The Mixing Set with Divisible Capacities*

Michele Conforti ${ }^{1}$, Marco Di Summa ${ }^{1}$, and Laurence A. Wolsey ${ }^{2}$
1 Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova. Via Trieste 63, 35121 Padova, Italy. \{conforti,mdsumma\}@math.unipd.it
${ }^{2}$ Center for Operations Research and Econometrics (CORE), Université catholique de Louvain. 34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium. laurence. wolsey@uclouvain. be

$$
\begin{aligned}
& \text { Abstract. Given rational numbers } C_{0}, \ldots, C_{m} \text { and } b_{0}, \ldots, b_{m} \text {, the mix- } \\
& \text { ing set with arbitrary capacities is the mixed-integer set defined by con- } \\
& \text { ditions } \\
& \qquad \begin{array}{r}
s+C_{t} z_{t} \geq b_{t}, \quad 0 \leq t \leq m, \\
\quad s \geq 0, \\
z_{t} \text { integer, } \quad 0 \leq t \leq m .
\end{array}
\end{aligned}
$$

Such a set has applications in lot-sizing problems. We study the special case of divisible capacities, i.e. C_{t} / C_{t-1} is a positive integer for $1 \leq$ $t \leq m$. Under this assumption, we give an extended formulation for the convex hull of the above set that uses a quadratic number of variables and constraints.

Keywords: mixed-integer programming, compact extended formulations, mixing sets.

1 Introduction

Given rational numbers C_{0}, \ldots, C_{m} and b_{0}, \ldots, b_{m}, the mixing set with arbitrary capacities is the mixed-integer set defined by conditions

$$
\begin{array}{cl}
s+C_{t} z_{t} \geq b_{t}, & 0 \leq t \leq m, \\
s \geq 0, & \\
z_{t} \text { integer, } & 0 \leq t \leq m . \tag{3}
\end{array}
$$

The above set generalizes the mixing set, which is a set of the type (1)-(3) with $C_{t}=1$ for all $0 \leq t \leq m$. The mixing set, which was introduced and studied by Günlük and Pochet [9] and further investigated by Miller and Wolsey [12], has played an important role in studying production planning problems (in particular lot-sizing [17]).

[^0]When the values of the capacities C_{t} are arbitrary, (1)-(3) constitutes a relaxation of lot-sizing problems where different batch sizes or velocities of the machines are allowed. Giving a linear inequality description of the convex hull of such a set seems to be difficult and indeed it is not known whether linear optimization over (1)-(3) can be carried out in polynomial time.

We consider here the special case of a set defined by (1)-(3) where the capacities form a sequence of divisible numbers: that is, C_{t} / C_{t-1} is a positive integer for $1 \leq t \leq m$. We call such a set the mixing set with divisible capacities and we denote it by $D I V$. Our main result is a compact extended formulation for the polyhedron $\operatorname{conv}(D I V)$, the convex hull of $D I V$.

Here we use the following terminology. A formulation of a polyhedron P (in its original space) is a description of P as the intersection of a finite number of half-spaces. So it consists of a system of linear inequalities $C x \geq d$ such that $P=\{x: C x \geq d\}$. A formulation of P is extended whenever it gives a polyhedral description of the type $Q=\{(x, \mu): A x+B \mu \geq d\}$ in a space that uses variables (x, μ) and includes the original x-space, so that P is the projection of Q onto the x-space.

If P is the convex hull of a mixed-integer set (such as the convex hull of the set defined by (1)-(3)), we say that a formulation is compact if its size (i.e. the number of inequalities and variables of the system defining P or Q as above) is bounded by a polynomial function of the description of the mixed-integer set (in our case the size of the system (1)-(2)).

The assumption of divisibility of the coefficients was exploited by several authors to tackle integer sets that are otherwise untractable, such as integer knapsack problems. Under the divisibility assumption, Marcotte [11] gave a simple formulation of the integer knapsack set without upper bounds on the variables. Pochet and Wolsey [16] studied the same set where the knapsack inequality is of the " \geq " type. Pochet and Weismantel [13] provided a linear inequality description of the knapsack set where all variables are bounded. Other hard problems studied under the assumption of divisibility of the coefficients include network design [14], lot-sizing problems [4] and the integer Carathéodory property for rational cones [10].

The mixing set with divisible capacities $D I V$ was studied recently by Zhao and de Farias [20], who gave a polynomial-time algorithm to optimize a linear function over DIV (see also Di Summa [6]).

A formulation of the polyhedron $\operatorname{conv}(D I V)$ either in the original space or in an extended space was not known for the general case and such a formulation does not seem to be easily obtainable by applying known techniques for constructing compact extended formulations, such as taking unions of polyhedra [1, 4] or enumeration of fractional parts [12, 3, 18, 19].

A formulation of $\operatorname{conv}(D I V)$ was only known for some special cases. For the set $D I V$ with $C_{t}=1$ for $0 \leq t \leq m$ (i.e. the mixing set), a linear inequality description of the convex hull in the original space was given by Günlük and Pochet [9] and a compact extended formulation was obtained by Miller and Wolsey [12]. For the set $D I V$ with only two distinct values of the capacities,

Van Vyve [18] and Constantino, Miller and Van Vyve [5] gave a linear inequality description of the convex hull of the set both in the original space and in an extended space. Zhao and de Farias [20] gave a linear inequality formulation of $\operatorname{conv}(D I V)$ in its original space under some special assumptions on the parameters C_{0}, \ldots, C_{m} and b_{0}, \ldots, b_{m}.

Since a polynomial-time algorithm for the set $D I V$ was already known, one might wonder why we are interested in giving a polyhedral description of DIV. However recall that mixed-integer sets of the type (1)-(3) appear as substructures in multi-item lot-sizing problems, thus a linear inequality description of $\operatorname{conv}(D I V)$ leads to strong formulations for such problems.

In order to study the set $D I V$, we rewrite (1)-(3) in a slightly different form, as we need to have $C_{t} \neq C_{t^{\prime}}$ for $t \neq t^{\prime}$. In other words, we group together the inequalities (1) associated with the same capacity C_{t} and write the set $D I V$ as follows:

$$
\begin{align*}
& s+C_{k} z_{t} \geq b_{t}, \quad t \in I_{k}, 0 \leq k \leq n, \tag{4}\\
& s \geq 0, \tag{5}\\
& z_{t} \text { integer, } \quad t \in I_{0} \cup \cdots \cup I_{n}, \tag{6}
\end{align*}
$$

where I_{0}, \ldots, I_{n} are pairwise disjoint sets of indices and C_{k} / C_{k-1} is an integer greater than one for $1 \leq k \leq n$.

The main idea of our approach to construct a compact extended formulation for $\operatorname{conv}(D I V)$ can be summarized as follows: We consider the following expansion of s :

$$
s=\alpha_{0}(s)+\sum_{j=1}^{n+1} \alpha_{j}(s) C_{j-1}
$$

where $0 \leq \alpha_{j}(x)<\frac{C_{j}}{C_{j-1}}$ for $1 \leq j \leq n$, and $0 \leq \alpha_{0}(x)<C_{0}$. Furthermore $\alpha_{j}(x)$ is an integer for $1 \leq j \leq n+1$. We show that for fixed j, the number of possible values that $\alpha_{j}(s)$ can take over the set of vertices of $\operatorname{conv}(D I V)$ is bounded by a linear function of the number of constraints (1). To each of these possible values (say v), we associate an indicator variable that takes value 1 if $\alpha_{j}(s)=v$ and 0 otherwise. These indicator variables are the important additional variables of our compact extended formulation.

2 Expansion of a Number

Our arguments are based on the following expansion of a real number x :

$$
\begin{equation*}
x=\alpha_{0}(x)+\sum_{j=1}^{n+1} \alpha_{j}(x) C_{j-1} \tag{7}
\end{equation*}
$$

where $0 \leq \alpha_{j}(x)<\frac{C_{j}}{C_{j-1}}$ for $1 \leq j \leq n$, and $0 \leq \alpha_{0}(x)<C_{0}$. Furthermore $\alpha_{j}(x)$ is an integer for $1 \leq j \leq n+1$. Note that this expansion is unique. If we let

$$
f_{0}(x)=\alpha_{0}(x), \quad f_{k}(x)=f_{0}(x)+\sum_{j=1}^{k} \alpha_{j}(x) C_{j-1} \quad \text { for } 1 \leq k \leq n
$$

we have that

$$
\begin{equation*}
x=f_{k}(x)+\sum_{j=k+1}^{n+1} \alpha_{j}(x) C_{j-1} \text { for } 0 \leq k \leq n \tag{8}
\end{equation*}
$$

Therefore for $0 \leq k \leq n, f_{k}(x)$ is the remainder of the division of x by C_{k} and it can be checked that

$$
\begin{aligned}
\alpha_{k}(x) & =\left\lfloor\frac{f_{k}(x)}{C_{k-1}}\right\rfloor=\frac{f_{k}(x)-f_{k-1}(x)}{C_{k-1}} \text { for } 1 \leq k \leq n \\
\alpha_{n+1}(x) & =\left\lfloor\frac{x}{C_{n}}\right\rfloor=\frac{x-f_{n}(x)}{C_{n}} .
\end{aligned}
$$

We also define $\Delta_{k}(x)$ as the integer quotient of the division of x by C_{k}, i.e.

$$
\begin{equation*}
\Delta_{k}(x)=\frac{x-f_{k}(x)}{C_{k}}=\sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_{k}} \alpha_{j}(x) \text { for } 0 \leq k \leq n . \tag{9}
\end{equation*}
$$

3 The Vertices of conv(DIV)

We consider the mixed-integer set $D I V$ defined by (4)-(6) with the divisibility assumption. That is, $C_{0}>0$ and for $1 \leq k \leq n, C_{k} / C_{k-1} \geq 2$ is an integer. Also $I_{j} \cap I_{k}=\varnothing$ for $j \neq k$ and we set $b_{l}:=0$ where $l \notin I_{0} \cup \cdots \cup I_{n}$. For $0 \leq k \leq n$, define $J_{k}=I_{k} \cup I_{k+1} \cup \cdots \cup I_{n} \cup\{l\}$.

We give an extended formulation for $\operatorname{conv}(D I V)$ with $\mathcal{O}(m n)$ constraints and variables, where $m=\left|I_{0}\right|+\cdots+\left|I_{n}\right|$. The first step is studying the vertices of the polyhedron conv $(D I V)$. Several properties of the vertices of conv $(D I V)$ were given by Zhao and de Farias [20], who also described an algorithm to list all the vertices. We introduce here the properties that will be needed for our formulation.

Given s and an index $1 \leq k \leq n$, for $t \in J_{0}$ define

$$
b_{t}^{k}= \begin{cases}b_{t}+C_{k} & \text { if } f_{k}\left(b_{t}\right)>f_{k}(s) \\ b_{t} & \text { if } f_{k}\left(b_{t}\right) \leq f_{k}(s)\end{cases}
$$

Lemma 1. Consider indices $0 \leq k \leq \ell$. Then, for $t \in I_{\ell}$, the inequality

$$
\begin{equation*}
\Delta_{k}(s)+\frac{C_{\ell}}{C_{k}} z_{t} \geq \Delta_{k}\left(b_{t}^{k}\right) \tag{10}
\end{equation*}
$$

is valid for $\operatorname{conv}(D I V)$ and implies inequality $s+C_{\ell} z_{t} \geq b_{t}$.

Proof. Expanding s and b_{t} as in the first part of (9), inequality $s+C_{\ell} z_{t} \geq b_{t}$ can be rewritten as

$$
\Delta_{k}(s)+\frac{C_{\ell}}{C_{k}} z_{t} \geq \Delta_{k}\left(b_{t}\right)+\frac{f_{k}\left(b_{t}\right)-f_{k}(s)}{C_{k}}
$$

Since $\ell \geq k, \Delta_{k}(s)+\frac{C_{\ell}}{C_{k}} z_{t}$ is an integer. Therefore

$$
\Delta_{k}(s)+\frac{C_{\ell}}{C_{k}} z_{t} \geq \Delta_{k}\left(b_{t}\right)+\left\lceil\frac{f_{k}\left(b_{t}\right)-f_{k}(s)}{C_{k}}\right\rceil=\Delta_{k}\left(b_{t}^{k}\right)
$$

This also shows that (10) implies the original inequality $s+C_{\ell} z_{t} \geq b_{t}$.
Note that (10) involves the term b_{t}^{k} and thus is not a linear inequality. We will show how to linearize this constraint, using the fact that for fixed k, the number b_{t}^{k} can take only two values.

Lemma 2. Let (\bar{s}, \bar{z}) be any vector in $\operatorname{conv}(D I V)$.

1. Given indices $1 \leq k \leq \ell$ and $t \in I_{\ell}$, if $\alpha_{k}(\bar{s}) \neq \alpha_{k}\left(b_{t}^{k-1}\right)$ then $\bar{s}+C_{\ell} \bar{z}_{t} \geq$ $b_{t}+C_{k-1}$.
2. Given an index $k \geq 1$, if $\alpha_{k}(\bar{s}) \neq 0$ then $\bar{s} \geq C_{k-1}$.

Proof. We prove the first statement. By Lemma $1,(\bar{s}, \bar{z})$ satisfies (10) for the pair of indices $k-1, \ell$, that is,

$$
\Delta_{k-1}(s)+\frac{C_{\ell}}{C_{k-1}} z_{t} \geq \Delta_{k-1}\left(b_{t}^{k-1}\right)
$$

By (9), the above inequality can be rewritten as

$$
\sum_{j=k}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_{j}(s)+\frac{C_{\ell}}{C_{k-1}} z_{t} \geq \sum_{j=k}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_{j}\left(b_{t}^{k-1}\right)
$$

or equivalently as

$$
\begin{equation*}
\sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_{j}(s)+\frac{C_{\ell}}{C_{k-1}} z_{t}-\sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_{j}\left(b_{t}^{k-1}\right) \geq \alpha_{k}\left(b_{t}^{k-1}\right)-\alpha_{k}(s) \tag{11}
\end{equation*}
$$

Since $\left\{\frac{C_{j-1}}{C_{k-1}}, k<j \leq n+1\right\}$ is a sequence of divisible integers and since $\ell \geq k$, the left-hand side of the above inequality is an integer multiple of C_{k} / C_{k-1}. Since the right-hand side is an integer satisfying $-C_{k} / C_{k-1}<\alpha_{k}\left(b_{t}^{k-1}\right)-\alpha_{k}(s)<$ C_{k} / C_{k-1}, this shows that if $\alpha_{k}(\bar{s}) \neq \alpha_{k}\left(b_{t}^{k-1}\right)$, then (11) cannot be tight for (\bar{s}, \bar{z}), thus

$$
\Delta_{k-1}(\bar{s})+\frac{C_{\ell}}{C_{k-1}} \bar{z}_{t} \geq \Delta_{k-1}\left(b_{t}^{k-1}\right)+1
$$

Since $b_{t}^{k-1}=b_{t}+C_{k-1}$ if $f_{k-1}\left(b_{t}\right)>f_{k-1}(\bar{s})$ and $b_{t}^{k-1}=b_{t}$ if $f_{k-1}\left(b_{t}\right) \leq$ $f_{k-1}(\bar{s})$, this shows that in both cases

$$
\frac{f_{k-1}(\bar{s})}{C_{k-1}}+\Delta_{k-1}(\bar{s})+\frac{C_{\ell}}{C_{k-1}} \bar{z}_{t} \geq \Delta_{k-1}\left(b_{t}\right)+\frac{f_{k-1}\left(b_{t}\right)}{C_{k-1}}+1
$$

Multiplying the above inequality by C_{k-1} gives $\bar{s}+C_{\ell} \bar{z}_{t} \geq b_{t}+C_{k-1}$.
The proof of the second statement is an immediate consequence of expansion (7).

Lemma 3. If (\bar{s}, \bar{z}) is a vertex of $\operatorname{conv}(D I V)$, then the following two properties hold:

1. $\alpha_{0}(\bar{s})=\alpha_{0}\left(b_{t}\right)$ for some $t \in J_{0}$.
2. For $1 \leq k \leq n$, $\alpha_{k}(\bar{s})=\alpha_{k}\left(b_{t}^{k-1}\right)$ for some $t \in J_{k}$.

Proof. Let (\bar{s}, \bar{z}) be a vertex of $\operatorname{conv}(D I V)$. Since \bar{z} is an integral vector, if 1 . is violated then there is $\varepsilon \neq 0$ such that $(\bar{s} \pm \varepsilon, \bar{z}) \in \operatorname{conv}(D I V)$, a contradiction.

Assume that 2. is violated, i.e. there is an index k such that $\alpha_{k}(\bar{s}) \neq \alpha_{k}\left(b_{t}^{k-1}\right)$ for all $t \in J_{k}$. In particular, for $t=l$ we have $\alpha_{k}(\bar{s}) \neq 0$. Consider the vector v_{k-1} defined as follows:

$$
s=-C_{k-1}, \quad z_{t}=\frac{C_{k-1}}{C_{\ell}}, t \in I_{\ell}, \ell \leq k-1, \quad z_{t}=0, t \in I_{\ell}, \ell>k-1
$$

By Lemma 2 we have that $s \geq C_{k-1}$ and $\bar{s}+C_{\ell} \bar{z}_{t} \geq b_{t}+C_{k-1}$ for $t \in I_{\ell}, \ell \geq k$. This shows that the vectors $(\bar{s}, \bar{z}) \pm v_{k-1}$ belong to $\operatorname{conv}(D I V)$. Hence (\bar{s}, \bar{z}) is not a vertex of $\operatorname{conv}(D I V)$.

We now introduce extra variables to model the possible values taken by s at a vertex of $\operatorname{conv}(D I V)$. The new variables are the following:

- $\Delta_{0}, w_{0, t}$ for $t \in J_{0}$;
- $\Delta_{k}, w_{k, t}^{\downarrow}, w_{k, t}^{\uparrow}$ for $1 \leq k \leq n$ and $t \in J_{k}$.

The role of the above variables is as follows:

- Variables Δ_{k} are the integer quotients of the division of s by C_{k}. That is, $\Delta_{k}=\Delta_{k}(s)$ as defined in (9).
- Variable $w_{0, t}=1$ whenever $\alpha_{0}(s)=\alpha_{0}\left(b_{t}\right)$ and $w_{0, t}=0$ otherwise.
- Variable $w_{k, t}^{\downarrow}=1$ whenever $\alpha_{k}(s)=\alpha_{k}\left(b_{t}\right)$ and $w_{k, t}^{\uparrow}=1$ whenever $\alpha_{k}(s)=$ $\alpha_{k}\left(b_{t}+C_{k-1}\right) ; w_{k, t}^{\downarrow}=w_{k, t}^{\uparrow}=0$ otherwise.

Consider the following conditions:

$$
\begin{gather*}
s=C_{0} \Delta_{0}+\sum_{i \in J_{0}} \alpha_{0}\left(b_{i}\right) w_{0, i}, \tag{12}\\
\Delta_{k-1}=\frac{C_{k}}{C_{k-1}} \Delta_{k}+\sum_{i \in J_{k}}\left(\alpha_{k}\left(b_{i}\right) w_{k, i}^{\downarrow}+\alpha_{k}\left(b_{i}+C_{k-1}\right) w_{k, i}^{\uparrow}\right), \quad 1 \leq k \leq n, \tag{13}\\
w_{0, i} \geq 0, i \in J_{0} ; \sum_{i \in J_{0}} w_{0, i}=1, \tag{14}\\
w_{k, i}^{\downarrow}, w_{k, i}^{\uparrow} \geq 0,: i \in J_{k}, 1 \leq k \leq n ; \sum_{i \in J_{k}}\left(w_{k, i}^{\downarrow}+w_{k, i}^{\uparrow}\right)=1, \quad 1 \leq k \leq n, \tag{15}\\
\sum_{\substack{i \in J_{0}: \\
\alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i} \geq w_{1, t}^{\downarrow}, \quad t \in J_{1}, \tag{16}\\
\sum_{\substack{i \in J_{k}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}}^{w_{k, i}^{\downarrow}+w_{k, i}^{\uparrow} \geq w_{k+1, t}^{\downarrow}, \quad t \in J_{k+1}, 1 \leq k \leq n-1}, \tag{17}\\
\alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{t}\right)+1 \tag{18}\\
\Delta_{k}, w_{0, i}, w_{k, i}^{\downarrow}, w_{k, i}^{\uparrow} \text { integer, } i \in J_{k}, 0 \leq k \leq n .
\end{gather*}
$$

Lemma 4. If (\bar{s}, \bar{z}) is a vertex of $\operatorname{conv}(D I V)$, then (\bar{s}, \bar{z}) can be completed to a vector $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ satisfying (12)-(18).

Proof. Given vertex (\bar{s}, \bar{z}), let i_{0} be any index in J_{0} such that $\alpha_{0}\left(b_{i_{0}}\right)=\alpha_{0}(\bar{s})$ (i_{0} exists by Lemma 3). Take $\bar{w}_{0, i_{0}}=1$ and $\bar{w}_{0, i}=0$ for $i \neq i_{0}$.
Now fix $k \geq 1$ and define

$$
T_{k}(\bar{s})=\left\{i \in J_{k}: \alpha_{k}(\bar{s})=\alpha_{k}\left(b_{i}\right), f_{k-1}(\bar{s}) \geq f_{k-1}\left(b_{i}\right)\right\}
$$

If $T_{k}(\bar{s}) \neq \varnothing$, then define i_{k} as any element in $T_{k}(\bar{s})$ such that $f_{k-1}\left(b_{i_{k}}\right)$ is maximum and take $\bar{w}_{k, i_{k}}^{\downarrow}=1$. Otherwise $\left(T_{k}(\bar{s})=\varnothing\right)$ define i_{k} as any index in J_{k} such that $\alpha_{k}(\bar{s})=\alpha_{k}\left(b_{i_{k}}+C_{k-1}\right)\left(i_{k}\right.$ exists by Lemma 3) and take $\bar{w}_{k, i_{k}}^{\uparrow}=1$. Finally take $\bar{\Delta}_{k}=\Delta_{k}(\bar{s})$ for $0 \leq k \leq n$.

We prove that the point thus constructed satisfies (12)-(18). To see that (12) is satisfied, note that

$$
C_{0} \bar{\Delta}_{0}+\sum_{i \in J_{0}} \alpha_{0}\left(b_{i}\right) \bar{w}_{0, i}=C_{0} \Delta_{0}(\bar{s})+\alpha_{0}\left(b_{i_{0}}\right)=C_{0} \Delta_{0}(\bar{s})+f_{0}\left(b_{i_{0}}\right)=\bar{s}
$$

To prove (13), note that the following chain of equations holds:

$$
\begin{aligned}
\frac{C_{k}}{C_{k-1}} \bar{\Delta}_{k}+\sum_{i \in J_{k}}\left(\alpha_{k}\left(b_{i}\right) \bar{w}_{k, i}^{\downarrow}+\right. & \left.\alpha_{k}\left(b_{i}+C_{k-1}\right) \bar{w}_{k, i}^{\uparrow}\right) \\
& =\frac{C_{k}}{C_{k-1}} \Delta_{k}(\bar{s})+\alpha_{k}(\bar{s})=\Delta_{k-1}(\bar{s})=\bar{\Delta}_{k-1}
\end{aligned}
$$

To see that (16) is verified, suppose that $\bar{w}_{1, t}^{\downarrow}=1$ for an index $t \in J_{1}$. Then necessarily $t=i_{1} \in T_{1}(\bar{s})$ and thus $f_{0}(\bar{s}) \geq f_{0}\left(b_{t}\right)$, that is, $\alpha_{0}(\bar{s}) \geq \alpha_{0}\left(b_{t}\right)$. Then $\alpha_{0}\left(b_{i_{0}}\right)=\alpha_{0}(\bar{s}) \geq \alpha_{0}\left(b_{t}\right)$ and (16) is satisfied.

We now consider (17) for $k \geq 1$. Suppose that $w_{k+1, t}^{\downarrow}=1$ for an index $t \in J_{k+1}$. Then necessarily $t=i_{k+1} \in T_{k+1}(\bar{s})$. Therefore $\alpha_{k+1}(\bar{s})=\alpha_{k+1}\left(b_{t}\right)$ and $f_{k}(\bar{s}) \geq f_{k}\left(b_{t}\right)$. This implies $\alpha_{k}(\bar{s}) \geq \alpha_{k}\left(b_{t}\right)$. We distinguish two cases.

1. Assume $\alpha_{k}(\bar{s}) \geq \alpha_{k}\left(b_{t}\right)+1$. If $T_{k}(\bar{s}) \neq \varnothing$ then $\bar{w}_{k, i}^{\downarrow}=1$ for an index $i \in J_{k}$ such that $\alpha_{k}\left(b_{i}\right)=\alpha_{k}(\bar{s}) \geq \alpha_{k}\left(b_{t}\right)+1$. Then $f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)$. If $T_{k}(\bar{s})=\varnothing$ then $\bar{w}_{k, i}^{\uparrow}=1$ for an index $i \in J_{k}$ such that $\alpha_{k}\left(b_{i}+C_{k-1}\right)=\alpha_{k}(\bar{s}) \geq$ $\alpha_{k}\left(b_{t}\right)+1$. In both cases (17) is satisfied.
2. Now assume $\alpha_{k}(\bar{s})=\alpha_{k}\left(b_{t}\right)$. In this case inequality $f_{k}(\bar{s}) \geq f_{k}\left(b_{t}\right)$ implies $f_{k-1}(\bar{s}) \geq f_{k-1}\left(b_{t}\right)$, thus $t \in T_{k}(\bar{s}) \neq \varnothing$. Then the choice of i_{k} shows that $\alpha_{k}\left(b_{i_{k}}\right)=\alpha_{k}(\bar{s})=\alpha_{k}\left(b_{t}\right)$ and $f_{k-1}\left(b_{i_{k}}\right) \geq f_{k-1}\left(b_{t}\right)$, thus $f_{k}\left(b_{i_{k}}\right) \geq f_{k}\left(b_{t}\right)$ and (17) is satisfied.

Constraints (14)-(15) and (18) are clearly satisfied.
We say that $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ is a standard completion of a vertex (\bar{s}, \bar{z}) if $\bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}$ are chosen as in the above proof. Then the above proof shows that every vertex of $\operatorname{conv}(D I V)$ has a standard completion satisfying (12)-(18).
Lemma 5. If ($\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}$) satisfies (12)-(18), then

$$
\begin{gathered}
f_{0}(s) \geq f_{0}\left(b_{t}\right) \text { if } \sum_{\substack{i \in J_{0}: \\
\alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i}=1, \\
f_{k}(s) \geq f_{k}\left(b_{t}\right) \text { if } \sum_{\substack{i \in J_{k}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}} w_{k, i}^{\downarrow}+\sum_{\substack{i \in J_{k}: \\
\alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{t}\right)+1}} w_{k, i}^{\uparrow}=1, \quad t \in J_{k}, k \geq 1 .
\end{gathered}
$$

Proof. Let $t \in J_{0}$ and assume that

$$
\sum_{\substack{i \in J_{0}: \\ \alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} \bar{w}_{0, i}=1
$$

holds. If $i \in J_{0}$ is the index such that $\bar{w}_{0, i}=1$ then, by $(12), f_{0}(\bar{s})=\alpha_{0}\left(b_{i}\right) \geq$ $\alpha_{0}\left(b_{t}\right)=f_{0}\left(b_{t}\right)$.

We now fix $0 \leq k<n$ and assume by induction that the result holds for any index $t \in J_{k}$. We have to prove that if

$$
\begin{equation*}
\sum_{\substack{i \in J_{k+1}: \\ f_{k+1}\left(b_{i}\right) \geq f_{k+1}\left(b_{t}\right)}} w_{k+1, i}^{\downarrow}+\sum_{\substack{i \in J_{k+1}: \\ \alpha_{k+1}\left(b_{i}+C_{k}\right) \geq \alpha_{k+1}\left(b_{t}\right)+1}} w_{k+1, i}^{\uparrow}=1 \tag{19}
\end{equation*}
$$

for some $t \in J_{k+1}$, then $f_{k+1}(\bar{s}) \geq f_{k+1}\left(b_{t}\right)$.
If $\bar{w}_{k+1, i}^{\uparrow}=1$ for some index $i \in J_{k+1}$, then (13) and the above equation give $\alpha_{k+1}(\bar{s})=\alpha_{k+1}\left(b_{i}+C_{k}\right) \geq \alpha_{k+1}\left(b_{t}\right)+1$, thus $f_{k+1}(\bar{s}) \geq f_{k+1}\left(b_{t}\right)$.

If $\bar{w}_{k+1, i}^{\downarrow}=1$ for some index $i \in J_{k+1}$, then (19) implies that $f_{k+1}\left(b_{i}\right) \geq$ $f_{k+1}\left(b_{t}\right)$, thus $\alpha_{k+1}\left(b_{i}\right) \geq \alpha_{k+1}\left(b_{t}\right)$. Assume first that $\alpha_{k+1}\left(b_{i}\right) \geq \alpha_{k+1}\left(b_{t}\right)+1$. Then $\alpha_{k+1}(\bar{s})=\alpha_{k+1}\left(b_{i}\right) \geq \alpha_{k+1}\left(b_{t}\right)+1$, thus $f_{k+1}(\bar{s}) \geq f_{k+1}\left(b_{t}\right)$.

Finally assume that $\bar{w}_{k+1, i}^{\downarrow}=1$ for some $i \in J_{k+1}$ such that $\alpha_{k+1}\left(b_{i}\right)=$ $\alpha_{k+1}\left(b_{t}\right)$. Since (19) implies $f_{k+1}\left(b_{i}\right) \geq f_{k+1}\left(b_{t}\right)$, we then have $f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)$. Inequality (17) for the index i implies that

$$
\sum_{\substack{j \in J_{k}: \\ f_{k}\left(b_{j}\right) \geq f_{k}\left(b_{i}\right)}} \bar{w}_{k, j}^{\downarrow}+\sum_{\substack{j \in J_{k}: \\ \alpha_{k}\left(b_{j}+C_{k-1}\right) \geq \alpha_{k}\left(b_{i}\right)+1}} \bar{w}_{k, j}^{\uparrow}=1 .
$$

Then, by induction, $f_{k}(\bar{s}) \geq f_{k}\left(b_{i}\right)$. This, together with inequality $f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)$ proven above, shows that $f_{k}(\bar{s}) \geq f_{k}\left(b_{t}\right)$. Using $\alpha_{k+1}(\bar{s})=\alpha_{k+1}\left(b_{i}\right)=\alpha_{k+1}\left(b_{t}\right)$, we conclude that $f_{k+1}(\bar{s}) \geq f_{k+1}\left(b_{t}\right)$.

Lemma 5 and the same argument used in the final part of the proof of Lemma 4 prove the following:

Remark 6. If $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ is a standard completion of a vertex (\bar{s}, \bar{z}) of $\operatorname{conv}(D I V)$, then

$$
\begin{gathered}
f_{0}(s) \geq f_{0}\left(b_{t}\right) \Longleftrightarrow \sum_{\substack{i \in J_{0}: \\
\alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i}=1, \quad t \in J_{0}, \\
f_{k}(s) \geq f_{k}\left(b_{t}\right) \Longleftrightarrow \sum_{\substack{i \in J_{k}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}} w_{k, i}^{\downarrow}+\sum_{\substack{i \in J_{k}: \\
\alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{t}\right)+1}} w_{k, i}^{\uparrow}=1, \quad t \in J_{k}, k \geq 1 .
\end{gathered}
$$

4 Linearizing (10)

Lemma 7. Let $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ be a vector satisfying (12)-(18). Then (s, z) satisfies inequality $s+C_{k} z_{t} \geq b_{t}$ if and only if $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ satisfies the inequality:

$$
\begin{gather*}
\Delta_{0}+\sum_{\substack{i \in J_{0}: \\
\alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i}+z_{t} \geq\left\lfloor\frac{b_{t}}{C_{0}}\right\rfloor+1 \quad \text { if } t \in J_{0}, \tag{20}\\
\Delta_{k}+\sum_{\substack{i \in J_{k}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}} w_{k, i}^{\downarrow}+\sum_{\substack{i \in J_{k}: \\
\alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{t}\right)+1}} w_{k, i}^{\uparrow}+z_{t} \geq\left\lfloor\frac{b_{t}}{C_{k}}\right\rfloor+1 \\
\quad \text { if } t \in J_{k}, k \geq 1 . \tag{21}
\end{gather*}
$$

Proof. We prove the following two facts: (i) if $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ is a standard completion of a vertex of conv $(D I V)$, then (20)-(21) hold; (ii) if the vector $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ satisfies (12)-(18) along with (20) (if $t \in J_{0}$) or (21) (if $t \in J_{k}$ with $k \geq 1$), then it also satisfies $s+C_{k} z_{t} \geq b_{t}$.

By Lemma 1 , inequality $s+C_{\ell} z_{t} \geq b_{t}$ is equivalent to $\Delta_{k}(s)+\frac{C_{\ell}}{C_{k}} z_{t} \geq \Delta_{k}\left(b_{t}^{k}\right)$ for $\ell \geq k$. In particular, for $\ell=k$ the latter inequality is in turn equivalent to the inequality $\Delta_{k}(s)+z_{t}+\delta \geq \Delta_{k}\left(b_{t}+C_{k}\right)=\left\lfloor\frac{b_{t}}{C_{k}}\right\rfloor+1$, where δ is a 0,1 variable that takes value 1 whenever $f_{k}(s) \geq f_{k}\left(b_{t}\right)$ and 0 otherwise.

If $t \in J_{0}$, by Remark 6 a standard completion $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow}\right)$ of any vertex (\bar{s}, \bar{z}) of $\operatorname{conv}(D I V)$ satisfies

$$
\sum_{\substack{i \in J_{0}: \\ \alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i}=1 \Longleftrightarrow f_{0}(s) \geq f_{0}\left(b_{t}\right)
$$

Then substituting the above expression for δ shows that $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow}\right)$ satisfies (20). If $t \in J_{k}$ with $k \geq 1$, the proof that $\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow}\right)$ satisfies (21) is similar. This proves (i).

By Lemma 5, with the above definition of δ, one observes that $\delta=0$ for every vector $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ satisfying (12)-(18) such that $f_{k}(s)<f_{k}\left(b_{t}\right)$. This implies (ii).

The following result is readily checked:
Remark 8. Let $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ be a vector satisfying (12)-(18). Then (s, z) satisfies inequality $s \geq 0$ if and only if $\left(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow}\right)$ satisfies the inequality

$$
\begin{equation*}
\Delta_{n} \geq 0 \tag{22}
\end{equation*}
$$

5 Strengthening (16)-(17)

Lemma 9. The following inequalities are valid for the set defined by (12)-(18) and dominate (16)-(17):

$$
\begin{gather*}
\sum_{\substack{i \in J_{0}: \\
\alpha_{0}\left(b_{i}\right) \geq \alpha_{0}\left(b_{t}\right)}} w_{0, i} \geq \sum_{\substack{i \in J_{1}: \\
f_{0}\left(b_{i}\right) \geq f_{0}\left(b_{t}\right)}} w_{1, i}^{\downarrow}, t \in J_{1} \tag{23}\\
\sum_{\substack{i \in J_{k}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}} w_{k, i}^{\downarrow}+\sum_{\substack{i \in J_{k}: \\
\alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{t}\right)+1}} w_{k, i}^{\uparrow} \geq \sum_{\substack{i \in J_{k+1}: \\
f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)}} w_{k+1, i}^{\downarrow} \\
t \in J_{k+1}, 1 \leq k \leq n-1 \tag{24}
\end{gather*}
$$

Proof. Fix $t \in J_{k+1}$ for $k \geq 1$ and define $L=\left\{i \in J_{k+1}: f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{t}\right)\right\}$. Inequality (24) can be derived by applying the Chvátal-Gomory procedure to the following $|L|+1$ inequalities, which are all valid for (12)-(18):

$$
\begin{equation*}
\sum_{\substack{i \in J_{k}: \\ f_{k}\left(b_{i}\right) \geq f_{k}\left(b_{j}\right)}} w_{k, i}^{\downarrow}+\sum_{\substack{i \in J_{k}: \\ \alpha_{k}\left(b_{i}+C_{k-1}\right) \geq \alpha_{k}\left(b_{j}\right)+1}} w_{k, i}^{\uparrow} \geq w_{k+1, j}^{\downarrow}, j \in L \tag{25}
\end{equation*}
$$

with multipliers $1 /|L|$ for each of (25) and $1-1 /|L|$ for (26). The derivation of (23) is similar.

6 The Main Result

Let Q be the polyhedron in the space of variables $x=\left(s, z, \Delta, w, w^{\downarrow}, w^{\uparrow}\right)$ defined by (12)-(15) together with (20)-(21), (22) and (23)-(24). We denote by $A x \sim b$ the system comprising such equations and inequalities.

Lemma 10. Let M be the submatrix of A indexed by the columns corresponding to variables $w, w^{\downarrow}, w^{\uparrow}$ and the rows corresponding to (14)-(15) and (23)-(24). The matrix M is totally unimodular.

Proof. We use a characterization of Ghouila-Houri [8], which states that a $0, \pm 1$ matrix $B=\left(b_{i j}\right)$ is totally unimodular if and only if for every row submatrix B^{\prime} of B, the set of row indices of B^{\prime} can be partitioned into two subsets R_{1}, R_{2} such that $\sum_{i \in R_{1}} b_{i j}-\sum_{i \in R_{2}} b_{i j} \in\{0, \pm 1\}$ for all column indices j.

We partition the rows of M into the submatrices M_{0}, \ldots, M_{n} defined as follows:

- M_{0} consists of the rows corresponding to equation (14) and inequalities (23) for $t \in J_{1}$;
- for $1 \leq k \leq n-1, M_{k}$ consists of the rows corresponding to equation (15) and inequalities (24) for $t \in J_{k+1}$;
- M_{n} consists of the row corresponding to equation (15) for $k=n$.

For each odd k, we multiply by -1 the rows of M that belongs to M_{k} and the columns of M corresponding to variables $w_{k, t}^{\downarrow}, w_{k, t}^{\uparrow}$ for all $t \in J_{k}$. Then M becomes a 0-1 matrix.

For $1 \leq k \leq n-1$, we order the rows of M_{k} as follows: first the row corresponding to (15), then those corresponding to (24) according to a non-decreasing order of the values $f_{k}\left(b_{t}\right)$. The order for the rows of M_{0} is analogous. Note that in every matrix M_{k} the support of any row, say the j-th row, contains that of the $(j+1)$-th row (in other words, the rows of M_{k} form a laminar family).

We now define a bipartition $\left(R_{1}, R_{2}\right)$ of the rows of M : for each odd k, we include in R_{1} the odd row indices of M_{k} and in R_{2} the even row indices; for each even k, we include in R_{1} the even row indices of M_{k} and in R_{2} the odd row indices. One can check that the condition of the theorem of Ghouila-Houri is thus satisfied for $B^{\prime}=M$. If B^{\prime} is a row submatrix of M, the bipartition is defined similarly.

Theorem 11. If $\bar{x}=\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ is a vertex of Q, then $\left(\bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ is an integral vector. It follows that the inequalities defining Q provide an extended formulation for the polyhedron $\operatorname{conv}(D I V)$ with $\mathcal{O}(m n)$ variables and constraints, where $m=\left|I_{0}\right|+\cdots+\left|I_{n}\right|$.

Proof. Note that the columns of A corresponding to variables s and z_{t} for $t \in I_{k}$ and $0 \leq k \leq n$ are unit columns (as s only appears in (12) and each variable z_{t} only appears in one of (20)-(21)).

Also note that in the subsystem of $A x \sim b$ comprising (13)-(15), (22) and (23)-(24) (i.e. with (12) and (20)-(21) removed) variables $\Delta_{0}, \ldots, \Delta_{n}$ appear
with nonzero coefficient only in (13) and (22). Furthermore the submatrix of A indexed by the rows corresponding to (13) and (22) and the columns corresponding to variables $\Delta_{0}, \ldots, \Delta_{n}$ is an upper triangular matrix with 1 on the diagonal.

Let $C x=d$ be a nonsingular subsystem of tight inequalities taken in $A x \sim$ b that defines a vertex $\bar{x}=\left(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}\right)$ of Q. The above observations show that (12)-(13), (20)-(21) and (22) must be present in this subsystem. Furthermore let C^{\prime} be the submatrix of C indexed by the columns corresponding to variables $w, w^{\downarrow}, w^{\uparrow}$ and the rows that do not correspond to (12)-(13), (20)(21) and (22). Then the computation of a determinant with Laplace expansion shows that $|\operatorname{det}(C)|=\left|\operatorname{det}\left(C^{\prime}\right)\right| \neq 0$.

Since C^{\prime} is a nonsingular submatrix of the matrix M defined in Lemma 10, by Lemma $10|\operatorname{det}(C)|=\left|\operatorname{det}\left(C^{\prime}\right)\right|=1$. Since all entries of A (except those corresponding to (12)) are integer and the right-hand side vector b is integral, by Cramer's rule we have that ($\bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}$) is an integral vector.

7 The Mixing Set with Divisible Capacities and Nonnegative Integer Variables

The mixing set with divisible capacities and nonnegativity bounds on the integer variables $D I V^{+}$is the following:

$$
\begin{aligned}
& s+C_{k} z_{t} \geq b_{t}, \quad t \in I_{k}, 0 \leq k \leq n, \\
& b_{l} \leq s \leq b_{u}, \\
& z_{t} \geq 0 \text { integer, } \quad t \in I_{0} \cup \cdots \cup I_{n},
\end{aligned}
$$

where the capacities C_{k} 's and the sets I_{k} 's are as in the previous sections.
Di Summa [6] gave a polynomial time algorithm to optimize a linear function over $D I V^{+}$. We discuss the problem of finding an extended formulation for the polyhedron $\operatorname{conv}\left(D I V^{+}\right)$which is compact.

We do not know how to incorporate the bounds $z_{t} \geq 0$ in a formulation of the type given for the polyhedron Q of Theorem 11, as the standard approach requires that the system, purged of the equations defining s and Δ_{k}, be defined by a totally unimodular matrix (see for instance $[3,12,15,18,19]$). However this is not the case, as discussed in the next paragraph. So we use an approach based on union of polyhedra in a manner described e.g. in $[1,4]$.

To this purpose, let $\left\{\beta_{1}, \ldots, \beta_{q}\right\}$ be the set of distinct values in the set $\left\{b_{i}\right.$: $\left.i \in I_{0} \cup \cdots \cup I_{n}, b_{l}<b_{i}<b_{u}\right\}$. Assume $\beta_{1}<\cdots<\beta_{q}$ and define $\beta_{0}:=b_{l}$ and $\beta_{q+1}:=b_{u}$. For each $0 \leq \ell \leq q$, let $D I V(\ell)$ be the following set:

$$
\begin{array}{cl}
s+C_{k} z_{i} \geq b_{i}, & i \in I_{k}: b_{i}>\beta_{\ell}, 0 \leq k \leq m \\
\beta_{\ell} \leq s \leq \beta_{\ell+1}, & \\
z_{i} \geq 0, & i \in I_{k}: b_{i} \leq \beta_{\ell}, 0 \leq k \leq m \\
z_{i} \text { integer, } & i \in I_{0} \cup \cdots \cup I_{m}
\end{array}
$$

We will use the following fact:

$$
\begin{equation*}
\operatorname{conv}\left(D I V^{+}\right)=\operatorname{conv}\left(\bigcup_{\ell=1}^{q} D I V(\ell)\right) \tag{27}
\end{equation*}
$$

We now examine the problem of finding extended formulations which are compact for the polyhedra $\operatorname{conv}(D I V(\ell))$. Note that $D I V(\ell)$ is the cartesian product of the following two sets:

$$
\begin{gathered}
s+C_{k} z_{i} \geq b_{i}, \quad i \in I_{k}: b_{i}>\beta_{\ell}, 0 \leq k \leq m, \\
\beta_{\ell} \leq s \leq \beta_{\ell+1}, \\
z_{i} \text { integer, } \quad i \in I_{k}: b_{i}>\beta_{\ell}, 0 \leq k \leq m,
\end{gathered}
$$

and

$$
\begin{array}{cl}
z_{i} \geq 0, & i \in I_{k}: b_{i} \leq \beta_{\ell}, 0 \leq k \leq m \\
z_{i} \text { integer, } & i \in I_{k}: b_{i} \leq \beta_{\ell}, 0 \leq k \leq m .
\end{array}
$$

If we denote by $U D I V(\ell)$ the first of the above two sets, then $\operatorname{conv}(D I V(\ell))=$ $\operatorname{conv}(U D I V(\ell)) \times\left\{z: z_{i} \geq 0\right\}$.

Remark that $U D I V(\ell)$ is a mixing set with divisible capacities without nonnegativity bounds on the integer variables, except that now we have an upper bound $s \leq \beta_{\ell+1}$. A compact extended formulation for $U D I V(\ell)$ can be derived by using the same ideas presented in this paper (but there are more technicalities) and can be found in [7].

Using (27) and a classical result of Balas [2], a compact extended formulation for $\operatorname{conv}\left(D I V^{+}\right)$can be derived from the compact extended formulations of the q polyhedra $\operatorname{conv}(D I V(\ell))$.

7.1 An Instance with non-TU Matrix

We show an instance of $D I V$ for which the formulation given by the inequalities describing Q in Theorem 11, purged of the equations defining s and Δ_{k}, is not defined by a totally unimodular matrix. The instance is the following:

$$
\begin{gathered}
s+z_{1} \geq 0.1 \\
s+10 z_{2} \geq 6.3 \\
s+100 z_{3} \geq 81.4, \\
s+100 z_{4} \geq 48.6 \\
s \geq 0 ; z_{1}, \ldots, z_{4} \text { integer. }
\end{gathered}
$$

Note that $I_{0}=\{1\}, I_{1}=\{2\}$ and $I_{3}=\{3,4\}$.

Among the constraints defining the extended formulation of the convex hull of the above set, we consider the following four inequalities:

$$
\begin{gathered}
w_{1,2}^{\downarrow}+w_{1,2}^{\uparrow}+w_{1,3}^{\downarrow}+w_{1,3}^{\uparrow}+w_{1,4}^{\downarrow}+w_{1,4}^{\uparrow} \geq w_{2,3}^{\downarrow}+w_{2,4}^{\downarrow} \\
w_{0,3}+w_{0,4} \geq w_{1,3}^{\downarrow}+w_{1,4}^{\downarrow} \\
w_{1,4}^{\downarrow}+w_{1,4}^{\uparrow} \geq w_{2,4}^{\downarrow} \\
\Delta_{1}+w_{1,2}^{\downarrow}+w_{1,2}^{\uparrow}+w_{1,4}^{\downarrow}+w_{1,4}^{\uparrow}+z_{2} \geq 1
\end{gathered}
$$

which correspond respectively to (24) for $k=1$ and $t=3,(23)$ for $t=3$, (24) for $k=1$ and $t=4$, and (21) for $k=1$ and $t=2$.

The constraint matrix of the above four inequalities is not totally unimodular, as the determinant of the column submatrix corresponding to variables $w_{1,4}^{\downarrow}, w_{1,3}^{\downarrow}, w_{2,4}^{\downarrow}, w_{1,2}^{\uparrow}$ is -2 .

8 Remarks and Open Questions

- The extended formulation presented here is based on the expansion $x=$ $\alpha_{0}(x)+\sum_{j=1}^{n+1} \alpha_{j}(x) C_{j-1}$ of a real number x and then exploits the fact that, if \bar{x} is a vertex of the polyhedron to be studied, then for fixed $0 \leq j \leq n+1$, there are few values that $\alpha_{j}(\bar{x})$ can take. This is essential for the extended formulation to be compact.
This can be seen as a nontrivial extension of the technique used by Miller and Wolsey [12] in the single capacity mixing set (i.e. $n=0$) to model a continuous variable x by taking $C_{0}=1$ and $x=\alpha_{0}(x)+\alpha_{1}(x) C_{0}$. Indeed, If one imposes in $D I V$ the further restriction that s is integer (which removes all the complexity in the single capacity mixing set), the complexity of DIV remains essentially unchanged.
$-C A P$ is the following mixed-integer set:

$$
\begin{array}{cl}
s_{i}+C_{t} z_{t} \geq b_{i t}, & 1 \leq i \leq q, 0 \leq t \leq m \\
s_{i} \geq b_{\ell_{i}}, & 1 \leq i \leq q \\
z_{t} \text { integer, } & 0 \leq t \leq m
\end{array}
$$

where again C_{0}, \ldots, C_{m} is a sequence of divisible numbers. Note that the set $D I V$ is a special case of $C A P$, obtained by taking $q=1$. What is the complexity of optimizing a linear function over $C A P$? Does $C A P$ admit a formulation that is computationally useful? These questions were investigated and answered by Miller and Wolsey [12] for the single capacity case.

- Our last question concerns the mixing set with arbitrary capacities, defined by (1)-(3) in the introduction of this paper. Again, what is the complexity of optimizing a linear function over (1)-(3)? In the case where the number of distinct capacities is small, does there exist an extended formulation which is compact?

References

1. A. Atamtürk. Strong formulations of robust mixed 0-1 programming. Mathematical Programming, 108:235-250, 2006.
2. E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics, 89:3-44, 1998.
3. M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey. Network formulations of mixed-integer programs. CORE Discussion Paper 2006/117, Université catholique de Louvain, Belgium, 2006. Accepted by Mathematics of Operations Research.
4. M. Conforti and L.A. Wolsey. Compact formulations as a union of polyhedra. Mathematical Programming, 2007. To appear (published online).
5. M. Constantino, A.J. Miller, and M. Van Vyve. Mixing MIR inequalities with two divisible coefficients. Manuscript, 2007.
6. M. Di Summa. The mixing set with divisible capacities. Manuscript, 2007.
7. M. Di Summa. Formulations of Mixed-Integer Sets Defined by Totally Unimodular Constraint Matrices. PhD thesis, Università degli Studi di Padova, Italy, 2008.
8. A. Ghouila-Houri. Caractérisations des matrices totalement unimodulaires. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, 254:1192-1194, 1962.
9. O. Günlük and Y. Pochet. Mixing mixed-integer inequalities. Mathematical Programming, 90:429-457, 2001.
10. M. Henk and R. Weismantel. Diophantine approximations and integer points of cones. Combinatorica, 22:401-408, 2002.
11. O. Marcotte. The cutting stock problem and integer rounding. Mathematical Programming, 33:82-92, 1985.
12. A.J. Miller and L.A. Wolsey. Tight formulations for some simple mixed integer programs and convex objective integer programs. Mathematical Programming, 98:73-88, 2003.
13. Y. Pochet and R. Weismantel. The sequential knapsack polytope. SIAM Journal on Optimization, 8:248-264, 1998.
14. Y. Pochet and L.A. Wolsey. Network design with divisible capacities: Aggregated flow and knapsack subproblems. In E. Balas, G. Cornuéjols, and R. Kannan, editors, Integer Programming and Combinatorial Optimization, pages 324-336. Carnegie Mellon University, 1992.
15. Y. Pochet and L.A. Wolsey. Polyhedra for lot-sizing with Wagner-Whitin costs. Mathematical Programming, 67:297-323, 1994.
16. Y. Pochet and L.A. Wolsey. Integer knapsack and flow covers with divisible coefficients: Polyhedra, optimization and separation. Discrete Applied Mathematics, 59:57-74, 1995.
17. Y. Pochet and L.A. Wolsey. Production Planning by Mixed Integer Programming. Springer, 2006.
18. M. Van Vyve. A Solution Approach of Production Planning Problems Based on Compact Formulations for Single-Item Lot-Sizing Models. PhD thesis, Faculté des Sciences Appliquées, Université catholique de Louvain, Belgium, 2003.
19. M. Van Vyve. Linear-programming extended formulations for the single-item lotsizing problem with backlogging and constant capacity. Mathematical Programming, 108:53-77, 2006.
20. M. Zhao and I.R. de Farias, Jr. The mixing-MIR set with divisible capacities. Mathematical Programming, 2007. To appear (published online).

[^0]: * This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.

