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Abstract

The cutting-plane approach to integer programming was initiated more that 40 years
ago: Gomory introduced the corner polyhedron as a relaxation of a mixed integer set
in tableau form and Balas introduced intersection cuts for the corner polyhedron. This
line of research was left dormant for several decades until relatively recently, when a
paper of Andersen, Louveaux, Weismantel and Wolsey generated renewed interest in
the corner polyhedron and intersection cuts. Recent developments rely on tools drawn
from convex analysis, geometry and number theory, and constitute an elegant bridge
between these areas and integer programming. We survey these results and highlight
recent breakthroughs in this area.

1 Introduction

The cutting-plane approach to integer programming (IP) was initiated in the early 1970s
with the works of Gomory [47, 48, 49, 50, 51, 52], Gomory and Johnson [53, 54] and Johnson
[59] on the corner polyhedron, and of Balas [11] on intersection cuts generated from convex
sets. Their approach aimed at the development of a theory of valid inequalities (to be used as
cuts) for integer programs, pure or mixed, independently of the structure and the data of the
problem on hand. Gomory introduced a universal model which provided a relaxation for any
integer program defined by constraints in tableau form and studied cut-generating functions.
These functions when applied to a specific IP problem, provide a valid inequality that is not
satisfied by the basic solution associated with the tableau.

While the point of view of Gomory was algebraic, the approach of Balas was essentially
based on the geometry of the sets to be studied. As an example, split cuts are the simplest
and most effective family of intersection cuts. They are equivalent to Gomory’s mixed integer
(GMI) cuts, which are generated by applying a cut-generating function to a single row of a
tableau, see e.g. Theorem 5.5 in [34].

Possibly inspired by the deep and elegant results in combinatorial optimization and poly-
hedral combinatorics, research in IP then shifted its focus on the study of strong (facet-
defining) valid inequalities for structured integer programs of the combinatorial type, mostly
0,1 programs.
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Renewed interest in Gomory’s approach was recently sparked by a paper of Andersen,
Louveaux, Weismantel and Wolsey [4]. They define a relaxation of Gomory’s model whose
tableaux has two rows. This is a 2-dimensional model and can be represented in the plane.
They show that, besides nonnegativity constraints, the facet-defining inequalities are natu-
rally associated with splits (a region between two parallel lines), triangles and quadrilaterals
whose interior does not contain an integer point. This allows one to derive valid inequalities
by exploiting the combined effect of two rows, instead of a single row.

The extension of this model to any dimension (i.e., number of integer variables) was pio-
neered by Borozan and Cornuéjols [27] and by Basu, Conforti, Cornuéjols and Zambelli [17].
The main finding is that like in the 2-dimensional case, facet-defining inequalities are natu-
rally associated with full-dimensional convex sets whose interior does not contain an integer
point. Furthermore these sets are polyhedra. In this survey we highlight the importance of
this fact as it provides a simple formula to compute the associated cut-generating function.

Indeed, Lovász [63] stated that maximal convex sets whose interior does not contain an
integer point are polyhedra, but the first proof appears in [17], and an alternate proof can
be found in [8]. These proofs use the simultaneous approximation theorem of Dirichlet and
Minkowski’s convex body theorem. So important results from number theory and convex
geometry are fundamental in proving polyhedrality, which is essential to get a computable
formula for the cut-generating function. We highlight the use of these and other “classical”
theorems in this survey.

This survey first introduces in Section 2 a general mixed-integer set which provides a
framework to study cut-generating functions. We then highlight in Section 3 some areas of
applicability of this general mixed-integer set.

The next three sections are essentially devoted to special cases of this general mixed-
integer set. Section 4 deals with the case introduced by Andersen et al. [4]. We first explain
how the gauge function, from convex analysis, links convex sets whose interiors do not contain
integer points and valid inequalities. We then give a novel and concise proof of a Lovász’s
characterization of maximal convex sets whose interior does not contain an integer point. It
is based on a proposition that characterizes the sets arising as a projection of the integers
on a subspace. We then survey extensions of these results to a more general setting that
includes complementarity and nonlinear constraints.

Section 5 considers the special case of the mixed-integer set with only integer variables.
This case, first introduced by Gomory and Johnson in [53, 54], was the starting point of the
theory of cut-generating functions and is also known as the infinite group relaxation in the lit-
erature. We show recent progress in extending classical results beyond the single-row problem
to arbitrary number of rows; in particular, we emphasize the use of the Knaster-Kuratowski-
Mazurciewicz lemma, a classical result from fixed-point theory, in this development.

In Section 6, we discuss the general set with both continuous and integer variables. We
focus on the aspect of lifting, where the quest for computable formulas for cutting planes
leads to unexpected connections with the theory of tilings and coverings of Euclidean space.
Such questions have classically been considered within the field of geometry of numbers and
the recent connection with integer programming leads to a rich theory. We also highlight
a recent discovery from [25] that topological arguments, such as the classical Invariance of
Domain theorem from algebraic topology, can lead to important results in this area.
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To summarize, in this survey we concentrate on results from the cut-generating function
approach to cutting planes. An introduction to this topic can be found in Chapter 6 of [34];
see also [32]. There is a parallel body of work which uses finite cyclic groups to study
Gomory’s corner polyhedron and cutting planes. Richard and Dey’s survey [66] on the group
approach covers this aspect, as well as its links with cut-generating functions. Further, there
has been lot of work in studying closures of families of cutting planes, and convergence issues
in cutting plane algorithms. We do not discuss these topics in this survey; the reader is
referred to the survey by Del Pia and Weismantel [39]. A recent survey by Basu, Köppe and
Hildebrand [23] delves deeper into aspects of cut-generating functions for the pure integer
case that are discussed in Section 5 of this survey.

We believe that the recent results that we survey here, such as the computable formula for
cut-generating functions derived in Section 4, together with the theory of lifting discussed in
Section 6, are the first steps towards making cut-generating functions in general dimensions a
viable computational tool. Prior to this, only one-dimensional cut-generating functions were
explicitly provided with which one could perform computations.

In fact, even the one-dimensional theory developed by Gomory did not find its way into
IP solvers for decades and was believed to be of little or no computational use. This point of
view changed dramatically in the mid 1990s following the work of Balas, Ceria, Cornuéjols,
Natraj [12]; see [35] for a recent account. Today most cutting planes currently implemented in
software are based on this one-dimensional theory, such as GMI cuts from tableau rows, mixed
integer rounding inequalities and lift-and-project cuts [34]. We hope that the corresponding
progress for higher-dimensional cut-generating functions can provide another boost to the
efficiency of mixed-integer optimization solvers. On the flip side, this poses greater challenges
in choosing the “right” cutting planes, since this theory significantly increases the pool of
available cuts. Computational experiments have been conducted by Dey, Lodi, Tramontani,
Wolsey [40], Basu, Bonami, Cornuéjols, Margot [15], and Louveaux and Poirrier [62], based
mostly on the special case discussed in Section 4. However, some of the developments surveyed
here have not been computationally tested, and the effectiveness of these new findings remains
open.

2 Separation and valid functions

For fixed n ∈ N, let S be a closed subset of Rn that does not contain the origin 0. In this
survey, we consider subsets of the following form:

XS(R,P ) :=
{
(s, y) ∈ Rk+ × Zℓ+ : Rs+ Py ∈ S

}
, (2.1)

where k, ℓ ∈ Z+, R ∈ Rn×k and P ∈ Rn×ℓ are matrices. We allow k = 0 or ℓ = 0, but not
both. These sets were first introduced by Johnson in [59] and [60], based on earlier work by
Gomory and Johnson in [53, 54]. We address the following

Separation problem: Find a closed half-space that contains XS(R,P ) but not the origin.

The fact that S is closed and 0 /∈ S implies 0 is not in the closed convex hull of
XS(R,P ) [31, Lemma 2.1]. Hence such a half-space always exists.
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This problem arises typically when one wants to design a cutting-plane method to optimize
a (linear) function over XS(R,P ) and has on hand a solution (the origin 0) to a relaxation
of the problem (see Section 3).

We develop a theory that for fixed S addresses the separation problem independently of
R and P by introducing the concept of valid pair.

A valid pair (ψ, π) for S is a pair of functions ψ, π : Rn → R such that for every choice of
k, ℓ, R and P , ∑

ψ(r)sr +
∑

π(p)yp ≥ 1 (2.2)

is an inequality separating 0 from XS(R,P ) (this is the reason for the choice of 1 for the
right hand side). We use the convention that the first sum is taken over the columns r of R,
where sr denotes the continuous variable associated with column r; similarly, the second sum
ranges over the columns p of P , and yp denotes the integer variable associated with column
p. This convention for summations will be used throughout the paper. Valid pairs are also
known as cut-generating pairs, and inequality (2.2) is often called a cut.

When ℓ = 0 in (2.1), i.e., when all variables are continuous, we obtain a set of the type

CS(R) :=
{
s ∈ Rk+ : Rs ∈ S

}
, (2.3)

where k ≥ 1. A function ψ : Rn → R is a valid function for S if
∑
ψ(r)sr ≥ 1 is an inequality

separating 0 from CS(R) for every k and R. Again we use the convention that the above sum
is taken over the columns r of R. This model, here referred to as the continuous model, will
be discussed in Section 4.

When k = 0, i.e., when all variables are integer, sets of the form (2.1) become

IS(P ) :=
{
y ∈ Zℓ+ : Py ∈ S

}
, (2.4)

where ℓ ≥ 1. A function π : Rn → R is an integer valid function for S if
∑
π(p)yp ≥ 1 is an

inequality separating 0 from IS(P ) for every ℓ and P . This model, here referred to as the
pure integer model, will be discussed in Section 5.

When both k and ℓ are positive, we refer to (2.1) as the mixed integer model; this will be
discussed in Section 6.

There is a natural partial order on the set of valid pairs, namely (ψ′, π′) ≤ (ψ, π) if and
only if ψ′ ≤ ψ and π′ ≤ π. Since {(s, y) :

∑
ψ′(r)sr +

∑
π′(p)yp ≥ 1, s ≥ 0, y ≥ 0} ⊆

{(s, y) :
∑
ψ(r)sr +

∑
π(p)yp ≥ 1, s ≥ 0, y ≥ 0} whenever (ψ′, π′) ≤ (ψ, π), all the cuts

obtained from (ψ, π) are dominated by those obtained from (ψ′, π′). The minimal elements
under this partial order are called minimal valid pairs. Similarly, one defines minimal valid
functions ψ and minimal integer valid functions π. An application of Zorn’s lemma (see e.g.
[24, Theorem 1.1]) shows that every valid pair (resp., valid function, integer valid function)
is dominated by a minimal valid pair (resp., minimal valid function, minimal integer valid
function). Thus one can concentrate on the minimal valid functions and pairs.

Remark 2.1. A natural question is whether cut generating functions are sufficient in the
following sense: Given a fixed closed set S ⊆ Rn \ {0} and a fixed pair of matrices R,P ,

4



is the closed convex hull of XS(R,P ) described by the intersection of all inequalities of the
type (2.2) when we consider all possible minimal valid pairs for S? The same question can
be phrased for the continuous model (2.3), as well as for the pure integer model (2.4).

This question, in its full generality, is not settled. For the continuous model (2.3), Con-
forti et al. [31, Example 6.1] show that for a particular set S minimal valid functions do not
suffice. However, if S is contained in the conical hull of the columns of R, Cornuéjols et
al. [38] prove that CS(R) is defined by the inequalities derived from cut-generating functions.
Earlier Zambelli [71] showed this to be true when S = b+ Zn for some b ∈ Rn \ Zn.

For the pure integer model (2.4), when n = 1 and R is a rational matrix, an affirmative
answer can be deduced from [23, Theorem 8.3] (this result is a restatement of results appearing
in [53]).

Notation Given a convex subset K of Rn, we denote with dim(K), int(K), relint(K),
cl(K), aff(K), rec(K), lin(K) the dimension, interior, relative interior, topological closure,
affine hull, recession cone and lineality space of K. These are standard notions in convex
analysis, see e.g. [58].

We denote with B(x, ε) the closed ball of center x and radius ε. Given V ⊆ Rn, we
indicate with conv(V ) its convex hull and with ⟨V ⟩ the linear space generated by V . Given
a linear subspace L, we denote by L⊥ the orthogonal complement of L and by projL(·) the
orthogonal projection on L.

3 Significance of the mixed integer set (2.1)

The model (2.1) contains as special cases several classical optimization models. Some exam-
ples are illustrated below.

1. Gomory’s relaxation of IP and extensions. The classical way in which model (2.1) arises
is as follows; see [51]. Let x+ Py = b be the system of equations that defines a (final)
tableau of the linear-programming (LP) relaxation of a pure IP problem, whose feasible
set is

{
(x, y) ∈ Zn+ × Zℓ+ : x+ Py = b

}
.

When b ∈ Zn, the LP basic solution x = b, y = 0 is a solution to the IP and is an
optimal solution when the tableau is final. When b ̸∈ Zn, a relaxation of the above set
can be obtained by dropping the nonnegativity condition on x. Thus the feasible set of
this relaxation can be expressed only in terms of y as{

y ∈ Zℓ+ : Py ∈ b+ Zn
}
. (3.1)

Note that this fits the setting (2.4) where S = b+ Zn, and 0 ̸∈ S because b ̸∈ Zn. The
convex hull of (3.1) is known as the corner polyhedron.

Of course, if S = b− Zn+, i.e. the condition x ≥ 0 is maintained, no relaxation occurs.
This case was one of the main motivations to study sets of the type S = (b+ Zn) ∩Q,
where Q is a rational polyhedron, see [18, 41, 70].

The above can be extended to the mixed integer case as follows. Let x+Rs+ Py = b
be the system of equations that defines a (final) tableau of the LP relaxation of a
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mixed integer program, where s is the vector of nonnegative continuous variables, y is
the vector of nonnegative integer variables, and x is the vector of basic nonnegative
variables, which may be continuous or integer. However if the x ≥ 0 constraint is
relaxed, one may assume that x is a vector of integer variables, as every continuous
basic variable is defined by the corresponding equation of the tableau with no further
restriction; hence these equations can now be dropped. The model in this case is{

(s, y) ∈ Rk+ × Zℓ+ : Rs+ Py ∈ b+ Zn
}
. (3.2)

Andersen, Louveaux, Weismantel and Wolsey [4], Borozan and Cornuéjols [27], and
Basu, Conforti, Cornuéjols and Zambelli [17] studied the relaxation of the above model
in which the integrality of the nonbasic variables is relaxed: {s ∈ Rk+ℓ+ : (R,P )s ∈
b+ Zn}. This important special case, which fits (2.3), will be discussed in Section 4.1.
Again, sets S different from b+ Zn may be considered.

2. Mixed integer (structured) convex programs. Mixed integer programming with convex
constraints is a powerful generalization of mixed integer linear programming that can
model problems in applications with inherent nonlinearities [5, 6, 29, 30, 69]. The
classical model here is{

(x, s, y) ∈ Rn × Rk+ × Zℓ+ : Rs+ Py + x = b, x ∈ K ∩ (Rt × Zn−t)
}

whereK is a convex set. A special case of this model ismixed integer conic programming,
where K is taken to be a closed, convex, pointed cone. This framework is readily
obtained from (2.1) by setting S = b−K ∩ (Rt × Zn−t).

3. Complementarity problems with integer constraints. In such problems, the feasible
region consists of all integer points in a given polyhedron Q = {(x, y) ∈ Rn+ × Rℓ+ : x+
Py = b} that satisfy the complementarity constraints xixj = 0, (i, j) ∈ E where E
is a subset of {1, . . . , n} × {1, . . . , n}. This can be modeled using (2.4) by setting
S = b− {x ∈ Zn+ : xixj = 0, (i, j) ∈ E}.

4 The continuous model

Given a closed set S ⊆ Rn \ {0}, we study valid functions ψ : Rn → R for the model CS(R),
as defined in (2.3). We characterize the valid functions that are minimal. We will see that
minimal valid functions for S are naturally associated with maximal S-free convex sets. A
closed, convex set K ⊆ Rn is S-free if int(K)∩S = ∅, and an S-free convex set K is maximal
if K is not properly contained in any S-free convex set. With a straightforward application
of Zorn’s lemma, it can be shown that every S-free convex set is contained in a maximal
one [31].

In Section 4.1 we will consider the case S = b + Zn for some fixed b ∈ Rn \ Zn. As
discussed in Section 3, this case is of particular importance in integer programming. We will
then treat the more general case of an arbitrary closed set S ⊆ Rn \ {0} in Section 4.2.
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4.1 The case S = b+ Zn

Here we assume S = b+ Zn for a fixed b ∈ Rn \ Zn, hence 0 /∈ S.
We recall some definitions from convex analysis. A function g : Rn → R is positively

homogeneous if g(λr) = λg(r) for every r ∈ Rn and every λ > 0. Note that if g is positively
homogeneous, then g(0) = 0. Indeed, for any λ > 0, we have that g(0) = g(λ0) = λg(0), which
implies that g(0) = 0. A function g : Rn → R is subadditive if g(r1)+g(r2) ≥ g(r1+r2) for all
r1, r2 ∈ Rn. The function g is sublinear if it is both subadditive and positively homogeneous.
Note that since sublinear functions are convex, they are continuous in the interior of their
domain. The following lemma appears first in [27].

Lemma 4.1. Assume S = b + Zn for some b /∈ Zn, and let ψ : Rn → R be a minimal valid
function for S. Then ψ is sublinear and nonnegative.

Proof. We first note that ψ(0) ≥ 0. Indeed, consider any point s̄ ∈ CS(R) for some n × k
matrix R containing the 0-column. Let s̃ = s̄ except for the component s̃0, which is set to an
arbitrarily large value k. Since s̃ ∈ CS(R) and ψ is valid, we have that

∑
ψ(r)s̃r+ψ(0)k ≥ 1.

For this inequality to hold for all k > 0, we must have ψ(0) ≥ 0.

(a) ψ is sublinear. We first prove that ψ is subadditive. When r1 = 0 or r2 = 0, inequality
ψ(r1)+ψ(r2) ≥ ψ(r1+r2) follows from ψ(0) ≥ 0. Assume that for r1, r2 ̸= 0, ψ(r1)+ψ(r2) <
ψ(r1 + r2). Set ψ′(r1 + r2) = ψ(r1) + ψ(r2) and ψ′(r) = ψ(r) for r ̸= r1 + r2. Then ψ′ ≤ ψ,
ψ′ ̸= ψ. We show that ψ′ is a valid function, a contradiction to the minimality of ψ.

Consider any s̄ ∈ CS(R) for some matrix R. We assume, without loss of generality, that
r1, r2 and r1 + r2 are columns of R (otherwise, simply add the missing vectors as columns
and put a value of 0 for the corresponding component of s̄). Define s̃ as follows:

s̃r :=


s̄ + s̄r1+r2 if r = r1

s̄r + s̄r1+r2 if r = r2

0 if r = r1 + r2

s̄r otherwise.

Note that s̃ ≥ 0 and Rs̃ = Rs̄ ∈ S, thus s̃ ∈ CS(R). Using the definitions of ψ′ and s̃, it
is easy to verify that

∑
ψ′(r)s̄r =

∑
ψ(r)s̃r ≥ 1, where the last inequality follows from the

facts that ψ is valid and s̃ ∈ CS(R). This shows that ψ
′ is valid.

We next show that ψ is positively homogeneous. Suppose there exists r̃ ∈ Rn and λ > 0
such that ψ(λr̃) ̸= λψ(r̃). Without loss of generality we may assume that ψ(λr̃) < λψ(r̃).
Define a function ψ′ by ψ′(r̃) := λ−1ψ(λr̃), ψ′(r) := ψ(r) for all r ̸= r̃. It is easy to see that
ψ′ is valid, contradicting the fact that ψ is minimal. Therefore ψ is positively homogeneous.

(b) ψ is nonnegative. Suppose ψ(r̃) < 0 for some r̃ ∈ Qn. Let q ∈ Z+ be such that qr̃ ∈ Zn
and let s̄ ∈ CS(R), where r̃ is a column of R. Let s̃ be defined by s̃r̃ := s̄r̃+Mq where M is a
positive integer, and s̃r := s̄r for r ̸= r̃. Then s̃ ∈ CS(R) and

∑
ψ(r)s̃r =

∑
ψ(r)s̄r+ψ(r̃)Mq.

Since ψ(r̃)Mq < 0 and M is any positive integer, this sum can be made smaller than 1, a
contradiction to the validity of ψ.

Since ψ is sublinear, ψ is convex and therefore continuous. Thus, as ψ is nonnegative over
Qn and Qn is dense in Rn, ψ is nonnegative over Rn.
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Let K ⊆ Rn be a closed convex set with the origin in its interior. A standard concept in
convex analysis [58, 67] is that of gauge, which is the function γK defined by

γK(r) := inf
{
t > 0 :

r

t
∈ K

}
for all r ∈ Rn.

Since the origin is in the interior of K, γK(r) < +∞ for all r ∈ Rn. Furthermore γK(r) ≤ 1
if and only if r ∈ K, and int(K) = {r ∈ Rn : γK(r) < 1}: since γK is a continuous function,
γK(r̄) < 1 implies γK(r) < 1 for every r close to r̄, and since γK is positively homogeneous,
we have that γK(r̄) = 1 implies γK(r) > 1 if r = (1 + ε)r̄ for ε > 0.

The following lemma is standard in convex analysis, see for instance [58].

Lemma 4.2. Given a closed convex set K ⊆ Rn with the origin in its interior, the gauge γK
is a nonnegative sublinear function.
Conversely, given a function γ : Rn → R which is nonnegative and sublinear, let

Kγ := {x ∈ Rn : γ(x) ≤ 1}.

Then Kγ is a closed convex set with the origin in its interior, and γ is the gauge of Kγ.

Lemma 4.3. Assume S = b + Zn for some b /∈ Zn. Let K ⊆ Rn be a closed convex set with
0 ∈ int(K) and let ψ be the gauge of K. Then ψ is a valid function for S if and only if K is
S-free.

Proof. By Lemma 4.2, ψ is sublinear. We prove the “if” part. Assume that K is S-free and
consider s ∈ CS(R) for some matrix R. That is,

∑
rsr = b + x, where x ∈ Zn and the sum

ranges over the columns r of R. Then∑
ψ(r)sr =

∑
ψ(rsr) ≥ ψ(

∑
rsr) = ψ(b+ x) ≥ 1,

where the first equality follows by positive homogeneity of ψ, the first inequality by subaddi-
tivity, and the last from the fact that ψ is the gauge of K and b+x /∈ int(K) because x ∈ Zn
and K is S-free.

For the “only if” part, assume b + x ∈ int(K), with x ∈ Zn. Let R be the n × 1 matrix
b + x. Then the point defined by sb+x = 1 is in CS(R), and ψ(b + x) < 1 because ψ is the
gauge of K and b+ x ∈ int(K). Thus ψ is not a valid function for S.

The following theorem (see [17, 27]) shows the correspondence between minimal valid
functions for S and maximal S-free convex sets, when S = b+ Zn.

Theorem 4.4. Assume S = b + Zn for some b /∈ Zn. A function ψ : Rn → R is a minimal
valid function for S if and only if there exists some maximal S-free convex set K ⊆ Rn such
that 0 ∈ int(K) and ψ is the gauge of K.

Proof. Assume that ψ is a minimal valid function. By Lemma 4.1, ψ is a nonnegative
sublinear function, and by Lemma 4.2, ψ is the gauge of a closed convex set K such that
0 ∈ int(K). Since ψ is a valid function for S, by Lemma 4.3, K is an S-free convex set. We
prove that K is a maximal S-free convex set. Suppose not, and let K ′ be an S-free convex
set properly containing K. Let ψ′ be the gauge of K ′. By Lemma 4.3, ψ′ is a valid function,
and since K ⊊ K ′, we have that ψ′ ≤ ψ and ψ′ ̸= ψ. This contradicts the minimality of ψ.
The converse is straightforward.
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When S = b+Zn, in view of Theorem 4.4 characterizing minimal valid functions amounts
to characterizing maximal S-free convex sets containing 0 in their interior. We will see that
every maximal S-free convex set is a polyhedron. Therefore, if a maximal S-free convex set
contains 0 in its interior, then it is a polyhedron of the form K = {x ∈ Rn : aix ≤ 1, i ∈ I}
for some finite set I. This turns out to be very useful, as it can be employed to obtain an
explicit formula for the computation of the minimal valid function associated with K, i.e.,
the gauge of K. The formula is stated in the following theorem.

Theorem 4.5. Assume S = b+ Zn for some b /∈ Zn. Then every maximal S-free convex set
is a polyhedron. Moreover, if a maximal S-free polyhedron K with 0 ∈ int(K) is given by
K = {x ∈ Rn : aix ≤ 1, ∀i ∈ I} for some finite set I, then the gauge ψ of K is

ψ(r) = max
i∈I

air. (4.1)

Since a set K is a (maximal) S-free convex set if and only if K− b is a (maximal) Zn-free
convex set, the proof of Theorem 4.5 requires the characterization of maximal Zn-free convex
sets and is postponed until the end of subsection 4.1.1.

4.1.1 Maximal lattice-free convex sets

We characterize the structure of maximal Zn-free sets in this section in Theorem 4.9 and then
derive Theorem 4.5 as a consequence.

Our treatment uses basic facts about lattices. A lattice of dimension t is a set of the type
{x ∈ Rn : x = λ1a1 + · · · + λtat; λ1, . . . , λt ∈ Z}, where a1, . . . , at are linearly independent
vectors in Rn. It follows from this definition that Zn is a lattice. We call a Zn-free convex
set lattice-free. We refer to Chapter VII in the book of Barvinok [14] for an introduction to
lattice theory.

A convex set C is centrally symmetric with center p if x ∈ C implies 2p− x ∈ C. We will
sometimes simply say C is centrally symmetric, if there exists p ∈ C such that C is centrally
symmetric with center p.

Theorem 4.6 (Minkowski’s convex body theorem (see, e.g., [14])). Let C ⊆ Rn be a centrally
symmetric convex set with center 0. If vol(C) > 2n, then C contains a nonzero integer point.
Moreover, if C is compact, the condition can be relaxed to vol(C) ≥ 2n.

A subspace H ⊆ Rn is a lattice subspace if dim(H ∩ Zn) = dim(H). That is, if H
can be generated by an integral basis. Equivalently, H = {x ∈ Rn : Ax = 0} for some
(n− dim(H))× n integral matrix A of full row-rank.

Given a linear subspace L ⊆ Rn, there exists a unique minimal lattice subspace containing
L. It is the intersection of all lattice subspaces containing L.

Lemma 4.7. Let H ⊆ Rn be a lattice subspace. Then H + Zn is a closed set.

Proof. Since H is a lattice subspace, by applying a suitable unimodular transformation we
can assume that H = {x ∈ Rn : x1 = · · · = xk = 0} for some k ∈ {0, . . . , n}. Then
H + Zn = {x ∈ Rn : x1, . . . , xk ∈ Z}, which is a closed set.
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Proposition 4.8. Let L ⊆ Rn be a linear subspace and let H be the minimal lattice subspace
containing L. Then

cl(projL⊥(Zn)) = (H + Zn) ∩ L⊥ = (H ∩ L⊥) + Λ

for some lattice Λ ⊆ L⊥ such that dim(H ∩ L⊥) + dim(Λ) = dim(L⊥).

Proof. Note that projL⊥(Zn) = (L+Zn)∩L⊥. By Lemma 4.7, (H +Zn)∩L⊥ is a closed set
containing (L+Zn)∩L⊥. It follows that cl(projL⊥(Zn)) = cl((L+Zn)∩L⊥) ⊆ (H+Zn)∩L⊥.

To show the reverse inclusion, we first assume H = Rn. In this case, (H+Zn)∩L⊥ = L⊥,
thus we have to prove that for every x ∈ L⊥ and ε > 0, the ball B(x, ε) intersects projL⊥(Zn).

The proof is by (reverse) induction on k := dim(L). The case k = n is trivial. Now
assume k < n. Fix x ∈ L⊥ and ε > 0 (with ε < 1 without loss of generality), and assume
by contradiction that no point in projL⊥(Zn) belongs to B(x, ε). We claim that projL⊥(Zn)
contains a nonzero vector w such that ∥w∥ ≤ ε/2. To see this, define Λ′ = L ∩ Zn. Since L
is not a lattice subspace (as L ⊊ H), Λ′ is a lattice of dimension smaller than k. Then there
exists a nonzero vector v ∈ L ∩ ⟨Λ′⟩⊥. Define B′ = B(0, ε/2) ∩ ⟨v⟩⊥. Let C be the centrally
symmetric cylinder C = B′ + [−λv, λv], where λ > 0. For λ large enough, vol(C) > 2n, thus,
by Minkowski’s convex body theorem, C contains a nonzero integer point z. Note that z /∈ L:
otherwise, we would have z ∈ C ∩ L ∩ Zn = C ∩ Λ′ ⊆ B′; but B′ contains no integer point
other than the origin, as ε < 1. Therefore z /∈ L, which implies that its projection w onto
L⊥ is not the origin. Note that ∥w∥ ≤ ε/2, as claimed.

We now claim that the unbounded cylinder C ′ = B(x, ε/2) + ⟨w⟩ contains no point from
projL⊥(Zn). Assume to the contrary that there exists y ∈ projL⊥(Zn) such that y = x′+µw,
where x′ ∈ B(x, ε/2) and µ ∈ R. Then the point y′ = y−⌊µ⌋w = x′+(µ−⌊µ⌋)w would also
belong to projL⊥(Zn); however

∥y′ − x∥ = ∥y′ − x′∥+ ∥x′ − x∥ ≤ ∥w∥+ ε/2 ≤ ε,

thus y′ ∈ B(x, ε), which is a contradiction, as B(x, ε) contains no point from projL⊥(Zn).
Therefore C ′ contains no point from projL⊥(Zn), as claimed.

Now, if k = n− 1 (i.e., L⊥ is a line), by choosing ε arbitrarily small the norm of w can be
made arbitrarily small, and we conclude that cl(projL⊥(Zn)) = L⊥. So we assume k < n− 1.
Define L′ = ⟨L ∪ {w}⟩. Since the minimal lattice subspace containing L′ is Rn, by induction
cl(proj(L′)⊥(Zn)) = (L′)⊥. However, the projection of C ′ onto (L′)⊥ is a ball in (L′)⊥ that
contains no point from proj(L′)⊥(Zn), a contradiction.

This concludes the proof for the case H = Rn. If H is subspace of dimension n′ < n,
modulo a unimodular transformation we can assume that H = Rn′ ×{0}n−n′

. We can apply
the result with respect to the ambient space H, which is equivalent to Rn′

. We then have
cl(projL⊥(H ∩Zn) = H ∩L⊥. Similarly, for every a ∈ Zn we have cl(projL⊥((H+a)∩Zn)) =
(H + a) ∩ L⊥. Then

cl(projL⊥(Zn)) ⊇
∪
a∈Zn

cl(projL⊥((H + a) ∩ Zn)) =
∪
a∈Zn

(H + a) ∩ L⊥ = (H + Zn) ∩ L⊥.

It remains to show that (H+Zn)∩L⊥ = (H ∩L⊥)+Λ for some lattice Λ ⊆ L⊥ such that
dim(H ∩L⊥) + dim(Λ) = dim(L⊥). Define Λ = projH⊥(Zn). Since H⊥ is a lattice subspace,
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Figure 1: Illustration of Proposition 4.8 for n = 3 with L being a line. In the first picture,
H = L and the orthogonal projection of Z3 onto L⊥ is a 2-dimensional lattice. In the second
picture, H is a plane, and the set cl(projL⊥(Z3)) is the union of discrete shifts of the line
H ∩L⊥. In the third picture, H = R3; the cylinder indicates that there are integer points in
any neighborhood of L, and the projection of Z3 is dense in L⊥ (i.e., its closure is L⊥).

Λ is a lattice. Moreover, since L ⊆ H, we have that Λ ⊆ H⊥ ⊆ L⊥. By writing

(H + Zn) ∩ L⊥ = projH((H + Zn) ∩ L⊥) + projH⊥((H + Zn) ∩ L⊥),

and observing that projH((H +Zn)∩L⊥) = (H ∩L⊥) and projH⊥((H +Zn)∩L⊥) = Λ, one
concludes that (H + Zn) ∩ L⊥ = (H ∩ L⊥) + Λ.

We illustrate the above proposition in the case n = 3 with L being a line. If H = L, then
cl(projL⊥(Zn)) = projL⊥(Zn) is a lattice; if dim(H) = 2, then cl(projL⊥(Zn)) is the union of
discrete shifts of H ∩ L⊥; finally if H = R3, cl(projL⊥(Zn)) = L⊥. See Figure 1.

Theorem 4.9. A set K ⊆ Rn is a maximal lattice-free convex set if and only if it satisfies
one of the following conditions:

(a) K = a + L, where a ∈ Rn and L is a subspace of dimension n − 1 that is not a lattice
subspace.

(b) K is an n-dimensional polyhedron of the form K = Q+ L, where L is a lattice subspace
of dimension r, with r < n, Q is a polytope of dimension n− r, and the relative interior
of every facet of K contains an integer point.

Proof. We first prove the “if” direction. Assume that (a) holds; we show that K is a maximal
lattice-free convex set. Since the minimal lattice subspace containing L is Rn, Proposition 4.8
implies cl(projL⊥(Zn)) = L⊥. Then for every ε > 0 and a ∈ Rn, there is a point in Zn\(a+L)
at distance at most ε from a+L. Suppose that K ′ is a closed convex set that strictly contains
K. Since K ′ is closed, it must contains a set of the form [a, a+ v] +L for some v ∈ L⊥ \ {0}.
Then int(K ′) contains an integer point, a contradiction to the assumption that K ′ is lattice-
free. It follows that no lattice-free convex set strictly contains K and thus K is a maximal
lattice-free convex set.
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Let now K satisfy (b); we prove that K is a maximal lattice-free convex set. If K ′

is a lattice-free convex set strictly containing K, then there is a facet F of K such that
relint(F ) ⊆ int(K ′). Since relint(F ) contains an integer point, this point is in int(K ′), a
contradiction to the assumption that K ′ is lattice-free. It follows that K is a maximal
lattice-free convex set.

We now prove the “only if” direction. We first assume that K is a maximal lattice-free
convex set with dim(K) < n; we show that (a) holds. By maximality, K is a hyperplane,
hence K = a + L for some a ∈ Rn and some linear subspace L of dimension n − 1. If
L is a lattice subspace, then L = {x ∈ Rn : cx = 0} for some c ∈ Zn. Define α = ca
and K ′ = {x ∈ Rn : ⌊α⌋ ≤ cx ≤ ⌊α⌋ + 1}. Then K ′ is a lattice-free convex set that strictly
contains K, a contradiction to the maximality of K. It follows that L is not a lattice-subspace
and (a) holds.

We finally show that if K is an n-dimensional lattice-free convex set then (b) is satisfied.

Claim. lin(K) = rec(K).

Proof of Claim. We assume rec(K) ̸= {0}, otherwise the statement holds trivially. Define
K ′ = K − rec(K) and assume that there is an integer point z ∈ int(K ′). Choose ε > 0 such
that B(z, ε) ⊆ int(K ′) and let v ∈ relint(rec(K)). Then by Theorem 4.6 the set B(z, ε)+R+v
contains integer points arbitrarily far from z. On the other hand, by the choice of v, every
point of the form x + λv with x ∈ B(z, ε) and λ large enough belongs to int(K). This
contradicts the fact that K is lattice-free. Therefore int(K ′) contains no integer point. Since
K is maximally lattice-free and K ⊆ K ′, it follows that K = K ′, i.e., lin(K) = rec(K). ⋄

Claim. lin(K) is a lattice subspace.

Proof of Claim. Define L = lin(K) and let H be the minimal lattice subspace containing
L. If L is not a lattice subspace, then L ⊊ H, and therefore there exists a nonzero vector
v ∈ H ∩L⊥. Define K ′ = K+ ⟨v⟩ and assume that int(K ′) contains an integer point z. Then
z = x+λv for some x ∈ int(K) and λ ∈ R. Since x+L ⊆ H+Zn, by Proposition 4.8 we have
(x+L)∩L⊥ ⊆ cl(projL⊥(Zn)). This implies that there are integer points that are arbitrarily
close to x + L. Since x + L ⊆ int(K), this contradicts the fact that K is lattice-free. We
conclude that K ′ is lattice-free, which is a contradiction to the maximality of K. ⋄

By the claims, K = Q+ L where L is a lattice subspace and Q = K ∩ L⊥ = projL⊥(K).
Note that Q is a bounded set, 0 ≤ dim(L) ≤ n− 1 and dim(Q) = n− dim(L).

It remains to prove that Q is a polytope and the relative interior of every facet of K
contains an integer point. Since L is a lattice subspace, by Proposition 4.8, projL⊥(Zn) is a
lattice Λ. Since K is a maximal lattice-free convex set and K = Q+ L, then int(Q) ∩ Λ = ∅
and Q is a maximal Λ-free convex set (in the space L⊥). Since Q ⊆ L⊥ is a bounded set,
then Q ⊆ B ⊆ L⊥, where B is a box. Let B ∩ Λ = {z1, . . . , zk}. Since int(Q) ∩ Λ = ∅, for
every zi there exists an half-space Hi containing Q and having zi on the boundary. Then
Q ⊆ B ∩H1, · · · ∩Hk, and in fact Q = B ∩H1, · · · ∩Hk by maximality of Q. This shows that
Q is a polytope.

Assume that a facet F of Q is such that relint(F ) ∩ Λ = ∅. (Equivalently, the relative
interior of the facet F +L of K does not contain an integer point.) Since F is a polytope and
Λ is a lattice, every point in Λ is at distance at least ε from relint(F ), for some ε > 0. Let
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Q′ be obtained from Q by relaxing F by ε. By construction, relint(Q′) ∩ Λ = ∅ and Q′ ⊋ Q.
Let K ′ = Q′ + L. Then K ′ is a lattice-free convex set and K ′ ⊋ K, a contradiction to the
maximality of K.

We remark that the above theorem also holds for maximal (b + Zn)-free convex sets,
except that the last part of condition (b) becomes: “the relative interior of every facet of K
contains a point in b+ Zn”.

The original proof of Theorem 4.9 of Basu et al. [17] uses the Dirichlet approximation
theorem. The subsequent (short) proof of Averkov [8] uses the convex body theorem of
Minkowski (Theorem 4.6) which implies the theorem of Dirichlet.

As shown in Theorem 4.9, maximal lattice-free convex sets are polyhedra. The following
result bounds the number of facets of these polyhedra.

Theorem 4.10 (Doignon [45], Bell [26], Scarf [68]). Let K ⊆ Rn be a maximal lattice-free
convex set. Then K is a polyhedron with at most 2n facets.

Proof. By Theorem 4.9, every facet of K contains a point in Zn in its relative interior. If
K has more than 2n facets, then K has two facets whose relative interiors contain points
say z1, z2 ∈ Zn that are congruent modulo 2, i.e., z1 − z2 has even components. But then
z = 1

2z1 +
1
2z2 is an integral point in int(K), a contradiction.

We can now prove the correctness of formula (4.1) to compute the gauge ψ of K.

Proof of Theorem 4.5. Recall that K = {x ∈ Rn : aix ≤ 1, i ∈ I} is a maximal (b+ Zn)-free
convex set with 0 ∈ int(K). Then dim(K) = n and K satisfies (b) of Theorem 4.9, hence
dim(rec(K)) < n. Since rec(K) = {x ∈ Rn : aix ≤ 0, i ∈ I} and 0 ∈ K, then rec(K) ⊆ K.

Fix r ∈ Rn and let k be an index in I such that akr = maxi∈I air. Assume that akr < 0.
Then there exists ε > 0 such that akr

′ < 0 for every r′ ∈ B(r, ε), and therefore dim(rec(K)) =
n, a contradiction.

It follows that akr ≥ 0. If akr = 0 then r belongs to rec(K). In this case ψ(r) = 0 and
(4.1) holds. So we assume akr > 0. Define t = akr. Then, for i ∈ I, ai(r/t) ≤ 1, and thus
ψ(r) ≤ t. On the other hand, if t′ < t then ak(r/t

′) > 1. This proves that ψ(r) = t.

4.2 General sets S

In this section we show how the theory developed in Section 4.1 for the case S = b + Zn
extends to more general closed sets S ⊆ Rn \ {0}.

4.2.1 Minimal valid functions

Conforti, Cornuéjols, Daniilidis, Lemaréchal and Malick [31] studied the link between minimal
valid functions and S-free convex sets, independently from the structure of maximal S-free
convex sets. We summarize some of their results here.

Theorem 4.11. Given a closed set S ⊆ Rn \ {0}, let ψ : Rn → R be a valid function for S,
and let ψ′ be defined as

ψ′(r̂) = inf
{∑

ψ(r)sr :
∑

rsr = r̂, sr ≥ 0
}

for every r̂ ∈ Rn.

Then ψ′ is a valid function Rn → R which is sublinear.
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In the above theorem, the summations are taken over all finite subsets of Rn. We also
stress that the above theorem implies that ψ′ cannot take the value −∞. If ψ and ψ′ are as in
Theorem 4.11, then ψ′ ≤ ψ by definition. Therefore to characterize minimal valid functions,
one can concentrate on sublinear functions. However, unlike the case S = b+Zn (see Lemma
4.1), a minimal valid function can take negative values.

Given a sublinear function ρ, let

Vρ :=
{
r ∈ Rn : ρ(r) ⩽ 1

}
. (4.2)

Then Vρ is a closed convex set and 0 ∈ int(Vρ). Conversely, given a closed convex set V with
0 ∈ int(V ), a sublinear function ρ such that V = Vρ is a representation of V .

Theorem 4.12. Let S ⊆ Rn \ {0} be a closed set, let ρ be a sublinear function, and let Vρ be
defined as in (4.2). Then ρ is a valid function for S if and only Vρ is S-free.

In view of Theorems 4.11 and 4.12, to characterize minimal valid functions for S one has
to study representations of S-free convex sets, which are in general not unique. However,
these representations satisfy the following:

Theorem 4.13. Let V ⊆ Rn be a closed convex set with 0 ∈ int(V ) and let ρ be a represen-
tation of V . Then

ρ(r) ≤ 0 ⇐⇒ r ∈ rec(V ), and ρ(r) < 0 =⇒ r ∈ int(rec(V )).

Furthermore all representations of V coincide in V \ int(rec(V )).

Theorem 4.9 shows that if a polyhedron K = {x ∈ Rn : aix ≤ 1, i ∈ I} with 0 ∈ int(K) is
a maximal (b+Zn)-free convex set, then dim(rec(K)) < n, hence int(rec(K)) = ∅. Therefore,
by Theorem 4.13, the gauge of K is the unique representation of K.

However, even in the case S = Zn+, uniqueness does not hold. Basu, Conforti, Cornuéjols
and Zambelli [18] show that in this case a maximal S-free convex set is always a polyhedron
K, but in general K admits an infinite set of representations; see also [31].

As an example, consider the polyhedron K = {r ∈ R2 : r1 ≤ 1, r2 ≤ 1, 12(−r1 + r2) ≤ 1}.
Then the function γK defined as γK(r) = max{0, r1, r2, 12(−r1 + r2)} is a representation
of K and indeed γK is the gauge of K. However, the function µK defined as µK(r) =
max{r1, r2, 12(−r1+ r2)} is also a representation of K, and we will see that µK is the smallest
representation of K, in the sense that µK ≤ ρK for every representation ρK of K.

The polar of a set V ⊆ Rn is the set V ◦ = {r ∈ Rn : rd ≤ 1 for all d ∈ V }. A set G ⊆ Rn
is a prepolar of V if G◦ = V . If V is a closed convex set and 0 ∈ int(V ), then V ◦ is a bounded
set and (V ◦)◦ = V . Therefore in this case the polar of V is itself a prepolar, but V may have
other prepolars.

For the polyhedron K given in the above example, K◦ = conv{0, r1, r2, 12(−r1 + r2)} and
(K◦)◦ = K, so K◦ is a prepolar of K. However, let G = conv{r1, r2, 12(−r1 + r2)}. Then
G◦ = K, so G is also a prepolar of K.

The support function of a set G ⊂ Rn is

σG(r) := sup
d∈G

dr . (4.3)
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The support function is sublinear and remains unchanged if G is replaced by its closed convex
hull: σG = σconv(G). Conversely, any sublinear function σ is the support function of a closed
convex set, defined by

Gσ :=
{
d ∈ Rn : dr ⩽ σ(r) for all r ∈ Rn

}
.

Theorem 4.14. Let V be a closed convex set with 0 ∈ int(V ). Then V admits an inclusion-
wise smallest prepolar. The smallest representation of V is the support function of the smallest
prepolar of V .

If V is a polyhedron K and 0 ∈ int(K), the support function of the smallest prepolar of
V can be computed with formula (4.1).

Theorem 4.15. Let aix ≤ 1, i ∈ I be an irredundant representation of a polyhedron K with
0 ∈ int(K). Then {ai, i ∈ I} is the smallest prepolar of K. Hence the smallest representation
of K is the function µK defined as

µK(r) = max
i∈I

air. (4.4)

For more details on the theory of smallest representations, see Basu, Cornuéjols and
Zambelli [20] and Conforti et al. [31].

4.2.2 Maximal S-free convex sets

Theorem 4.10 extends to more general sets S. Specifically, when S = (b+ Zn) ∩Q, where Q
is a rational polyhedron, the authors in [18] prove that every maximal S-free convex set is
a polyhedron with at most 2n facets. Morán and Dey [65] showed that the same statement
holds when S = (b + Zn) ∩ C, where C is a convex set. We illustrate below how this result
can be obtained by means of a connection with the Helly number studied by Averkov [7].

For a set S ⊆ Rn, Averkov introduces the following definitions and parameters.

Definition 4.16 (f(S), largest number of facets in a n-dimensional maximal S-free convex
set). If every n-dimensional maximal S-free convex set is a polyhedron with at most k facets,
f(S) is the minimal k as above. If there exist no n-dimensional maximal S-free convex sets
(e.g., for S = Rn), define f(S) = −∞. If there exist maximal S-free convex sets which are
not polyhedra or maximal S-free polyhedra with an arbitrarily large number of facets, define
f(S) = +∞.

A set A ⊆ Rn is called S-convex if it is of the form A = S∩C for some convex set C ⊆ Rn.

Definition 4.17 (Helly number). Given a nonempty family F of sets, the Helly number h(F)
of F is defined as follows. If F = ∅, h(F) = 0. If F ̸= ∅ and there exists k such that

F1 ∩ · · · ∩ Fm = ∅ =⇒ ∃i1, . . . , iℓ ∈ [m], ℓ ≤ k, such that Fi1 ∩ · · · ∩ Fiℓ = ∅

for all F1 . . . , Fm ∈ F , then h(F) is the minimal k as above. In all other cases, h(F) = +∞.
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For S ⊆ Rn we use the notation h(S) = h({S ∩ C : C ⊆ Rn is convex}). That is, h(S)
is the Helly number of the family of all S-convex sets. Note that if C is a convex set, then
h(S ∩C) ≤ h(S). When S = Zn, Doignon [45] proves f(S) = h(S) = 2n – see Theorems 4.10
and 4.20.

Averkov [7] proves the following.

Theorem 4.18. Given S ⊆ Rn, f(S) ≤ h(S).

Proof. We prove the theorem under the assumption that every maximal S-free convex set is
a polyhedron. Let K ⊆ Rn be a maximal S-free polyhedron. Represent K as the intersection
of closed half-spaces H1, . . . ,Hm. Then S ∩ int(H1)∩ · · · ∩ int(Hm) = ∅. By the definition of
Helly number, there exist indices i1, . . . , iℓ ∈ [m], with ℓ ≤ h(S), such that S∩ int(Hi1)∩· · ·∩
int(Hiℓ) = ∅. It follows that K ⊆ K ′ := Hi1 ∩ · · · ∩ Hiℓ , where K

′ is an S-free polyhedron
with at most h(S) facets. By maximality of K, we have K = K ′ and thus K has at most
h(S) facets.

In the more general case in which maximal S-free convex sets are not guaranteed to be
polyhedra, Averkov [7] derives inequality f(S) ≤ h(S) by approximating a maximal S-free
convex set K with a sequence of polyhedra Kt ⊆ K that converges to K.

Averkov [7] proves that if S is a discrete set (i.e., S ∩ B is finite for every bounded set
B ⊆ Rn), then h(S) = f(S). We sketch his proof below.

Theorem 4.19. If S ⊆ Rn is discrete, then h(S) = f(S).

Proof. For the sake of simplicity, we assume that S is finite; Averkov [7] then shows how to
derive the result for discrete sets S by means of limit arguments.

Since S is finite, every S-convex set can be written as the intersection of S with finitely-
many open half-spaces. By using this, one easily verifies that h(S) = h(F), where F is the
family of all sets of the form S ∩H, with H being an open half-space. Thus it is enough to
prove that h(F) ≤ f(S).

Let H1, . . . , Hm be open half-spaces such that H1 ∩ · · · ∩Hm ∩ S = ∅. We need to show
that there exists I ⊆ {1, . . . ,m} with |I| ≤ f(S) such that

∩
i∈I Hi∩S = ∅. For i = 1, . . . ,m,

Hi = {x ∈ Rn : aix < βi} for some ai ∈ Rn and βi ∈ R.
For i = 1, . . . , n we do the following. Define γi as the supremum of the values γ such that,

if Hi is replaced with {x ∈ Rn : aix < γ}, then we still have empty intersection with S. Let I
be the set of indices for which γi < +∞. For i ∈ I, redefine Hi := {x ∈ Rn : aix < γi}. One
verifies that

∩
i∈I Hi ∩ S = ∅.

By definition of γi and by the finiteness of S, one can check that every inequality aix ≤
γi, i ∈ I defines a facet of the polyhedron K = {x ∈ Rn : aix ≤ γi, i ∈ I}, and every such
facet contains an integer point in its relative interior. Then K is a maximal S-free convex
set and thus has at most f(S) facets. In other words, |I| ≤ f(S), and thus h(F) ≤ f(S).

Theorem 4.20. h(b+ Zn) = 2n for every b ∈ Rn.

Proof. It suffices to consider the case b = 0. By Theorem 4.10, f(Zn) ≤ 2n. Since there
exist maximal lattice-free polyhedra with 2n facets, f(Zn) = 2n. Then Theorem 4.19 yields
h(Zn) = f(Zn) = 2n.
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We can now prove the result by Dey and Morán [65].

Theorem 4.21. Let S = (b+Zn)∩C, where b ∈ Rn and C is a convex set. Then f(S) ≤ 2n.

Proof. Recall that h(S) ≤ h(b + Zn), as S = (b + Zn) ∩ C and C is a convex set. Then, by
Theorems 4.19 and 4.20, f(S) = h(S) ≤ h(b+ Zn) = 2n.

Averkov also shows an extension of this result, namely f(S) ≤ 2n for every (Zn × Rp)-
convex set S [7]. More recently, Aliev, Bassett, De Loera, Louveaux generalize Theorem 4.10
in the following way [3]. Given natural numbers n, k, they prove the existence of a constant
c(n, k) (depending only on n, k) such that any maximal polyhedron with exactly k integer
points in its interior has at most c(n, k) facets.

We mention that for S = b+ Z2, a complete classification of maximal S-free convex sets
in R2 has been obtained in [42] by Dey and Wolsey; Cornuéjols and Margot [36] give an
alternate proof. The classification states that any maximal (b+ Z2)-free convex set is one of
five different types:

1. A split, i.e., the intersection of two half spaces whose corresponding hyperplanes are
parallel and contain infinitely many points from S.

2. A type 1 triangle, which is an affine unimodular transformation of conv{0, 2e1, 2e2}.

3. A type 2 triangle, which has a single side with multiple points from S in its relative
interior, and the other two sides have exactly one point from S in their relative interior.
Moreover, the line passing through these two points is parallel to the third side.

4. A type 3 triangle, which contains exactly three points from S on its boundary, one in
the relative interior of each side.

5. A quadrilateral where each side has exactly one point from S in its relative interior,
and the four points form the translation of a fundamental parallelepiped of Z2.

The classification is also completely known in R2 when S = (b + Z2) ∩ Q, where Q is a
rational polyhedron [25]. A partial classification for R3 when S = b+ Z3 has been obtained
in [10], which provides a complete description of all the S-free tetrahedra with integral vertices
(which extend the type 1 triangles in R2). However, a complete classification for R3 has not
been obtained.

When S = (b + Zn) ∩ Q, where Q is a rational polyhedron, Basu et al. [18] prove the
following sharpening of Theorem 4.21.

Theorem 4.22. Let S = (b+Zn)∩Q, where Q is a rational polyhedron such that dim(conv(S)) =
n. A set K ⊆ Rn is a maximal S-free convex set if and only if one of the following holds:

(i) K is a polyhedron such that K ∩ conv(S) has nonempty interior, K does not contain
any point of S in its interior and there is a point of S in the relative interior of every
facet of K. The cone rec(K ∩ conv(S)) is rational and it is contained in lin(K).

(ii) K is a half-space of Rn such that K ∩ conv(S) has empty interior and the boundary of
K is a supporting hyperplane of conv(S).

(iii) K is a hyperplane of Rn such that lin(K) ∩ rec(conv(S)) is not a rational polyhedron.
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5 The pure integer model

In this section, we consider the pure integer model (2.4), which we rewrite here for conve-
nience:

IS(P ) :=
{
y ∈ Zℓ+ : Py ∈ S

}
. (5.1)

We assume throughout this section that S = b + Zn for some b ∈ Rn \ Zn. This case
was introduced and studied by Gomory and Johnson [53, 54]. In the literature, this model
is frequently refereed to under the name of infinite group problem. Recently, Yildiz and
Cornuéjols extend the analysis to more general S [70], but we will not cover their work in
this survey.

Although for S = b+ Zn there do exist integer valid functions that take negative values,
we only concentrate on nonnegative integer valid functions in this survey. Some justification
for the nonnegativity assumption can be given as follows. If P is a rational matrix and
IS(P ) ̸= ∅, then rec(conv(IS(P ))) = Rℓ+ [34]. Therefore every inequality that is essential for
a linear description of conv(IS(P )) has nonnegative coefficients.

5.1 Minimal integer valid functions

Recall that an integer valid function π for S is said to be minimal if there is no integer valid
function π′ ̸= π such that π′(p) ≤ π(p) for all p ∈ Rn. Notice that if π is a nonnegative
integer valid function which is minimal, then π ≤ 1. Minimal integer valid functions for S
were characterized by Gomory and Johnson [53].

Recall that a function π : Rn → R is subadditive if π(p1+p2) ≤ π(p1)+π(p2) for all p1, p2 ∈
Rn. When S = b+ Zn, we say that π satisfies the symmetry condition if π(p) + π(b− p) = 1
for all p ∈ Rn. Finally, π is periodic modulo Zn if π(p) = π(p+ w) for all w ∈ Zn.

Theorem 5.1 (Gomory and Johnson [53]). Let S = b+Zn for some b /∈ Zn, and let π : Rn → R
be a nonnegative function. Then π is a minimal integer valid function for S if and only if
π(w) = 0 for all w ∈ Zn, π is subadditive, and π satisfies the symmetry condition. (These
conditions imply that π is periodic modulo Zn and π(b+ w) = 1 for every w ∈ Zn.)

Proof. We first prove the “only if” part of the statement. Assume that π is a minimal integer
valid function for S. We need to show the following three facts.

(a) π(w) = 0 for every w ∈ Zn. Define by π′(p) = π(p) if p ̸∈ Zn and π′(w) = 0 for all
w ∈ Zn. If ȳ ∈ Zℓ+ is a point in IS(P ) for some P , then so is ỹ defined by ỹp = ȳp if p ̸∈ Zn,
and ỹp = 0 if p ∈ Zn. Moreover,

∑
π′(p)ȳp =

∑
π(p)ỹp ≥ 1 since π is valid. Therefore, π′ is

valid. Minimality of π implies π′ = π.

(b) π is subadditive. Let p1, p2 ∈ Rn. We need to show π(p1) + π(p2) ≥ π(p1 + p2). This
inequality holds when p1 = 0 or p2 = 0 because π(0) = 0. Assume now that p1 ̸= 0, p2 ̸= 0
and π(p1)+π(p2) < π(p1+p2). Define the function π′ as follows: π′(p1+p2) = π(p1)+π(p2)
and π′(p) = π(p) for p ̸= p1 + p2. The same argument used in Lemma 4.1 shows that π′ is
valid.

Now (a) and (b) imply that π is periodic. This is because for any p ∈ Rn and w ∈ Zn,
π(p+w) ≤ π(p) + π(w) = π(p) where the inequality is from (b) and the equality is from (a).
Similarly, π(p+ w) = π(p+ w) + π(−w) ≥ π(p+ w − w) = π(p).
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(c) π satisfies the symmetry condition. Suppose there exists p̃ ∈ Rn such that π(p̃)+π(b−p̃) ̸=
1. Since π is valid, π(p̃)+ π(b− p̃) = 1+ δ where δ > 0. Since π(p) ≤ 1 for all p ∈ Rn for any
minimal function π, it follows that π(p̃) > 0. Define the function π′ by

π′(p) :=

{
1

1+δπ(p̃) if p = p̃,

π(p) if p ̸= p̃.

We show that π′ is valid. Consider any ȳ ∈ IS(P ) for some matrix P containing column p̃.
Note that ∑

π′(p)ȳp =
∑
p̸=p̃

π(p)ȳp +
1

1 + δ
π(p̃)ȳp̃.

If ȳp̃ = 0 then
∑
π′(p)ȳp =

∑
π(p)ȳp ≥ 1 because π is valid. If ȳp̃ ≥ (1 + δ)/π(p̃) then∑

π′(p)ȳp ≥ 1. Thus we can assume that 1 ≤ ȳp̃ < (1 + δ)/π(p̃).
Observe that

∑
p̸=p̃ π(p)ȳp + π(p̃)(ȳp̃ − 1) ≥

∑
p̸=p̃ π(pȳp) + π(p̃(ȳp̃ − 1)) ≥ π(

∑
p ̸=p̃ pȳp +

p̃(ȳp̃− 1)) = π(b− p̃), where the inequalities follow by the subadditivity of π and the equality
follows as π is periodic modulo Zn and

∑
p̸=p̃ pȳp + p̃ȳp̃ ∈ S. Therefore∑

π′(p)ȳp =
∑
p̸=p̃

π(p)ȳp + π(p̃)(ȳp̃ − 1) + π(p̃)− δ

1 + δ
π(p̃)ȳp̃

≥ π(b− p̃) + π(p̃)− δ

= 1 + δ − δ = 1.

This shows that π′ is valid, contradicting the minimality of π.

We now prove the “if” part of the statement. Assume that π(w) = 0 for all w ∈ Zn, π is
subadditive, and satisfies the symmetry condition. As noted earlier, the first two conditions
imply that π is periodic.

We first show that π is valid. The symmetry condition implies π(0) + π(b) = 1. Since
π(0) = 0, we have π(b) = 1. Let P and ȳ be such that P ȳ = b + w for some w ∈ Zn. We
have that

∑
π(p)ȳp ≥ π(

∑
pȳp) = π(b + w) = π(b) = 1, where the inequality comes from

subadditivity and the second to last equality comes from periodicity. Thus π is valid.
To show that π is minimal, suppose by contradiction that there exists an integer valid

function π′ ≤ π such that π′(p̃) < π(p̃) for some p̃ ∈ Rn. Then π(p̃) + π(b − p̃) = 1 implies
π′(p̃) + π′(b− p̃) < 1, contradicting the validity of π′.

The above proof follows the one given in [32].

5.2 Extreme functions: Techniques for proving extremality

When describing a full-dimensional polyhedron K, one is only interested in identifying the
facet-defining inequalities of K, as all other valid inequalities can be expressed as convex
combinations of facet-defining inequalities. In other words, the facet-defining inequalities
form extreme rays of the cone of valid inequalities for K. In our context, the analogous
notion is that of an extreme function. An integer valid function π is extreme for S if it cannot
be written as a proper convex combination of two other integer valid functions for S, i.e., if
π = 1

2(π
1 + π2) for integer valid functions π1, π2 implies π = π1 = π2. Extreme functions are

easily seen to be minimal.
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Remark 5.2. For the continuous model, extreme functions are defined in the same way and
were characterized by Cornuéjols and Margot [36] for the case n = 2. See also [17, Theorem
1.5] for a result in general dimension n, which states that a valid function for the continuous
model is extreme if and only if a certain restriction of this function gives a facet defining
inequality for a well-defined polyhedron.

The following lemma will be useful in analyzing extreme functions.

Lemma 5.3. Let S = b + Zn for some b /∈ Zn. Let π be a nonnegative minimal integer
valid function for S and suppose π1 and π2 are nonnegative integer valid functions such that
π = 1

2(π
1 + π2). Then the following hold:

(i) π1, π2 are minimal [53].

(ii) Let the additivity domain of π be:

E(π) := {(x, y) : π(x) + π(y) = π(x+ y)} . (5.2)

Then E(π) ⊆ E(π1) ∩ E(π2) [53].

(iii) Suppose there exists a real number M such that lim suph→0+
π(hr)
h ≤ M for all r ∈ Rn

such that ∥r∥ = 1. Then π is Lipschitz-continuous. Furthermore, this condition holds
for π1 and π2, and π1, π2 are Lipschitz-continuous [21, Theorem 2.9].

To prove that a function π is extreme, the main idea is to establish that E(π) ⊆ E(π′)
implies π = π′ for every minimal integer valid function π′. Then, starting from the assumption
π = 1

2(π
1+π2), by Lemma 5.3 (ii) E(π) ⊆ E(π1) and E(π) ⊆ E(π2), and therefore π = π1 =

π2.
The main tools for establishing that E(π) ⊆ E(π′) implies π = π′ for every minimal

integer valid function π′ are results that are collectively called interval lemmas (after the
one-dimensional interval lemma of Gomory and Johnson [55]), and are presented in the next
subsection.

We illustrate this framework for proving extremality by outlining a proof of the (n+ 1)-
slope theorem of Basu, Hildebrand, Köppe and Molinaro [24], which is one of the most general
sufficient conditions for extremality of minimal integer valid functions.

5.2.1 Regular solutions to Cauchy’s functional equation

As mentioned above, the key to establishing extremality of a function π is to prove that
E(π) ⊆ E(π′) implies π = π′ for every minimal integer valid function π′. The first step is
to show that E(π) ⊆ E(π′) implies that π′ has an affine linear structure whenever π has
such structure. For this purpose, we consider full-dimensional convex subsets F ⊆ E(π′) ⊆
Rn × Rn; therefore, π(u) + π(v) = π(u + v) for all (u, v) ∈ F . This leads to the study of
functions θ : Rn → R satisfying:

θ(u) + θ(v) = θ(u+ v), (u, v) ∈ F (5.3)

for a given subset F ⊆ Rn×Rn. This equation is known as the (additive) Cauchy functional
equation.
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The Cauchy functional equation is classically studied for functions θ : R → R, where the
additivity domain F is the entire space R × R (see, e.g., [1]). In addition to the regular
solutions, which are the (homogeneous) linear functions θ(x) = cx for any c ∈ R, there exist
certain pathological solutions, which are highly discontinuous [1, Chapter 2, Lemma 3]. In
order to rule out these solutions, one imposes a regularity hypothesis. Various such regularity
hypotheses have been proposed in the literature; for example, it is sufficient to assume that
the function θ is bounded on every bounded interval [1, Chapter 2, Theorem 8].

We now return to functions θ : Rn → R and recall the notion of affine functions over a
domain.

Definition 5.4. Let U ⊆ Rn. We say that θ : U → R is affine over U (with gradient c) if
there exists c ∈ Rn such that for any u1, u2 ∈ U we have

θ(u2)− θ(u1) = c(u2 − u1).

Equivalently, there exists b ∈ R such that θ(u) = cu+ b for every u ∈ U .
We define three projection operators on Rn × Rn. For any subset F ⊆ Rn × Rn, define

p1(F ) = {u ∈ Rn : (u, v) ∈ F}, p2(F ) = {v ∈ Rn : (u, v) ∈ F}, and p3(F ) = {u + v : (u, v) ∈
F}.

Lemma 5.5 (Convex additivity domain lemma). [22, Theorem 2.11] Let θ : Rn → R be a
bounded function. Let F ⊆ Rn ×Rn be a full-dimensional convex set such that θ(u) + θ(v) =
θ(u + v) for all (u, v) ∈ F . Then there exists a vector c ∈ Rn such that θ is affine with the
same gradient c over int(p1(F )), int(p2(F )) and int(p3(F )), respectively.

The special case of the above result in which F = U × V is the cartesian product of
two closed proper intervals U, V ⊆ R is the so-called interval lemma stated in [55] (see also
[34, Lemma 6.26]). Early extensions to this original result were made in Dey and Richard’s
work [43, Proposition 23] and Dey et al’s work [44, Proposition 3, Corollary 1].

5.3 Sufficient conditions for extremality: the (n+ 1)-slope theorem

One of the most celebrated results in the study of extreme functions is the so-called Gomory-
Johnson 2-slope theorem [53] (see also [34, Theorem 6.27]), which states that for n = 1, if a
continuous piecewise linear minimal valid integer function has only 2 values for the derivative
wherever it exists (2 slopes), then the function is extreme. This was generalized to n = 2 by
Cornuéjols and Molinaro [37], and to general n by Basu, Hildebrand, Köppe and Molinaro [24].
We present the general (n + 1)-slope theorem here, along with the main ingredients of its
proof.

We introduce the definition of polyhedral complex, a classical notion from polyhedral
geometry [72, Chapter 5], to formalize the notion of piecewise linear functions over Rn for
n ≥ 2.

Definition 5.6. A polyhedral complex in Rn is a collection P of polyhedra in Rn such that:

(i) if I ∈ P, then all faces of I are in P,

(ii) the intersection I ∩ J of two polyhedra I, J ∈ P is a face of both I and J ,
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(iii) any compact subset of Rn intersects only finitely many polyhedra in P.

A polyhedron I from P is called a face of the complex. We call the maximal faces of P the
cells of P. A function π : Rn → R is continuous piecewise linear if there exists a polyhedral
complex P such that ∪I∈PI = Rn and π is an affine function over each of the cells of P (thus
automatically imposing continuity for the function).

We next define genuinely n-dimensional functions on Rn and then indicate that for the
analysis of minimal and extreme functions, it suffices to study genuinely n-dimensional func-
tions. This notion was first introduced in [24].

Definition 5.7. A function θ : Rn → R is genuinely n-dimensional if there does not exist a
function φ : Rn−1 → R and a linear map f : Rn → Rn−1 such that θ = φ ◦ f .
Remark 5.8 (Dimension reduction; [22, Proposition B.9, Remark B.10]). The extremal-
ity/minimality question for π that is not genuinely n-dimensional can be reduced to the same
question for a lower-dimensional genuinely ℓ-dimensional function (so ℓ < n.) When P is a
rational polyhedral complex, this reduction can be done algorithmically. Thus, we can assume
without loss of generality that a function is genuinely n-dimensional.

We can now state the (n+ 1)-slope theorem.

Theorem 5.9 ([24, Theorem 1.7]). Let π : Rn → R be a nonnegative minimal integer valid
function that is continuous piecewise linear and genuinely n-dimensional with at most n+ 1
slopes, i.e., at most n + 1 different values for the gradient of π where it exists. Then π is
extreme and has exactly n+ 1 slopes.

We outline the proof of Theorem 5.9. Let π be a continuous piecewise linear minimal
integer valid function that is genuinely n-dimensional with at most n + 1 slopes. Let P be
the polyhedral complex associated with π.

1. Subadditivity and the genuine n-dimensionality of π imply that π has exactly n + 1
gradient values ḡ1, . . . , ḡn+1 ∈ Rn. This is a relatively easy step, see Lemma 2.11 in [24].

2. (Compatibility step) Let π1, π2 be valid functions such that π = 1
2(π

1 + π2). For each
i = 1, . . . , n + 1, define Pi ⊆ P to be the polyhedral complex formed by all the cells
(and their faces) of P where the gradient of π is ḡi. Show that there exist g̃1, . . . , g̃n+1

such that π1 is affine over every cell in Pi with gradient g̃i.

3. (Gradient matching step) We then prove properties of genuinely n-dimensional functions
with n+1 slopes that lead to a system of equations that are satisfied by the coefficients
of ḡ1, . . . , ḡn+1 and g̃1, . . . , g̃n+1. Then, it is established that this system of equations
has a unique solution, and thus, ḡi = g̃i for every i = 1, . . . , n+ 1.

4. For every r ∈ Rn there exist µ1, µ2, . . . , µn+1 such that µi is the fraction of the segment
[0, r] that lies in Pi. Thus,

π(r) = π(0) +

n+1∑
i=1

µi(ḡ
ir) = π1(0) +

n+1∑
i=1

µi(g̃
ir) = π1(r).

This proves that π = π1 and thus, π = π1 = π2, concluding the proof of Theorem 5.9.

We now elaborate on Steps 2. and 3.

22



Compatibility step. The analysis of step 1 also shows that for every i = 1, . . . , n + 1,
there exist Ci ∈ Pi such that 0 ∈ Ci. This means that for every gradient value, there is
a cell containing the origin with that gradient. Fix an arbitrary i ∈ {1, . . . , n + 1} and
consider any cell I ∈ Pi. Let F = {(u, v) ∈ Rn × Rn : u ∈ Ci, v ∈ I, u + v ∈ I}. Then
F ⊆ E(π) since for (u, v) such that u ∈ Ci, v ∈ I, u + v ∈ I, π(u) + π(v) − π(u + v) =
(ḡiu) + (ḡiv + δ)− (ḡi(u+ v) + δ) = 0 for some δ ∈ R; here, we use the fact that π is affine
over Ci and I with gradient gi, and the facts that 0 ∈ Ci and π(0) = 0. By Lemma 5.3
(ii), F ⊆ E(π1); by Lemma 5.3 (iii), π1 is continuous (because π satisfies the hypothesis of
Lemma 5.3 (iii) as π is continuous piecewise linear). By Lemma 5.5, applied to F and θ = π1,
and continuity of π1, we obtain that π1 is affine on Ci = p1(F ) and I = p2(F ) = p3(F ) with
the same gradient. Since the choice of I was arbitrary, this establishes that for every cell
I ∈ Pi, π1 is affine with the same gradient; this is precisely the desired g̃i.

Gradient matching step. The system of equations of step 3 has two sets of constraints,
the first of which follows from the condition that π(b + w) = 1 for every w ∈ Zn (see
Theorem 5.1). The second set of constraints is more involved. Consider two adjacent cells
I, I ′ ∈ P that contain a segment [x, y] ⊆ Rn in their intersection. Along the line segment
[x, y], the gradients of I and I ′ projected onto the line spanned by the vector y − x must
agree; the second set of constraints captures this observation. We will identify a set of vectors
r1, . . . , rn+1 such that every subset of n vectors is linearly independent and such that each
vector ri is contained in n cells of P with different gradients. We then use the segment [0, ri]
to obtain linear equations involving the gradients of π and π′. The fact that every subset of
n vectors is linearly independent will be crucial in ensuring the uniqueness of the solution to
the system of equations.

Lemma 5.10 ([24, Lemma 3.10]). There exist vectors r1, r2, . . . , rn+1 ∈ Rn with the following
properties:

(i) For every i, j, ℓ ∈ {1, . . . , n+ 1} with j, ℓ different from i, the equations riḡj = riḡℓ and
rig̃j = rig̃ℓ hold.

(ii) Every n-subset of {r1, . . . , rn+1} is linearly independent.

The proof of Lemma 5.10 uses a result known as the Knaster-Kuratowski-Mazurkiewicz
Lemma (KKM Lemma) from fixed point theory, which exposes a nice structure in the gradient
pattern of π.

Lemma 5.11 (KKM [61, 2]). Consider a simplex conv(uj)dj=1. Let F1, F2, . . . , Fd be closed

sets such that for all J ⊆ {1, . . . , d}, the face conv(uj)j∈J is contained in
∪
j∈J Fj. Then the

intersection
∩d
j=1 Fj is non-empty.

This lemma is applied to the facets of a certain simplex ∆ containing the origin, and
the closed sets Fi =

∪
I∈Pi

(∆ ∩ I), for i = 1, . . . , n + 1. For each facet of ∆ indexed by

i = 1, . . . , n+ 1, the KKM lemma (with d = n) ensures the existence of a point ri ∈
∩
j ̸=i Fj

on the facet indexed by i. These points give the vectors r1, . . . , rn+1 from Lemma 5.10. The
bulk of the technicality lies in proving that the chosen simplex and the sets Fi satisfy the
hypothesis of the KKM lemma.

We finally present the system of linear equations that we consider.
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Corollary 5.12 ([24, Corollary 3.13]). Consider any n + 1 affinely independent vectors
a1, a2, . . . , an+1 ∈ b+Zn. Also, let r1, r2, . . . , rn+1 be the vectors given by Lemma 5.10. Then
there exist µij ∈ R+ for i, j ∈ {1, . . . , n + 1}, with

∑n+1
j=1 µij = 1 for all i ∈ {1, . . . , n + 1},

such that both g̃1, . . . , g̃n+1 and ḡ1, . . . , ḡn+1 are solutions to the linear system∑n+1
j=1 (µija

i)gj = 1 for all i ∈ {1, . . . , n+ 1},

rigj − rigℓ = 0 for all i, j, ℓ ∈ {1, . . . , n+ 1} such that i ̸= j, ℓ,
(5.4)

with variables g1, . . . , gn+1 ∈ Rn.

We remark that we can always find vectors a1, a2, . . . , an+1 ∈ b + Zn such that the set
a1, . . . , an+1 is affinely independent, so the system above indeed exists. Property (ii) in
Lemma 5.10 and the fact that a1, . . . , an+1 are affinely independent can be leveraged to show
that (5.4) has either no solutions or a unique solution. However, the linear algebra is involved
and we refer the reader to [24, Section 3.3]. Since ḡ1, . . . , ḡn+1 is a solution, the conclusion is
that the system has a unique solution.

6 The mixed integer model

We consider here the mixed integer model (2.1):

XS(R,P ) :=
{
(s, y) ∈ Rk+ × Zℓ+ : Rs+ Py ∈ S

}
where S ⊆ Rn \ {0} is a closed set, and k and ℓ are both positive. Recall that a pair of
functions (ψ, π) is a valid pair if and only if

∑
ψ(r)sr +

∑
π(p)yp ≥ 1 is a valid inequality

for XS(R,P ), for every k, ℓ, R and P . We do not make any nonnegativity assumptions on
the functions ψ, π in this section, as was done in Section 5. Note that if (ψ, π) is a valid pair,
then ψ is a valid function and π is an integer valid function. However, the converse does not
hold.

When S = b + Zn, Theorem 4.4 characterizes minimal valid functions ψ for the contin-
uous model, and Theorem 5.1 characterizes nonnegative minimal integer valid functions π
for the pure integer model. For the mixed integer model (2.1), Johnson [59] gives such a
characterization for nonnegative minimal valid pairs.

Theorem 6.1. Let S = b + Zn for some b /∈ Zn, and let (ψ, π) be a valid pair, with π ≥ 0.
Then (ψ, π) is a minimal valid pair if and only if π is a minimal integer valid function and
ψ satisfies

ψ(r) = lim sup
h→0+

π(hr)

h
for every r ∈ Rn.

When S = b+Zn, for the continuous model, Theorem 4.4 shows that minimal functions ψ
are gauge functions of K, where polyhedron K is a maximal S-free convex set, and Theorem
4.5 gives a formula for the computation of ψ. One of the most studied procedures to compute
a minimal pair (ψ, π) for the mixed integer model is to start from a minimal function ψ
for the continuous model, and then compute π such that (ψ, π) is a minimal pair. Such a
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procedure goes under that name of lifting. A lifting of a valid function ψ is a function π such
that (ψ, π) is a valid pair. A lifting π of ψ is minimal if π = π′ for every lifting π′ of ψ such
that π′ ≤ π.

Theorem 6.1 shows that if (ψ, π) is a minimal valid pair and π ≥ 0, then π is a min-
imal integer valid function. However, ψ is not guaranteed to be a minimal valid function.
Therefore the lifting procedure outlined above, applied to a minimal valid function, only
produces a subset of minimal valid pairs, which however includes the most well-known and
computationally effective pairs.

The idea of using lifting in this context was proposed by Dey and Wolsey [42], who
imported the concept of monoidal strengthening. Monoidal strengthening was introduced
by Balas and Jeroslow [13] to strengthen cutting planes by using integrality information.
Searching for minimal liftings π is analogous to the idea of strengthening the “trivial” valid
pair (ψ,ψ) by using the integrality information on the y variables.

6.1 A geometric view of lifting

The following proposition imposes regularity on the structure of minimal liftings.

Proposition 6.2 ([25, Proposition A.3]). Given a closed set S ⊆ Rn \ {0}, let ψ be a valid
function and π a minimal lifting of ψ. Define

WS := {w ∈ Rn : s+ λw ∈ S , ∀s ∈ S, ∀λ ∈ Z}. (6.1)

Then π(p+ w) = π(p) for all p ∈ Rn and w ∈WS (i.e., π is periodic modulo WS).

Proof. Let π be a minimal lifting of ψ. Assume to the contrary that there exists some p̂ ∈ Rn
and w ∈ WS such that π(p̂) ̸= π(p̂+ w). Since −w ∈ WS , we may assume π(p̂) > π(p̂+ w).
Define a function π̃ as π̃(p̂) = π(p̂+w) and π̃(p) = π(p) for p ̸= p̂. We show that π̃ is a lifting
of ψ, a contradiction to the assumption that π is a minimal lifting.

Let R ∈ Rn×k, P ∈ Rn×ℓ, and (s, y) ∈ XS(R,P ). We assume, without loss of generality,
that p̂ and p̂ + w are columns of P and we show that

∑
ψ(r)sr +

∑
π̃(p)yp ≥ 1. Let ȳ be

such that ȳp̂ = 0 and ȳp = yp for p ̸= p̂. Since w ∈WS and yp̂ ∈ Z, it follows that

Rs+ Py ∈ S ⇐⇒ Rs+ Py + wyp̂ = Rs+ P ȳ + (p̂+ w)yp̂ ∈ S.

Let y′ be defined as y′p̂+w = yp̂ + yp̂+w, y
′
p̂ = 0 and y′p = yp for p ̸= p̂ + w, p̂. Since π is a

lifting of ψ and Rs+ Py′ = Rs+ P ȳ + (p̂+ w)yp̂ ∈ S, we have∑
ψ(r)sr +

∑
π̃(p)yp =

∑
ψ(r)sr +

∑
π(p)y′p ≥ 1.

The set WS for arbitrary S was defined first in [25], where the above proposition is also
proved.

Given a valid function ψ, the lifting region Tψ (first introduced in [42]) is:

Tψ := {r ∈ Rn : π(r) = ψ(r) for every minimal lifting π of ψ}. (6.2)

Conforti et al. [33] prove that:
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Theorem 6.3. If S = (b+Zn)∩Q, where b /∈ Zn and Q is a rational polyhedron, and ψ is a
minimal valid function, then there exists a full-dimensional ball B(0, ε) ⊆ Tψ for some ε > 0.

The next theorem provides a lifting for any valid function ψ and characterizes a condition
on Tψ for this lifting to be minimal.

Theorem 6.4 ([25, Proposition A.3]). Given a closed set S ⊆ Rn \ {0}, let ψ be a valid
function and define

π∗(p) = inf
w∈WS

ψ(p+ w), for all p ∈ Rn. (6.3)

Then π∗ is a lifting of ψ. Moreover, if Tψ +WS = Rn, then π∗ is a minimal lifting of ψ and
π∗(p) = ψ(p+ w) for any w ∈WS such that p+ w ∈ Tψ.

Proof. We first show that (ψ, π∗) is a valid pair. Suppose to the contrary that there exist
matrices R,P and (s̄, ȳ) ∈ XS(R,P ) such that

∑
ψ(r)s̄r +

∑
π∗(p)ȳp < 1. Let ε = 1 −∑

ψ(r)s̄r −
∑
π∗(p)ȳp. For each column p of the matrix P , by definition of π∗, there exists

wp ∈ WS such that ψ(p + wp) ≤ π∗(p) + ε
2ℓ(ȳp+1) (recall that ℓ is the number of columns of

P ). Let P ′ be the matrix with columns p+ wp. Then Rs̄+ P ′ȳ = Rs̄+ P ȳ +Wȳ, where W
is the matrix with columns wp. Since Wȳ ∈WS , (s̄, ȳ) ∈ XS(R,P

′). However,

1 ≤
∑
ψ(r)s̄r +

∑
ψ(p+ wp)ȳp ≤

∑
ψ(r)s̄r +

∑
(π∗(p) + ε

2ℓ(ȳp+1))ȳp

≤
∑
ψ(r)s̄r +

∑
π∗(p)ȳp +

ε
2

= 1− ε+ ε
2 < 1,

where we used the fact that (ψ,ψ) is a valid pair. Thus we have a contradiction, and therefore
π∗ is a lifting of ψ.

Let π be any minimal lifting. Consider any p ∈ Rn and let w ∈ WS be such that
p + w ∈ Tψ. By Proposition 6.2, π(p) = π(p + w) = ψ(p + w) ≥ π∗(p). This implies that
π(p) = π∗(p) = ψ(p+ w) since π is a minimal lifting.

Importance of the lifting region. In light of the above results, if we start with a valid
function ψ whose values we can compute, and an explicit description for Tψ can be obtained,
then the coefficients π∗(p) can be computed by finding a w ∈WS such that p+w ∈ Tψ, and
then using the formula for ψ(p+w). Moreover, if ψ is a minimal valid function, then (ψ, π) is
a minimal valid pair. Basu et al. [16] show that when S = (b+Zn)∩Q where Q is a rational
polyhedron, Tψ can be described as the finite union of full dimensional polyhedra, each of
which has an explicit inequality description. This is discussed below.

6.1.1 A description of the lifting region

Throughout this section we assume S = (b+ Zn) ∩Q where Q is a rational polyhedron, and
we discuss the lifting region Tψ of a minimal valid function ψ. Recall from Theorem 4.22 that
in this case maximal S-free convex sets are polyhedra. Let air ≤ 1, i ∈ I be an irredundant
description of a maximal S-free polyhedron K with 0 ∈ int(K). Recall that the minimal
valid function ψ associated with K is ψ(r) = maxi∈I air.
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For each s ∈ K ∩ S, let k(s) ∈ I be an index such that ak(s)s = 1. By Theorem 4.22
such an index exists since K is a maximal S-free convex set, and s is on the boundary of K.
Define the spindle T (s) as follows:

T (s) := {r ∈ Rn : (ai − ak(s))r ≤ 0, (ai − ak(s))(s− r) ≤ 0 for all i ∈ I}.

Basu et al. [16] prove the following:

Theorem 6.5. Let S = (b + Zn) ∩ Q, where b /∈ Zn and Q is a rational polyhedron, and let
K and ψ be as above. Then the lifting region is:

Tψ = T (S,K) :=
∪

s∈K∩S
T (s).

Figure 2 illustrates the region Tψ for several examples. We collect some basic properties of
the lifting region that were presented in [16]. Define LK = {r ∈ Rn : air = ajr for all i, j ∈ I}.

Proposition 6.6. Assume S = (b + Zn) ∩Q, where b /∈ Zn and Q is a rational polyhedron,
and let K be a maximal S-free polyhedron with 0 ∈ int(K). The following hold:

(i) lin(T (s)) = rec(T (s)) = LK for every s ∈ K ∩ S.

(ii) T (s) = T (s′) for every s, s′ ∈ Rn such that s− s′ ∈ LK .

(iii) T (S,K) is a union of finitely many polyhedra.

Proof. (i) From the description of T (s),

rec(T (s)) = {r ∈ Rn : (ai − ak(s))r ≤ 0, (ak(s) − ai)r ≤ 0 for all i ∈ I}

where k(s) is the index of the facet of K containing s. Hence, for every r ∈ rec(T (s)),
we obtain air = ak(s)r for all i ∈ I. This shows that rec(T (s)) = lin(T (s)) = LK .

(ii) Observe that

r ∈ T (s′) ⇔ (ai − ak(s′))r ≤ 0, (ai − ak(s′))(s
′ − r) ≤ 0 ∀i ∈ I

⇔ (ai − ak(s′))r ≤ 0, (ai − ak(s′))(s
′ + (s− s′)− r) ≤ 0 ∀i ∈ I

⇔ (ai − ak(s))r ≤ 0, (ai − ak(s))(s− r) ≤ 0 ∀i ∈ I

⇔ r ∈ T (s)

where the second equivalence follows from the fact that s− s′ ∈ LK and so ai(s− s′) =
ak(s−s′), and in the third equivalence we use the fact that k(s) and k(s′) can be chosen
to be the same as s− s′ ∈ LK .

(iii) Since K is full-dimensional, K satisfies either condition (i) or condition (ii) of Theorem
4.22. In both cases, if we define L := ⟨rec(K ∩ conv(S))⟩, then L is a lattice subspace
contained in lin(K). Since lin(K) = {r ∈ Rn : air = 0 for all i ∈ I}, we have that
L ⊆ lin(K) ⊆ LK .

Since L = ⟨rec(K∩conv(S))⟩, it follows that projL⊥(K)∩projL⊥(conv(S)) is a polytope.
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T (s1)

T (s2)T (s3)
0

K

(a) A maximal (b+Z2)-free triangle with three
integer points

s4s3 s5

s6s2

0

T (s4)

T (s6)

T (s1)

T (s5)

T (s3)

K

s1

T (s2)

(b) A maximal (b+ Z2)-free triangle with integer
vertices

T (s2)

s1 s2

0

T (s1)

l1 l

K

(c) A wedge

s1 s2

s3

0
T (s1)

T (s2)

K

T (s3)

(d) A truncated wedge

Figure 2: Regions T (s) for some maximal S-free polyhedra K in the plane and s ∈ S ∩K. In
Figures 2(a) and 2(b), S = b+Z2 for some b ̸∈ Z2 and in Figures 2(c) and 2(d) S = (b+Z2)∩H
where H is a half-space shown in the figures (dark circles show points from S and hollow
circles show points in b+ Z2 that are not in S). The thick dark line indicates the boundary
of K. For a particular s, the dark gray regions denote T (s). The jagged lines in a region
indicate that it extends to infinity. For example, in Figure 2(c), T (s1) is the strip between
lines l1 and l. Figure 2(b) shows an example where T (s) is full-dimensional for s2, s4, s6, but
is not full-dimensional for s1, s3, s5.
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Given two elements s, s′ ∈ S whose orthogonal projections onto L⊥ coincide, it follows
that s−s′ ∈ L ⊆ LK , and therefore by (ii) T (s) = T (s′). Then the number of sets T (s),
s ∈ S ∩K, is at most the cardinality of projL⊥(S ∩K).

Let S′ and b′ be the orthogonal projections of S and b onto L⊥. Since L is a lat-
tice subspace, S′ = (b′ + Λ) ∩ projL⊥(conv(S)), where Λ is a lattice in L⊥. Since
projL⊥(K) ∩ projL⊥(conv(S)) is a polytope, projL⊥(K) ∩ projL⊥(conv(S)) ∩ (b′ +Λ) is
finite. Furthermore, since projL⊥(S ∩K) ⊆ projL⊥(K) ∩ projL⊥(conv(S)) ∩ (b′ +Λ), it
follows that projL⊥(S ∩K) is a finite set.

We conclude that the family of polyhedra T (s), s ∈ S ∩ K, has a finite number of
elements, thus T (S,K) =

∪
s∈S∩K T (s) is the union of a finite number of polyhedra.

6.1.2 The covering property

We assume here S = (b+Zn)∩Q, where Q is a rational polyhedron. As mentioned earlier, the
minimal valid functions for S are in one-to-one correspondence with maximal S-free convex
sets containing the origin in their interior. For any such maximal S-free convex set K, we
refer to the lifting region Tψ for the minimal cut-generating function ψ corresponding to K
by T (S,K), to emphasize the dependence on S and K. We say T (S,K) has the covering
property if T (S,K) +WS = Rn. When S is clear from the context, we will also say that K
has the covering property if T (S,K) has the covering property.

Results of this section and their importance for discrete optimization. The main
results presented in this section are three operations that preserve the covering property,
namely, translations, the so-called coproduct and limit operations. Moreover, a necessary and
sufficient condition is presented in Theorem 6.9 to characterize which pyramids in a particular
family have the covering property.

The importance of these results in terms of cutting planes is the following. The pyramids
in Theorem 6.9 and classification of the covering property in R2 (see [25]) provide a “base
set” of maximal S-free convex sets with the covering property. By iteratively applying the
three operations of translations, coproducts and limits, we can then build a vast (infinite) list
of maximal S-free convex sets (in arbitrarily high dimensions) with the covering property,
enlarging this “base set”. Not only does this recover all the previously known sets with the
covering property, it vastly expands this list. Earlier, ad hoc families of S-free convex sets
were proven to have the covering property —now we have generic operations to construct
infinitely many families. These make a contribution in the modern thrust on obtaining
efficiently computable formulas for computing cutting planes, by giving a much wider class
of maximal S-free sets whose lifting regions have the covering property.

The covering property is preserved under translations. Let K be a maximal S-free
polyhedron with the origin in its interior. In [25], Basu and Paat prove the following theorem.

Theorem 6.7. Let t ∈ Rn be such that K + t also contains the origin in its interior. Then,
T (S,K) +WS = Rn if and only if T (S + t,K + t) +WS+t = Rn.
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In other words, the covering property is preserved under translations.
This theorem is not obvious, since both the function ψ defined according to (4.4) and the

set T (S,K) change in a non-trivial way when we translate S and K. For the case S = b+Zn,
this result was first proved when K is a maximal S-free simplicial polytope [19] and then for
any maximal S-free polyhedron in [9]. Both proofs are based on volume arguments, which
do not seem easily extendable to the more general case S = (b + Zn) ∩ Q for a rational
polyhedron Q. The generalization to this setting was obtained in [25] by using the invariance
of domain as the main tool. This is an important result in algebraic topology, first proved
by Brouwer [28, 46].

Theorem 6.8 (Invariance of Domain). If U is an open subset of Rn and f : U → Rn is an
injective, continuous map, then f(U) is open and f is a homeomorphism between U and
f(U).

An outline of the proof of the invariance of the lifting region under translations when
S = (b+ Zn) ∩Q (Theorem 6.7) is now provided. We define S′ = S + t and K ′ = K + t.

1. Let {x ∈ Rn : aix ≤ 1, i ∈ I} be an irredundant description of a maximal S-free
polyhedron K with 0 ∈ int(K). For each k ∈ I, define the affine function fk that maps
the affine hyperplane H = {r ∈ Rn : akr = 1} to H + t.

2. For every s ∈ K ∩ S and w ∈ WS , define the polyhedron Ks,w = T (s) + w and define
the map fs,w : Ks,w → Rn as fs,w(x) = fk(s)(x − w) + w, where k(s) ∈ I is such that
ak(s)s = 1. Since T (S,K) + Zn = Rn, we have

∪
s∈K∩S,w∈WS

Ks,w = T (S,K) + Zn = Rn.

3. It is shown that for any two pairs s1, w1 and s2, w2 we have that fs1,w1(x) = fs2,w2(x)
for all x ∈ Ks1,w1 ∩ Ks2,w2 . Thus, the different fs,w’s can be “stitched together” to
give a well-defined map f : Rn → Rn such that f restricted to Ks,w is equal to fs,w.
Since each fs,w is an invertible affine map on Ks,w, and any bounded set intersects only
finitely many polyhedra Ks,w, it can be shown that f is an injective continuous map
on Rn.

4. It is also shown that fs,w(T (s) + w) = T (s+ t) + w for every s ∈ S ∩K and w ∈ WS .
In other words, the affine function fs,w maps a spindle in T (S,K) (translated by the
vector w) into the corresponding spindle in T (S′,K ′) (translated by the same vector
w).

5. By Theorem 6.8, f(Rn) is open. On the other hand, f(Rn) = T (S′,K ′) +WS can be
shown to be closed because T (S′,K ′) is the union of finite many polyhedra translated
by a lattice WS = lin(conv(S))∩Zn. Since Rn is connected, the only non-empty closed
and open subset of Rn is Rn itself. Thus, f(Rn) = Rn.
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6. Finally one observes that WS = lin(conv(S)) ∩ Zn =WS′ . Therefore,

T (S′,K ′) +WS′ = T (S′,K ′) +WS

=
∪
s′∈K′∩S′,w∈WS

T (s′) + w

=
∪
s∈K∩S,w∈WS

T (s+ t) + w

=
∪
s∈K∩S,w∈WS

fs,w(T (s) + w)

= f
(∪

s∈K∩S,w∈WS
(T (s) + w)

)
= f(T (S,K) +WS)
= f(Rn)
= Rn

where the fourth equality follows from Step 3.

The coproduct and limit operations preserve the covering property. We define an
operation on polytopes that preserves the covering property. Namely, given two polytopes
K1 ∈ Rn1 and K2 ∈ Rn2 with Ki containing the origin in its interior for i = 1, 2, we define
the coproduct K1 ⋄ K2 as follows. Let K•

i be the (inclusion-wise) smallest prepolar for Ki,
i = 1, 2. Define K1 ⋄ K2 = (K•

1 × K•
2 )

◦ where we remind the reader that V ◦ denotes the
polar of a set V , and X × Y denotes the cartesian product of X and Y . Let n = n1 + n2
and for i ∈ {1, 2}, let Si = (bi + Zni) ∩ Qi, where Qi ⊆ Rni is a rational polyhedron and
bi ∈ Rni \Zni . Then S1×S2 = ((b1, b2)+(Zn1 ×Zn2))∩ (Q1×Q2). Therefore, it is reasonable
to speak of S1 × S2-free convex sets. If Ki is maximal Si-free such that T (Si,Ki) has the
covering property for i ∈ {1, 2}, then for any 0 ≤ µ ≤ 1, K1

µ ⋄ K2
1−µ is maximal S1 × S2-free

and T (S1 ×S2,
K1
µ ⋄ K2

1−µ) has the covering property. This is proved in [25]; it was first shown
in [9] for the case when Si = bi + Zni for i ∈ {1, 2}. This is a very useful operation to
create higher dimensional maximal S-free convex sets with the covering property by “gluing”
together lower dimensional such sets.

When S = (b + Zn) ∩ Q for some rational polyhedron Q, it is shown in [25] that if
a sequence of maximal S-free convex sets, all of whose lifting regions have the covering
property, converges (in some precise sense) to a maximal S-free convex set, then the limit set
also has the covering property. This is a generalization of a result from [9].

Special polytopes that have the covering property. In this last part we assume
S = b + Zn. We define a pyramid as the convex hull of an (n − 1)-dimensional polytope
B and a point v /∈ aff(B). v is called the apex and B is the base of the pyramid.

Theorem 6.9. [9] Assume S = b+Zn for some b ̸∈ Zn, and let K be a maximal S-free pyramid
in Rn (n ≥ 2) such that every facet of K contains exactly one point from S in its relative
interior. K has the covering property if and only if K is the image of conv{0, ne1, . . . , nen}
under an affine unimodular transformation.

Assume first that K is conv{0, ne1, . . . , nen} (after applying an affine unimodular trans-
formation). For each i = 1, . . . , n, consider the translation K − nei and the spindle formed
by the facet containing the point ei − nei; this spindle is the unimodular transformation of
the cube [0, 1]n. Moreover, the spindle in K with respect to the point (1, 1, . . . , 1) is the cube
[0, 1]n. Thus, each of these translation vectors leads to a lifting region which covers Rn by
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integer translates. An extension of the translation invariance property can be used to show
that this implies K has the covering property.

We now outline the proof of the other implication.

1. Consider a translation of K such that the apex of K becomes the origin, and let T be
the spindle corresponding to the single integer point on the base of the pyramid. Using
an extension of the translation invariance property proved above, one can show that T
covers Rn by integer translates. It is also not hard to show that two integer translates
of T cannot intersect in the interior. Thus T actually tiles Rn by integer translates.

2. For a polytope K and any face F of K of dimension n−2, the belt corresponding to F in
K is the set of all facets that contain a translate of F or −F . The Venkov-Alexandrov-
McMullen theorem from the geometry of numbers states:

Theorem 6.10 ([56, Theorem 32.2]). Let K be a compact convex set with nonempty
interior that translatively tiles Rn. Then the following assertions hold:

(a) K is a centrally symmetric polytope.

(b) All facets of K are centrally symmetric.

(c) Every belt of K is either of length 4 or 6.

This implies that T is centrally symmetric with centrally symmetric facets.

3. It can be shown that since T , in this special case, is a spindle with centrally symmetric
facets, every belt of T is of length 4. This, in turn, can be used to show that every
face of dimension n − 2 is centrally symmetric. McMullen’s characterization of zono-
topes [64] then implies that T is a zonotope. (A zonotope is the Minkowski sum of
finitely many line segments; equivalently, a zonotope is the image under an affine map
—not necessarily invertible— of a cube.)

4. Combinatorial geometry of zonotopes can be used to show that any zonotope whose
belts have all length 4 is a parallelotope (i.e., the invertible affine image of a cube).
Thus T is a parallelotope and K is a simplex.

5. Since T tiles Rn by integer translates, T has volume 1. Moreover, it can be shown
that there exists a translation vector t ∈ Rn such that the polytope 2T + t is centrally
symmetric about the origin and the only integer point in its interior is the origin.
Moreover, each facet of 2T + t contains exactly one integer point in its relative interior.
We now appeal to the Minkowski-Hajós theorem:

Theorem 6.11 ([57], Section 12.4, Chapter 2). Let S be a 0-symmetric parallelotope
such that each it has no integer point in its interior besides 0, and suppose that S has
volume 2n. Then there exists a unimodular transformation U such that after applying
U , S will have two parallel facets given by −1 ≤ x1 ≤ 1.

We use this theorem to prove the following lemma.
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Lemma 6.12. Let S be a 0-symmetric parallelotope with no integer point in its interior
besides 0, and suppose that S has volume 2n. If every facet of S has exactly one integer
point in its relative interior, then S is a unimodular transformation of the cube [−1, 1]n.

Proof. We prove this by induction on the dimension n. For n = 1, this is trivial.
Consider n ≥ 2. The Minkowski–Hajós theorem (Theorem 6.11) implies that we can
apply a unimodular transformation such that S = conv{(S ∩ {x1 = −1}) ∪ (S ∩ {x1 =
1})}. Note that S ∩ {x1 = −1}, S ∩ {x1 = 0} and S ∩ {x1 = 1} are all translations
of each other. Therefore, 2n = vol(S) = 2 vol(S ∩ {x1 = 0}) (here we measure volume
of S ∩ {x1 = 0} in the (n − 1)-dimensional linear space x1 = 0). So S ∩ {x1 = 0} has
volume 2n−1. Therefore, S ∩ {x1 = 0} is also a 0-symmetric parallelotope in the linear
space x1 = 0 with volume 2n−1, and its only integer point is the origin. If any facet
F of S ∩ {x1 = 0} contains two or more integer points in its relative interior, then the
facet of S passing through F will contain these integer points in its relative interior, in
contradiction to the hypothesis of the theorem. Therefore, every facet of S ∩ {x1 = 0}
contains at most one integer point in its relative interior. By the induction hypothesis,
S ∩ {x1 = 0} is equivalent to the cube {−1 ≤ xi ≤ 1, i = 2, . . . , n} ∩ {x1 = 0}. Recall
that S∩{x1 = −1} and S∩{x1 = 1} are translations of S∩{x1 = 0}. Since S∩{x1 = 0}
is equivalent to the cube {−1 ≤ xi ≤ 1, i = 2, . . . , n} ∩ {x1 = 0}, any translation by a
non-integer vector (x1, x2, . . . , xn) with x1 ∈ Z will contain at least two integer points
in its relative interior. But the facets S ∩ {x1 = −1} and S ∩ {x1 = 1} contain at most
one integer point in their relative interior. Therefore, they are in fact integer translates
of S ∩ {x1 = 0}. This proves the lemma.

We know that 2T + t satisfies the hypothesis of Lemma 6.12 and therefore 2T + t is a
unimodular transformation of the cube [−1, 1]n. This can be used to show that K is
the image of conv{0, ne1, . . . , nen} under an affine unimodular transformation.

For further details, we refer the reader to [9, Section 6] and [19, Section 3].

References

[1] J. Aczél and J. G. Dhombres. Functional Equations in Several Variables. Cambridge
University Press, 1989.

[2] R. P. Agarwal, M. Meehan, and D. O’Regan. Fixed Point Theory and Applications.
Cambridge University Press, 2001.

[3] I. Aliev, R. Bassett, J. A. De Loera, and Q. Louveaux. A quantitative doignon-bell-scarf
theorem. arXiv preprint arXiv:1405.2480, 2014.

[4] K. Andersen, Q. Louveaux, R. Weismantel, and L. Wolsey. Inequalities from two rows of
a simplex tableau. In M. Fischetti and D. Williamson, editors, Integer Programming and
Combinatorial Optimization. 12th International IPCO Conference, Ithaca, NY, USA,
June 25–27, 2007. Proceedings, volume 4513 of Lecture Notes in Computer Science,
pages 1–15. Springer Berlin/Heidelberg, 2007.

33



[5] A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. Mathematical
Programming, 122(1):1–20, 2010.

[6] A. Atamtürk and V. Narayanan. Lifting for conic mixed-integer programming. Mathe-
matical Programming, 126(2):351–363, 2011.

[7] G. Averkov. On maximal S-free sets and the helly number for the family of S-convex
sets. SIAM Journal on Discrete Mathematics, 27(3):1610–1624, 2013.

[8] G. Averkov. A proof of Lovász’s theorem on maximal lattice-free sets. Beiträge zur
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[34] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer, 2014.
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[58] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer,
2001.

[59] E. L. Johnson. On the group problem for mixed integer programming. Mathematical
Programming Study, 2:137–179, 1974.

[60] Ellis L Johnson. Characterization of facets for multiple right-hand choice linear programs.
Springer, 1981.

[61] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein Beweis des Fixpunktsatzes für
n-dimensionale Simplexe. Fundamenta Mathematicae, 14:132–137, 1929.

[62] Q. Louveaux and L. Poirrier. An algorithm for the separation of two-row cuts. Mathe-
matical Programming, 143(1–2):111–146, 2014.

[63] L. Lovász. Geometry of numbers and integer programming. In M. Iri and K. Tanabe,
editors, Mathematical Programming: State of the Art, pages 177–201. Mathematical
Programming Society, 1989.

[64] P. McMullen. Polytopes with centrally symmetric faces. Israel J. Math., 8:194–196,
1970.

[65] D. A. Morán R. and S. S. Dey. On maximal S-free convex sets. SIAM Journal on
Discrete Mathematics, 25:379–393, 2011.

[66] J.-P. P. Richard and S. S. Dey. The group-theoretic approach in mixed integer program-
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