

If i ≤ hl−1
kt , the inequality is µk + νt + yt ≥ ⌊bkt⌋ − 1, thus σk + rt + yt ≥

⌊bkt⌋ − 1 + fi + fl ≥ ⌊bkt⌋ + f(bkt) = bkt. And if i > hl−1
kt , the inequality is

µk + νt + yt ≥ ⌊bkt⌋, thus σk + rt + yt ≥ ⌊bkt⌋+ fl ≥ ⌊bkt⌋+ f(bkt) = bkt. Thus
(20) is satisfied when l ≤ ℓkt. The case l > ℓkt is similar. ⊓⊔

Thus we obtain the following result.

Theorem 6. The following linear system is an extended formulation of the poly-
hedron conv(XI

2) with O(ℓn) variables and O(ℓn2) constraints:

σk =
∑ℓ−1

j=0(fj − fj+1)µ
k
j , 1 ≤ k ≤ n (25)

rt = −yt +
∑ℓ−1

j=0(fj − fj+1)ν
t
j , 1 ≤ t ≤ n (26)

µk
hj
kt

+ νtj ≥ ⌊bkt⌋, 1 ≤ k, t ≤ n, 0 ≤ j ≤ ℓkt − 1 (27)

µk
hj
kt

+ νtj ≥ ⌊bkt⌋+ 1, 1 ≤ k, t ≤ n, ℓkt ≤ j ≤ ℓ− 1 (28)

µk
ℓ − µk

0 = 1, νtℓ − νt0 = 1, 1 ≤ k, t ≤ n (29)

µk
j − µk

j−1 ≥ 0, νtj − νtj−1 ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ ℓ (30)

µk
0 ≥ 0, νt0 − yt ≥ 0, yt ≥ 0, 1 ≤ k, t ≤ n . (31)

Proof. XI
2 is the set of points (σ, r, y) such that there exist integral vectors δ, µ

satisfying (25)–(31). Changing the sign of the νtj and yt variables, the constraint
matrix of (27)–(31) is a dual network matrix (that is, the transpose of a network
flow matrix), in particular it is TU. Since the right-hand side is an integer vector
and since (25)–(26) just define variables σk, rt,

conv(XI
2) = {(σ, r, y) such that there exist δ, µ satisfying (25)–(31)} .

⊓⊔



By Remark 2 we then obtain:

Corollary 7. If the list L is complete for XI then the linear system given in
Theorem 6 is an extended formulation of conv(XI).

3 The Difference Set

The following set is the difference set XDIF:

σk + rt + yt ≥ bt − bk, 0 ≤ k < t ≤ n

σ ∈ IRn+1
+ , r ∈ IRn

+, y ∈ ZZn
+ ,

where 0 = b0 ≤ b1 ≤ . . . ≤ bn. Note that XDIF is an intersection set where
bkt = bt − bk, as for k ≥ t the constraint σk + rt + yt ≥ bt − bk is redundant.

Here we prove that the extended formulations given in Sect. 2 are compact
for a set of the type XDIF. This will be useful in Sect. 5, where we study XCMF.

Theorem 8. Let (σ∗, r∗, y∗) be a vertex of conv(XDIF). Then there exists an
index h ∈ {0, . . . , n} such that σ∗

k > 0 for k < h and σ∗
k = 0 for k ≥ h.

Furthermore there is an index ℓ ≥ h such that f(σ∗
k) = f(bℓ − bk) for 0 ≤ k < h.

Proof. Let (σ∗, r∗, y∗) be a vertex of conv(XDIF), let α = max1≤t≤n{bt−r∗t −y∗t }
and let Tα ⊆ {1, . . . , n} be the subset of indices for which this maximum is
achieved.
Claim 1: For each 1 ≤ k ≤ n, σ∗

k = max{0, α− bk}.
Proof. The inequalities that define XDIF show that σ∗

k ≥ max{0, α − bk}. If
σ∗
k > max{0, α − bk}, then there is an ε > 0 such that (σ∗, r∗, y∗) ± ε(ek,0,0)

are both in conv(XDIF), a contradiction to the fact that (σ∗, r∗, y∗) is a vertex.
This concludes the proof of the claim.

Let h = min{k : α − bk ≤ 0}. (This minimum is well defined: since the
only inequality involving σn is σn ≥ 0, certainly σ∗

n = 0; then, by Claim 1,
α− bn ≤ 0.) Since 0 = b0 ≤ b1 ≤ · · · ≤ bn, Claim 1 shows that σ∗

k > 0 for k < h
and σ∗

k = 0 for k ≥ h and this proves the first part of the theorem. Furthermore
σ∗
k + r∗t + y∗t = bt − bk for all k < h and t ∈ Tα.

Claim 2: Either r∗t = 0 for some t ∈ Tα or f(rt) = f(bt − bh) for every t ∈ Tα.
Proof. We use the fact that (σ∗, r∗) is a vertex of the polyhedron:

Q = {(σ, r) ∈ IRn+1
+ × IRn

+ : σk + rt ≥ bt − bk − y∗t , 0 ≤ k < t ≤ n} .

We now consider the following two cases:
Case 1: α− bh < 0.
For k ≥ h, the only inequality that is tight for (σ∗, r∗) and contains σk in its
support is σk ≥ 0. For k < h, the only inequalities that are tight for (σ∗, r∗) and
contain σk in their support are σk + rt ≥ bt − bk − y∗t , t ∈ Tα.

Let eH be the (n + 1)-vector having the first h components equal to 1 and
the others to 0, let eTα be the incidence vector of Tα and assume that r∗t > 0 for



all t ∈ Tα. Then the vectors (σ∗, r∗)±ε(eH ,−eTα) for some ε > 0 are both in Q,
contradicting the fact that (σ∗, r∗) is a vertex of Q. So r∗t = 0 for some t ∈ Tα.
Case 2: α− bh = 0.
Then (σ∗, r∗, y∗) satisfies σ∗

h + r∗t + y∗t = bt − bh for all t ∈ Tα. Since σ∗
h = 0 and

y∗t is integer, then f(r∗t ) = f(bt − bh) for all t ∈ Tα and this completes the proof
of Claim 2.

Assume r∗t = 0 for some t ∈ Tα. Since σ∗
k + r∗t + y∗t = bt − bk for all k < h

and y∗t is an integer, then f(σ∗
k) = f(bt − bk) for all k < h.

If f(r∗t ) = f(bt − bh) for all t ∈ Tα, since σ∗
k + r∗t + y∗t = bt − bk for all t ∈ Tα

and for all k < h and since y∗ is an integer vector, then f(σ∗
k) = f(bh − bk) for

all k < h. ⊓⊔

Corollary 9. If (σ∗, r∗, y∗) is a vertex of conv(XDIF), then f(r∗t ) ∈ {f(bt −
bk), 1 ≤ k ≤ n} for 1 ≤ t ≤ n.

Proof. The result follows from Theorem 8 and the observation that at a vertex
of conv(XDIF) either r∗t = 0 or σ∗

k + r∗t + y∗t = bt − bk for some k. ⊓⊔

We then obtain the following result.

Theorem 10. The polyhedron conv(XDIF) admits an extended formulation of
the type given in Theorem 3 with O(n5) variables and O(n4) constraints and an
extended formulation of the type given in Theorem 6 with O(n3) variables and
O(n4) constraints.

Proof. Recall that XDIF is an intersection set. Define Lσ as the set of all possible
(n+ 1)-vectors of fractional parts taken by σ at a vertex of conv(XDIF) and Lr

as the set of all possible fractional parts taken by the variables rt at a vertex of
conv(XDIF). Since these lists are complete for XDIF, Corollary 4 implies that the
linear system given in Theorem 3 is an extended formulation of conv(XDIF). By
Theorem 8, ℓ = |Lσ| = O(n2) and by Corollary 9, m = |Lr| = O(n2), therefore
this formulation has O(n5) variables and O(n4) constraints.

Now define L as the set of all possible fractional parts taken by the variables
σk, rt at a vertex of conv(XDIF). Since this list is complete for XDIF, by Corol-
lary 7 the system given in Theorem 6 is an extended formulation of conv(XDIF).
Since ℓ = |L| = O(n2) (see Theorem 8 and Corollary 9), this formulation has
O(n3) variables and O(n4) constraints. ⊓⊔

We point out that the result of the above theorem can be improved as follows.
Consider the first formulation. If for each set XI

1,i we define a different list of

fractional parts for the variables rt, say Li
r, then we can easily choose such lists

so that |Li
r| = O(n). In this case the first extended formulation for conv(XDIF)

involves O(n4) variables.
Consider now the second formulation. Instead of defining a unique list for all

variables, we can define a list for each variable, say Lσk
and Lrt , 1 ≤ k, t ≤ n.

It is not difficult to verify that the construction of the extended formulation
can be carried out with straightforward modifications. Since in this case |Lσk

| =
O(n) (by Theorem 8) and |Lrt | = O(n) (by Corollary 9), the second extended
formulation involves O(n2) variables and O(n3) constraints.



Theorem 11. The polyhedron conv(XCMF) admits an extended formulation
with O(n2) variables and O(n3) constraints.

4 Intersection Sets with an Exponential Number of
Fractional Parts

In this section we show that the extended formulations derived in Sect. 2 are
not compact in general. Specifically, we prove here the following result:

Theorem 12. In the set of vertices of the polyhedron defined by

σk + rt ≥
3(t−1)n+k

3n2+1
, 1 ≤ k, t ≤ n (32)

σ ∈ IRn
+, r ∈ IRn

+ (33)

the number of distinct fractional parts taken by variable σn is exponential in n.

Remark 13. Since the vertices of the above polyhedron are the vertices on the
face defined by y = 0 of the polyhedron conv(XI) with the same right-hand
side, Theorem 12 shows that any extended formulation that explicitly takes into
account a list of all possible fractional parts taken at a vertex by the continuous
variables (such as those introduced to model conv(XI

1) and conv(XI
2)) will not

be compact in general.

Now let bkt be as in the theorem, i.e. bkt =
3(t−1)n+k

3n2+1
, 1 ≤ k, t ≤ n.

Remark 14. bkt < bk′t′ if and only if (t, k) ≺ (t′, k′), where ≺ denotes the lexi-
cographic order. Thus b11 < b21 < · · · < bn1 < b12 < · · · < bnn.

Lemma 15. The following properties hold.

1. Suppose that α ∈ ZZq
+ with αj < αj+1 for 1 ≤ j ≤ q − 1, and define

Φ(α) =
∑q

j=1(−1)q−j3αj . Then 1
23

αq < Φ(α) < 3
23

αq .

2. Suppose that α is as above and β ∈ ZZq′

+ is defined similarly. Then Φ(α) =
Φ(β) if and only if α = β.

Proof. 1.
∑αq−1

j=0 3j = 3αq−1
3−1 < 1

23
αq . Now Φ(α) ≥ 3αq −

∑αq−1
j=1 3j > 3αq −

1
23

αq = 1
23

αq , and Φ(α) ≤ 3αq +
∑αq−1

j=1 3j < 3αq + 1
23

αq = 3
23

αq .

2. Suppose α ̸= β. Wlog we assume q ≥ q′. Assume first (αq−q′+1, . . . , αq) =
β. Then q > q′ (otherwise α = β) and, after defining ᾱ = (α1, . . . , αq−q′), we
have Φ(α) − Φ(β) = Φ(ᾱ) > 0 by 1. Now assume (αq−q′+1, . . . , αq) ̸= β. Define
h = min{τ : αq−τ ̸= βq′−τ} and suppose αq−h > βq′−h (the other case is
similar). If we define the vectors ᾱ = (α1, . . . , αq−h) and β̄ = (β1, . . . , βq′−h), 1.
gives Φ(α)−Φ(β) = Φ(ᾱ)−Φ(β̄) > 1

23
αq−h − 3

23
βq′−h ≥ 0, as αq−h > βq′−h. ⊓⊔



We now give a construction of an exponential family of vertices of (32)–(33)
such that at each vertex variable σn takes a distinct fractional part. Therefore
this construction proves Theorem 12.

Let (k1, . . . , km) and (t1, . . . , tm−1) be two increasing subsets of {1, . . . , n}
with k1 = 1 and km = n. For 1 ≤ k, t ≤ n, let p(k) = max{j : kj ≤ k} and
q(t) = max{j : tj ≤ t}, with q(t) = 0 if t < t1.

Consider the following system of equations:

σk1 = 0

σkj + rtj = bkjtj , 1 ≤ j ≤ m− 1

σkj+1 + rtj = bkj+1tj , 1 ≤ j ≤ m− 1

σkq(t)+1
+ rt = bkq(t)+1t, t /∈ {t1, . . . , tm−1}

σk + rtp(k)
= bktp(k)

, k /∈ {k1, . . . , km} .

The unique solution of this system is:

σk1 = 0

σkj =
∑j−1

ℓ=1 bkℓ+1tℓ −
∑j−1

ℓ=1 bkℓtℓ , 2 ≤ j ≤ m

rtj =
∑j

ℓ=1 bkℓtℓ −
∑j−1

ℓ=1 bkℓ+1tℓ , 1 ≤ j ≤ m− 1

σk = bktp(k)
− rtp(k)

, k /∈ {k1, . . . , km}
rt = bkq(t)+1t − σkq(t)+1

, t /∈ {t1, . . . , tm−1} .

As each of these variables σk, rt takes a value of the form Φ(α)/3n
2+1, by

Lemma 15 (i) we have that σkj > 1
2bkjtj−1 > 0 for 2 ≤ j ≤ m, rtj > 1

2bkjtj > 0
for 1 ≤ j ≤ m−1, σk > 1

2bktp(k)
> 0 for k /∈ {k1, . . . , km} and rt >

1
2bkq(t)+1t > 0

for t /∈ {t1, . . . , tm−1}. Therefore the nonnegativity constraints are satisfied.
Now we show that the other constraints are satisfied. Consider the k, t con-

straint with t /∈ {t1, . . . , tm−1}. We distinguish some cases.

1. p(k) ≤ q(t). Then σk + rt ≥ rt >
1
2bkq(t)+1t ≥ 1

2bkp(k)+1t ≥ 3
2bkt > bkt.

2. p(k) > q(t) and k /∈ {k1, . . . , km}. Then σk+rt ≥ σk > 1
2bktp(k)

≥ 1
2bktq(t)+1

≥
3n

2 bkt > bkt.
3. p(k) = q(t) + 1 and k = kj for some 1 ≤ j ≤ m (thus p(k) = j = q(t) + 1).

In this case the k, t constraints is satisfied at equality by construction.
4. p(k) > q(t) + 1 and k = kj for some 1 ≤ j ≤ m (thus p(k) = j > q(t) + 1).

Then σk + rt ≥ σk > 1
2bktj−1

≥ 1
2bktq(t)+1

≥ 3n

2 bkt > bkt.

The argument with k /∈ {k1, . . . , km} is similar.
Finally suppose that k = kj and t = th with h /∈ {j−1, j}. If h > j, σk+rt ≥

rt >
1
2bkhth ≥ 3

2bkjth > bkt. If h < j−1, σk+rt ≥ σk > 1
2bkjtj−1 ≥ 3n

2 bkjth > bkt.
This shows that the solution is feasible and as it is unique, it defines a vertex

of (32)–(33).

Now let akt = (t− 1)n+ k, so that bkt = 3akt/3n
2+1 and take

α = (ak1t1 , ak2t1 , ak2t2 , ak3t2 , . . . , akmtm−1) .



As σn = Φ(α)/3n
2+1, Lemma 15 (ii) implies that in any two vertices constructed

as above by different sequences (k1, . . . , km), (t1, . . . , tm−1) and (k′1, . . . , k
′
m′),

(t′1, . . . , t
′
m′−1), the values of σn are distinct numbers in the interval (0, 1). As

the number of such sequences is exponential in n, this proves Theorem 12.

5 An Extended Formulation for conv(XCMF)

Now we address the question of showing that the linear optimization problem
over the continuous mixing set with flows (3)–(5) is solvable in polynomial time.
Specifically we derive compact extended formulations for conv(XCMF).

We assume that 0 < b1 ≤ · · · ≤ bn. Consider the set Z:

s+ rt + yt ≥ bt, 1 ≤ t ≤ n (34)

s+ rk + xk + rt + yt ≥ bt, 1 ≤ k < t ≤ n (35)

s+ rt + xt ≥ bt, 1 ≤ t ≤ n (36)

s ∈ IR+, r ∈ IRn
+, x ∈ IRn, y ∈ ZZn

+ . (37)

Note that x is unrestricted in Z.

Proposition 16. Let XCMF and Z be defined on the same vector b. Then
XCMF ⊆ Z and XCMF = Z ∩ {(s, r, x, y) : 0 ≤ x ≤ y}.

Proof. Clearly (34)–(37) are valid for the points in XCMF. The only inequalities
that define XCMF but do not appear in the definition of Z are 0 ≤ x ≤ y. ⊓⊔

Lemma 17. The 3n+1 extreme rays of conv(XCMF) are the vectors (1,0,0,0),
(0, ei,0,0), (0,0,0, ei), (0,0, ei, ei). The 3n+1 extreme rays of conv(Z) are the
vectors (1,0,−1,0), (0, ei,−ei,0), (0,0, ei,0), (0,0,0, ei). Therefore both reces-
sion cones of conv(XCMF) and conv(Z) are full-dimensional simplicial cones,
thus showing that conv(XCMF) and conv(Z) are full-dimensional polyhedra.

Proof. The first part is obvious. We characterize the extreme rays of conv(Z).
The recession cone C of conv(Z) is defined by

s+ rk + xk + rt + yt ≥ 0, 1 ≤ k < t ≤ n

s+ rt + xt ≥ 0, 1 ≤ t ≤ n

s ∈ IR+, r ∈ IRn
+, x ∈ IRn, y ∈ IRn

+ .

One can verify that the vectors ρ = (1,0,−1,0), ui = (0, ei,−ei,0), vi =
(0,0, ei,0), zi = (0,0,0, ei) are extreme rays of conv(Z) by checking that each
of them satisfies at equality 3n linearly independent inequalities defining C (in-
cluding nonnegativity constraints).

Thus we only have to show that every vector in C can be expressed as conic
combination of the above rays. Let (s̄, r̄, x̄, ȳ) be in C. Notice that (s̄, r̄, x̄, ȳ) =
s̄ρ+

∑n
i=1 r̄iui +

∑n
i=1(s̄+ r̄i + x̄i)vi +

∑n
i=1 ȳiwi. Since (s̄, r̄, x̄, ȳ) ∈ C, all the

coefficients appearing in the above combination are nonnegative.
It can also be checked that the above rays are linearly independent. ⊓⊔



Lemma 18. Let (s∗, r∗, x∗, y∗) be a vertex of conv(Z). Then

s∗ = max{0; bt − r∗t − y∗t , 1 ≤ t ≤ n} ,

x∗
k = max{bk − s∗ − r∗k; bt − s∗ − r∗k − r∗t − y∗t , 1 ≤ k < t ≤ n} .

Proof. Assume s∗ > 0 and s∗ + r∗t + y∗t > bt, 1 ≤ t ≤ n. Then, there is an ε ̸= 0
such that (s∗, r∗, x∗, y∗)±ε(1,0,−1,0) belong to conv(Z), a contradiction. This
proves the first statement. The second one is obvious. ⊓⊔

Proposition 19. Let (s∗, r∗, x∗, y∗) be a vertex of conv(Z). Then 0 ≤ x∗ ≤ y∗.

Proof. Assume that {t : x∗
t < 0} ̸= ∅ and let h = min{t : x∗

t < 0}. Then
s∗ + r∗h > bh > 0 and together with y∗h ≥ 0, this implies s∗ + r∗h + y∗h > bh.

Claim: r∗h > 0.
Proof. Assume r∗h = 0. Then s∗ > bh > 0. By Lemma 18, s∗ + r∗t + y∗t = bt
for some index t. It follows that s∗ ≤ bt, thus t > h (as bh < s∗ ≤ bt). Equation
s∗ + r∗t + y∗t = bt, together with s∗ + r∗h + x∗

h + r∗t + y∗t ≥ bt, gives r
∗
h + x∗

h ≥ 0,
thus r∗h > 0, as x∗

h < 0, and this concludes the proof of the claim.

The inequalities s∗ + r∗h + y∗h > bh and r∗k + x∗
k ≥ 0, 1 ≤ k < h, imply

s∗ + r∗k + x∗
k + r∗h + y∗h > bh, 1 ≤ k < h.

All these observations show the existence of an ε ̸= 0 such that both points
(s∗, r∗, x∗, y∗) ± ε(0, eh,−eh,0) belong to conv(Z), a contradiction to the fact
that the point (s∗, r∗, x∗, y∗) is a vertex of conv(Z). Thus x∗ ≥ 0.

Suppose now that there exists h such that x∗
h > y∗h. Then constraint s+ rh+

yh ≥ bh gives s∗+r∗h+x∗
h > bh. Lemma 18 then implies that s∗+r∗h+x∗

h+r∗t+y∗t =
bt for some t > h. This is not possible, as inequalities x∗

h > y∗h ≥ 0, r∗h ≥ 0 and
s∗ + r∗t + y∗t ≥ bt imply s∗ + r∗h + x∗

h + r∗t + y∗t > bt. Thus x
∗ ≤ y∗. ⊓⊔

For the main theorem of this section we present a lemma whose proof is given
in [2].

For a polyhedron P in IRn and a vector a ∈ IRn, let µP (a) be the value
min{ax, x ∈ P} and MP (a) be the face {x ∈ P : ax = µP (a)}, where MP (a) = ∅
whenever µP (a) = −∞.

Lemma 20. Let P ⊆ Q be two pointed polyhedra in IRn, with the property that
every vertex of Q belongs to P . Let Cx ≥ d be a system of inequalities that are
valid for P such that for every inequality cx ≥ δ of the system, P ̸⊂ {x ∈ IRn :
cx = δ}. If for every a ∈ IRn such that µP (a) is finite but µQ(a) = −∞, Cx ≥ d
contains an inequality cx ≥ δ such that MP (a) ⊆ {x ∈ IRn : cx = δ}, then
P = Q ∩ {x ∈ IRn : Cx ≥ d}.

Proof. See [2].

Theorem 21. Let XCMF and Z be defined on the the same vector b. Then
conv(XCMF) = conv(Z) ∩ {(s, r, x, y) : 0 ≤ x ≤ y}.



Proof. By Proposition 16, conv(XCMF) ⊆ conv(Z). By Propositions 19 and 16,
every vertex of conv(Z) belongs to conv(XCMF).

Let a = (h, d, p, q), h ∈ IR1, d ∈ IRn, p ∈ IRn, q ∈ IRn, be such that
µconv(XCMF)(a) is finite and µconv(Z)(a) = −∞. Since by Lemma 17, the extreme

rays of conv(Z) that are not rays of conv(XCMF) are the vectors (0,0, ei,0),
(0, ei,−ei,0) and (1,0,−1,0), then either pi < 0 for some index i or di < pi for
some index i or h <

∑n
t=1 pt.

If pi < 0, then Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xi = yi}.
If di < pi, then Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xi = 0}, otherwise, given an

optimal solution with xi > 0, we could increase ri by a small ε > 0 and decrease
xi by ε, thus obtaining a feasible point with lower objective value.

If h <
∑n

t=1 pt, let N+ = {j : pj > 0} and k = min{j : j ∈ N+}: we show
that Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xk = 0}. Suppose that xk > 0 in some
optimal solution. As the solution is optimal and pk > 0, we cannot just decrease
xk and remain feasible. Thus s+ rk + xk = bk, which implies that s < bk. Then
for all j ∈ N+ we have rj + xj ≥ bj − s > bj − bk ≥ 0, as j ≥ k. Since we can
assume dt ≥ pt for every t (otherwise we are in the previous case), rt = 0 for
every t: if not, chosen an index t such that rt > 0, one can decrease rt by a small
ε > 0 and increase xt by ε, thus obtaining a feasible point with lower objective
value, a contradiction. So rt = 0 for every t and thus, since rj + xj > 0 for all
j ∈ N+, we have xj > 0 for all j ∈ N+. Then we can increase s by a small ε > 0
and decrease xj by ε for all j ∈ N+. The new point is feasible in XCMF and has
lower objective value, a contradiction.

We have shown that for every vector a such that µconv(XCMF)(a) is finite and
µconv(Z)(a) = −∞, the system 0 ≤ x ≤ y contains an inequality which is tight for
the points in Mconv(XCMF)(a). To complete the proof, since conv(XCMF) is full-
dimensional (Lemma 17), the system 0 ≤ x ≤ y does not contain an improper
face of conv(XCMF). So we can now apply Lemma 20 to conv(XCMF), conv(Z)
and the system 0 ≤ x ≤ y. ⊓⊔

Therefore, if we have a compact extended formulation of conv(Z), then this
will immediately yield a compact extended formulation of conv(XCMF). Such a
formulation exists, as Z is equivalent to a difference set:

Theorem 22. Let XDIF be a difference set and XCMF be defined on the same
vector b. The affine transformation σ0 = s, σt = s+rt+xt−bt, 1 ≤ t ≤ n, maps
conv(XCMF) into conv(XDIF)∩{(σ, r, y) : 0 ≤ σk−σ0−rk+bk ≤ yk, 1 ≤ k ≤ n}.

Proof. Let Z be defined on the same vector b. It is straightforward to check that
the affine transformation σ0 = s, σt = s+ rt + xt − bt, 1 ≤ t ≤ n, maps conv(Z)
into conv(XDIF). By Theorem 21, conv(XCMF) = conv(Z) ∩ {(s, r, x, y) : 0 ≤
x ≤ y} and the result follows. ⊓⊔

Then the extended formulations of conv(XDIF) described in Sects. 2–3 give
extended formulations of conv(XCMF) which are compact. By Theorem 11 we
have:



Theorem 23. The polyhedron conv(XCMF) admits an extended formulation
with O(n2) variables and O(n3) constraints. It follows that the linear optimiza-
tion problem over XCMF can be solved in polynomial time.

5.1 An Extended Formulation for the Two Stage Stochastic
Lot-sizing Problem with Constant Capacities and Backlogging

We briefly consider the set XCMF ∩W , where

W = {(s, r, x, y) : lj ≤ yj ≤ uj , ljk ≤ yj − yk ≤ ujk, 1 ≤ j, k ≤ n} ,

with lj , uj , ljk, ujk ∈ ZZ ∪ {+∞,−∞}, 1 ≤ j, k ≤ n. We assume that for each
1 ≤ i ≤ n, W contains a point satisfying yi ≥ 1.

In the following we show that an extended formulation of conv(XCMF ∩
W ) is obtained by adding the inequalities defining W to one of the extended
formulations of conv(XCMF) derived above. The proof uses the same technique
as in Sect. 5, where Z (resp. XCMF) has to be replaced with Z ∩ W (resp.
XCMF ∩W ). We only point out the main differences.

To see that the proof of Theorem 21 is still valid, note that the extreme rays
of conv(Z ∩W ) are of the following types:

1. (1,0,−1,0), (0, ei,−ei,0), (0,0, ei,0);
2. (0,0,0, y) for suitable vectors y ∈ ZZn.

However, the rays of type 2 are also rays of conv(XCMF∩W ). Also, the condition
that for every index i, W contains a vector with yi > 0, shows that none of the
inequalities 0 ≤ xi ≤ yi defines an improper face of conv(XCMF ∩ W ) and
Lemma 20 can still be applied. Thus the proof of Theorem 21 is still valid.

The rest of the proof is a straightforward adaptation of Theorem 22.
Since (9)–(11) define a set of the type XCMF ∩ W (assuming C = 1 wlog),

the above result yields an extended formulation for the feasible region of the two
stage stochastic lot-sizing problem with constant capacities and backlogging.
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