The Mixing Set with Divisible Capacities^{*}

Michele Conforti¹, Marco Di Summa¹, and Laurence A. Wolsey²

¹ Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova. Via Trieste 63, 35121 Padova, Italy. {conforti,mdsumma}@math.unipd.it

² Center for Operations Research and Econometrics (CORE), Université catholique de Louvain. 34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium.

laurence.wolsey@uclouvain.be

Abstract. Given rational numbers C_0, \ldots, C_m and b_0, \ldots, b_m , the mixing set with arbitrary capacities is the mixed-integer set defined by conditions

$$\begin{split} s + C_t z_t &\geq b_t, \quad 0 \leq t \leq m, \\ s \geq 0, \\ z_t \text{ integer}, \quad 0 \leq t \leq m. \end{split}$$

Such a set has applications in lot-sizing problems. We study the special case of divisible capacities, i.e. C_t/C_{t-1} is a positive integer for $1 \leq t \leq m$. Under this assumption, we give an extended formulation for the convex hull of the above set that uses a quadratic number of variables and constraints.

Keywords: mixed-integer programming, compact extended formulations, mixing sets.

1 Introduction

Given rational numbers C_0, \ldots, C_m and b_0, \ldots, b_m , the mixing set with arbitrary capacities is the mixed-integer set defined by conditions

$$s + C_t z_t \ge b_t, \quad 0 \le t \le m,\tag{1}$$

$$s \ge 0, \tag{2}$$

$$z_t$$
 integer, $0 \le t \le m$. (3)

The above set generalizes the *mixing set*, which is a set of the type (1)-(3) with $C_t = 1$ for all $0 \le t \le m$. The mixing set, which was introduced and studied by Günlük and Pochet [9] and further investigated by Miller and Wolsey [12], has played an important role in studying production planning problems (in particular lot-sizing [17]).

^{*} This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.

When the values of the capacities C_t are arbitrary, (1)–(3) constitutes a relaxation of lot-sizing problems where different batch sizes or velocities of the machines are allowed. Giving a linear inequality description of the convex hull of such a set seems to be difficult and indeed it is not known whether linear optimization over (1)–(3) can be carried out in polynomial time.

We consider here the special case of a set defined by (1)–(3) where the capacities form a sequence of divisible numbers: that is, C_t/C_{t-1} is a positive integer for $1 \leq t \leq m$. We call such a set the *mixing set with divisible capacities* and we denote it by *DIV*. Our main result is a compact extended formulation for the polyhedron conv(*DIV*), the convex hull of *DIV*.

Here we use the following terminology. A formulation of a polyhedron P (in its original space) is a description of P as the intersection of a finite number of half-spaces. So it consists of a system of linear inequalities $Cx \ge d$ such that $P = \{x : Cx \ge d\}$. A formulation of P is *extended* whenever it gives a polyhedral description of the type $Q = \{(x, \mu) : Ax + B\mu \ge d\}$ in a space that uses variables (x, μ) and includes the original x-space, so that P is the projection of Q onto the x-space.

If P is the convex hull of a mixed-integer set (such as the convex hull of the set defined by (1)-(3)), we say that a formulation is *compact* if its size (i.e. the number of inequalities and variables of the system defining P or Q as above) is bounded by a polynomial function of the description of the mixed-integer set (in our case the size of the system (1)-(2)).

The assumption of divisibility of the coefficients was exploited by several authors to tackle integer sets that are otherwise untractable, such as integer knapsack problems. Under the divisibility assumption, Marcotte [11] gave a simple formulation of the integer knapsack set without upper bounds on the variables. Pochet and Wolsey [16] studied the same set where the knapsack inequality is of the " \geq " type. Pochet and Weismantel [13] provided a linear inequality description of the knapsack set where all variables are bounded. Other hard problems studied under the assumption of divisibility of the coefficients include network design [14], lot-sizing problems [4] and the integer Carathéodory property for rational cones [10].

The mixing set with divisible capacities DIV was studied recently by Zhao and de Farias [20], who gave a polynomial-time algorithm to optimize a linear function over DIV (see also Di Summa [6]).

A formulation of the polyhedron conv(DIV) either in the original space or in an extended space was not known for the general case and such a formulation does not seem to be easily obtainable by applying known techniques for constructing compact extended formulations, such as taking unions of polyhedra [1, 4] or enumeration of fractional parts [12, 3, 18, 19].

A formulation of $\operatorname{conv}(DIV)$ was only known for some special cases. For the set DIV with $C_t = 1$ for $0 \le t \le m$ (i.e. the mixing set), a linear inequality description of the convex hull in the original space was given by Günlük and Pochet [9] and a compact extended formulation was obtained by Miller and Wolsey [12]. For the set DIV with only two distinct values of the capacities, Van Vyve [18] and Constantino, Miller and Van Vyve [5] gave a linear inequality description of the convex hull of the set both in the original space and in an extended space. Zhao and de Farias [20] gave a linear inequality formulation of conv(DIV) in its original space under some special assumptions on the parameters C_0, \ldots, C_m and b_0, \ldots, b_m .

Since a polynomial-time algorithm for the set DIV was already known, one might wonder why we are interested in giving a polyhedral description of DIV. However recall that mixed-integer sets of the type (1)–(3) appear as substructures in multi-item lot-sizing problems, thus a linear inequality description of conv(DIV) leads to strong formulations for such problems.

In order to study the set DIV, we rewrite (1)–(3) in a slightly different form, as we need to have $C_t \neq C_{t'}$ for $t \neq t'$. In other words, we group together the inequalities (1) associated with the same capacity C_t and write the set DIV as follows:

$$s + C_k z_t \ge b_t, \quad t \in I_k, \ 0 \le k \le n, \tag{4}$$

$$s \ge 0,$$
 (5)

< > \

$$z_t$$
 integer, $t \in I_0 \cup \dots \cup I_n$, (6)

where I_0, \ldots, I_n are pairwise disjoint sets of indices and C_k/C_{k-1} is an integer greater than one for $1 \le k \le n$.

The main idea of our approach to construct a compact extended formulation for conv(DIV) can be summarized as follows: We consider the following expansion of s:

$$s = \alpha_0(s) + \sum_{j=1}^{n+1} \alpha_j(s) C_{j-1}$$
,

where $0 \leq \alpha_j(x) < \frac{C_j}{C_{j-1}}$ for $1 \leq j \leq n$, and $0 \leq \alpha_0(x) < C_0$. Furthermore $\alpha_j(x)$ is an integer for $1 \leq j \leq n+1$. We show that for fixed j, the number of possible values that $\alpha_j(s)$ can take over the set of vertices of $\operatorname{conv}(DIV)$ is bounded by a linear function of the number of constraints (1). To each of these possible values (say v), we associate an indicator variable that takes value 1 if $\alpha_j(s) = v$ and 0 otherwise. These indicator variables are the important additional variables of our compact extended formulation.

2 Expansion of a Number

Our arguments are based on the following expansion of a real number x:

$$x = \alpha_0(x) + \sum_{j=1}^{n+1} \alpha_j(x) C_{j-1} \quad , \tag{7}$$

where $0 \leq \alpha_j(x) < \frac{C_j}{C_{j-1}}$ for $1 \leq j \leq n$, and $0 \leq \alpha_0(x) < C_0$. Furthermore $\alpha_j(x)$ is an integer for $1 \leq j \leq n+1$. Note that this expansion is unique. If we let

$$f_0(x) = \alpha_0(x), \quad f_k(x) = f_0(x) + \sum_{j=1}^k \alpha_j(x)C_{j-1} \text{ for } 1 \le k \le n$$
,

we have that

$$x = f_k(x) + \sum_{j=k+1}^{n+1} \alpha_j(x) C_{j-1} \text{ for } 0 \le k \le n .$$
(8)

Therefore for $0 \le k \le n$, $f_k(x)$ is the remainder of the division of x by C_k and it can be checked that

$$\alpha_k(x) = \left\lfloor \frac{f_k(x)}{C_{k-1}} \right\rfloor = \frac{f_k(x) - f_{k-1}(x)}{C_{k-1}} \quad \text{for } 1 \le k \le n ,$$
$$\alpha_{n+1}(x) = \left\lfloor \frac{x}{C_n} \right\rfloor = \frac{x - f_n(x)}{C_n} .$$

We also define $\Delta_k(x)$ as the integer quotient of the division of x by C_k , i.e.

$$\Delta_k(x) = \frac{x - f_k(x)}{C_k} = \sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_k} \alpha_j(x) \text{ for } 0 \le k \le n .$$
(9)

3 The Vertices of conv(DIV)

We consider the mixed-integer set DIV defined by (4)–(6) with the divisibility assumption. That is, $C_0 > 0$ and for $1 \le k \le n$, $C_k/C_{k-1} \ge 2$ is an integer. Also $I_j \cap I_k = \emptyset$ for $j \ne k$ and we set $b_l := 0$ where $l \notin I_0 \cup \cdots \cup I_n$. For $0 \le k \le n$, define $J_k = I_k \cup I_{k+1} \cup \cdots \cup I_n \cup \{l\}$.

We give an extended formulation for $\operatorname{conv}(DIV)$ with $\mathcal{O}(mn)$ constraints and variables, where $m = |I_0| + \cdots + |I_n|$. The first step is studying the vertices of the polyhedron $\operatorname{conv}(DIV)$. Several properties of the vertices of $\operatorname{conv}(DIV)$ were given by Zhao and de Farias [20], who also described an algorithm to list all the vertices. We introduce here the properties that will be needed for our formulation.

Given s and an index $1 \le k \le n$, for $t \in J_0$ define

$$b_t^k = \begin{cases} b_t + C_k & \text{if } f_k(b_t) > f_k(s) \\ b_t & \text{if } f_k(b_t) \le f_k(s) \end{cases}.$$

Lemma 1. Consider indices $0 \le k \le \ell$. Then, for $t \in I_{\ell}$, the inequality

$$\Delta_k(s) + \frac{C_\ell}{C_k} z_t \ge \Delta_k\left(b_t^k\right) \tag{10}$$

is valid for conv(DIV) and implies inequality $s + C_{\ell} z_t \ge b_t$.

Proof. Expanding s and b_t as in the first part of (9), inequality $s + C_{\ell} z_t \ge b_t$ can be rewritten as

$$\Delta_k(s) + \frac{C_\ell}{C_k} z_t \ge \Delta_k(b_t) + \frac{f_k(b_t) - f_k(s)}{C_k}$$

Since $\ell \geq k$, $\Delta_k(s) + \frac{C_\ell}{C_k} z_t$ is an integer. Therefore

$$\Delta_k(s) + \frac{C_\ell}{C_k} z_t \ge \Delta_k(b_t) + \left\lceil \frac{f_k(b_t) - f_k(s)}{C_k} \right\rceil = \Delta_k(b_t^k) \quad .$$

This also shows that (10) implies the original inequality $s + C_{\ell} z_t \ge b_t$. \Box

Note that (10) involves the term b_t^k and thus is not a linear inequality. We will show how to linearize this constraint, using the fact that for fixed k, the number b_t^k can take only two values.

Lemma 2. Let (\bar{s}, \bar{z}) be any vector in conv(DIV).

- 1. Given indices $1 \leq k \leq \ell$ and $t \in I_{\ell}$, if $\alpha_k(\bar{s}) \neq \alpha_k(b_t^{k-1})$ then $\bar{s} + C_{\ell}\bar{z}_t \geq b_t + C_{k-1}$.
- 2. Given an index $k \ge 1$, if $\alpha_k(\bar{s}) \ne 0$ then $\bar{s} \ge C_{k-1}$.

Proof. We prove the first statement. By Lemma 1, (\bar{s}, \bar{z}) satisfies (10) for the pair of indices $k - 1, \ell$, that is,

$$\Delta_{k-1}(s) + \frac{C_{\ell}}{C_{k-1}} z_t \ge \Delta_{k-1} \left(b_t^{k-1} \right) \quad .$$

By (9), the above inequality can be rewritten as

$$\sum_{j=k}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_j(s) + \frac{C_\ell}{C_{k-1}} z_t \ge \sum_{j=k}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_j\left(b_t^{k-1}\right) ,$$

or equivalently as

$$\sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_j(s) + \frac{C_\ell}{C_{k-1}} z_t - \sum_{j=k+1}^{n+1} \frac{C_{j-1}}{C_{k-1}} \alpha_j\left(b_t^{k-1}\right) \ge \alpha_k\left(b_t^{k-1}\right) - \alpha_k(s) \quad (11)$$

Since $\left\{\frac{C_{j-1}}{C_{k-1}}, k < j \le n+1\right\}$ is a sequence of divisible integers and since $\ell \ge k$, the left-hand side of the above inequality is an integer multiple of C_k/C_{k-1} . Since the right-hand side is an integer satisfying $-C_k/C_{k-1} < \alpha_k \left(b_t^{k-1}\right) - \alpha_k(s) < C_k/C_{k-1}$, this shows that if $\alpha_k(\bar{s}) \ne \alpha_k \left(b_t^{k-1}\right)$, then (11) cannot be tight for (\bar{s}, \bar{z}) , thus

$$\Delta_{k-1}(\bar{s}) + \frac{C_{\ell}}{C_{k-1}} \bar{z}_t \ge \Delta_{k-1} \left(b_t^{k-1} \right) + 1 \; .$$

Since $b_t^{k-1} = b_t + C_{k-1}$ if $f_{k-1}(b_t) > f_{k-1}(\bar{s})$ and $b_t^{k-1} = b_t$ if $f_{k-1}(b_t) \le f_{k-1}(\bar{s})$, this shows that in both cases

$$\frac{f_{k-1}(\bar{s})}{C_{k-1}} + \Delta_{k-1}(\bar{s}) + \frac{C_{\ell}}{C_{k-1}}\bar{z}_t \ge \Delta_{k-1}(b_t) + \frac{f_{k-1}(b_t)}{C_{k-1}} + 1 \quad .$$

Multiplying the above inequality by C_{k-1} gives $\bar{s} + C_{\ell} \bar{z}_t \ge b_t + C_{k-1}$.

The proof of the second statement is an immediate consequence of expansion (7). $\hfill \Box$

Lemma 3. If (\bar{s}, \bar{z}) is a vertex of conv(DIV), then the following two properties hold:

1.
$$\alpha_0(\bar{s}) = \alpha_0(b_t)$$
 for some $t \in J_0$.
2. For $1 \le k \le n$, $\alpha_k(\bar{s}) = \alpha_k(b_t^{k-1})$ for some $t \in J_k$

Proof. Let (\bar{s}, \bar{z}) be a vertex of conv(DIV). Since \bar{z} is an integral vector, if 1. is violated then there is $\varepsilon \neq 0$ such that $(\bar{s} \pm \varepsilon, \bar{z}) \in \text{conv}(DIV)$, a contradiction.

Assume that 2. is violated, i.e. there is an index k such that $\alpha_k(\bar{s}) \neq \alpha_k(b_t^{k-1})$ for all $t \in J_k$. In particular, for t = l we have $\alpha_k(\bar{s}) \neq 0$. Consider the vector v_{k-1} defined as follows:

$$s = -C_{k-1}, \ z_t = \frac{C_{k-1}}{C_{\ell}}, t \in I_{\ell}, \ell \le k-1, \ z_t = 0, t \in I_{\ell}, \ell > k-1$$

By Lemma 2 we have that $s \ge C_{k-1}$ and $\bar{s} + C_{\ell}\bar{z}_t \ge b_t + C_{k-1}$ for $t \in I_{\ell}, \ell \ge k$. This shows that the vectors $(\bar{s}, \bar{z}) \pm v_{k-1}$ belong to $\operatorname{conv}(DIV)$. Hence (\bar{s}, \bar{z}) is not a vertex of $\operatorname{conv}(DIV)$.

We now introduce extra variables to model the possible values taken by s at a vertex of conv(DIV). The new variables are the following:

$$\begin{aligned} &-\Delta_0, \, w_{0,t} \text{ for } t \in J_0; \\ &-\Delta_k, \, w_{k,t}^{\downarrow}, w_{k,t}^{\uparrow} \text{ for } 1 \leq k \leq n \text{ and } t \in J_k. \end{aligned}$$

The role of the above variables is as follows:

- Variables Δ_k are the integer quotients of the division of s by C_k . That is, $\Delta_k = \Delta_k(s)$ as defined in (9).
- Variable $w_{0,t} = 1$ whenever $\alpha_0(s) = \alpha_0(b_t)$ and $w_{0,t} = 0$ otherwise.
- Variable $w_{k,t}^{\downarrow} = 1$ whenever $\alpha_k(s) = \alpha_k(b_t)$ and $w_{k,t}^{\uparrow} = 1$ whenever $\alpha_k(s) = \alpha_k(b_t + C_{k-1})$; $w_{k,t}^{\downarrow} = w_{k,t}^{\uparrow} = 0$ otherwise.

Consider the following conditions:

$$s = C_0 \Delta_0 + \sum_{i \in J_0} \alpha_0(b_i) w_{0,i},$$
(12)

$$\Delta_{k-1} = \frac{C_k}{C_{k-1}} \Delta_k + \sum_{i \in J_k} \left(\alpha_k(b_i) w_{k,i}^{\downarrow} + \alpha_k(b_i + C_{k-1}) w_{k,i}^{\uparrow} \right), \quad 1 \le k \le n, \quad (13)$$

$$w_{0,i} \ge 0, \ i \in J_0; \ \sum_{i \in J_0} w_{0,i} = 1,$$
(14)

$$w_{k,i}^{\downarrow}, w_{k,i}^{\uparrow} \ge 0, : i \in J_k, \ 1 \le k \le n; \ \sum_{i \in J_k} \left(w_{k,i}^{\downarrow} + w_{k,i}^{\uparrow} \right) = 1, \ 1 \le k \le n,$$
(15)

$$\sum_{\substack{i \in J_0:\\\alpha_0(b_i) \ge \alpha_0(b_t)}} w_{0,i} \ge w_{1,t}^{\downarrow}, \quad t \in J_1,$$
(16)

$$\sum_{\substack{i \in J_k: \\ f_k(b_i) \ge f_k(b_t)}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_k: \\ \alpha_k(b_i + C_{k-1}) \ge \alpha_k(b_t) + 1}} w_{k,i}^{\uparrow} \ge w_{k+1,t}^{\downarrow}, \quad t \in J_{k+1}, \ 1 \le k \le n-1,$$

$$\Delta_k, w_{0,i}, w_{k,i}^{\downarrow}, w_{k,i}^{\uparrow} \text{ integer}, \quad i \in J_k, \ 0 \le k \le n.$$
(18)

Lemma 4. If (\bar{s}, \bar{z}) is a vertex of conv(DIV), then (\bar{s}, \bar{z}) can be completed to a vector $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ satisfying (12)–(18).

Proof. Given vertex (\bar{s}, \bar{z}) , let i_0 be any index in J_0 such that $\alpha_0(b_{i_0}) = \alpha_0(\bar{s})$ (i_0 exists by Lemma 3). Take $\bar{w}_{0,i_0} = 1$ and $\bar{w}_{0,i} = 0$ for $i \neq i_0$. Now fix $k \geq 1$ and define

$$T_k(\bar{s}) = \{ i \in J_k : \alpha_k(\bar{s}) = \alpha_k(b_i), \, f_{k-1}(\bar{s}) \ge f_{k-1}(b_i) \} \ .$$

If $T_k(\bar{s}) \neq \emptyset$, then define i_k as any element in $T_k(\bar{s})$ such that $f_{k-1}(b_{i_k})$ is maximum and take $\bar{w}_{k,i_k}^{\downarrow} = 1$. Otherwise $(T_k(\bar{s}) = \emptyset)$ define i_k as any index in J_k such that $\alpha_k(\bar{s}) = \alpha_k(b_{i_k} + C_{k-1})$ (i_k exists by Lemma 3) and take $\bar{w}_{k,i_k}^{\uparrow} = 1$. Finally take $\bar{\Delta}_k = \Delta_k(\bar{s})$ for $0 \le k \le n$.

We prove that the point thus constructed satisfies (12)–(18). To see that (12) is satisfied, note that

$$C_0\bar{\Delta}_0 + \sum_{i\in J_0} \alpha_0(b_i)\bar{w}_{0,i} = C_0\Delta_0(\bar{s}) + \alpha_0(b_{i_0}) = C_0\Delta_0(\bar{s}) + f_0(b_{i_0}) = \bar{s} \ .$$

To prove (13), note that the following chain of equations holds:

$$\frac{C_k}{C_{k-1}}\bar{\Delta}_k + \sum_{i\in J_k} \left(\alpha_k(b_i)\bar{w}_{k,i}^{\downarrow} + \alpha_k(b_i + C_{k-1})\bar{w}_{k,i}^{\uparrow} \right)$$
$$= \frac{C_k}{C_{k-1}}\Delta_k(\bar{s}) + \alpha_k(\bar{s}) = \Delta_{k-1}(\bar{s}) = \bar{\Delta}_{k-1} \quad .$$

To see that (16) is verified, suppose that $\bar{w}_{1,t}^{\downarrow} = 1$ for an index $t \in J_1$. Then necessarily $t = i_1 \in T_1(\bar{s})$ and thus $f_0(\bar{s}) \ge f_0(b_t)$, that is, $\alpha_0(\bar{s}) \ge \alpha_0(b_t)$. Then $\alpha_0(b_{i_0}) = \alpha_0(\bar{s}) \ge \alpha_0(b_t)$ and (16) is satisfied.

We now consider (17) for $k \geq 1$. Suppose that $w_{k+1,t}^{\downarrow} = 1$ for an index $t \in J_{k+1}$. Then necessarily $t = i_{k+1} \in T_{k+1}(\bar{s})$. Therefore $\alpha_{k+1}(\bar{s}) = \alpha_{k+1}(b_t)$ and $f_k(\bar{s}) \geq f_k(b_t)$. This implies $\alpha_k(\bar{s}) \geq \alpha_k(b_t)$. We distinguish two cases.

- 1. Assume $\alpha_k(\bar{s}) \geq \alpha_k(b_t) + 1$. If $T_k(\bar{s}) \neq \emptyset$ then $\bar{w}_{k,i}^{\perp} = 1$ for an index $i \in J_k$ such that $\alpha_k(b_i) = \alpha_k(\bar{s}) \geq \alpha_k(b_t) + 1$. Then $f_k(b_i) \geq f_k(b_t)$. If $T_k(\bar{s}) = \emptyset$ then $\bar{w}_{k,i}^{\uparrow} = 1$ for an index $i \in J_k$ such that $\alpha_k(b_i + C_{k-1}) = \alpha_k(\bar{s}) \geq \alpha_k(b_t) + 1$. In both cases (17) is satisfied.
- 2. Now assume $\alpha_k(\bar{s}) = \alpha_k(b_t)$. In this case inequality $f_k(\bar{s}) \ge f_k(b_t)$ implies $f_{k-1}(\bar{s}) \ge f_{k-1}(b_t)$, thus $t \in T_k(\bar{s}) \ne \emptyset$. Then the choice of i_k shows that $\alpha_k(b_{i_k}) = \alpha_k(\bar{s}) = \alpha_k(b_t)$ and $f_{k-1}(b_{i_k}) \ge f_{k-1}(b_t)$, thus $f_k(b_{i_k}) \ge f_k(b_t)$ and (17) is satisfied.

Constraints (14)–(15) and (18) are clearly satisfied.

We say that $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ is a standard completion of a vertex (\bar{s}, \bar{z}) if $\bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow}$ are chosen as in the above proof. Then the above proof shows that every vertex of conv(DIV) has a standard completion satisfying (12)-(18).

Lemma 5. If $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ satisfies (12)–(18), then

$$f_{0}(s) \geq f_{0}(b_{t}) \text{ if } \sum_{\substack{i \in J_{0}:\\\alpha_{0}(b_{i}) \geq \alpha_{0}(b_{t})}} w_{0,i} = 1, \qquad t \in J_{0},$$

$$f_{k}(s) \geq f_{k}(b_{t}) \text{ if } \sum_{\substack{i \in J_{k}:\\f_{k}(b_{i}) \geq f_{k}(b_{t})}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_{k}:\\\alpha_{k}(b_{i}+C_{k-1}) \geq \alpha_{k}(b_{t})+1}} w_{k,i}^{\uparrow} = 1, \quad t \in J_{k}, k \geq 1$$

Proof. Let $t \in J_0$ and assume that

$$\sum_{\substack{i \in J_0:\\\alpha_0(b_i) \ge \alpha_0(b_t)}} \bar{w}_{0,i} = 1$$

holds. If $i \in J_0$ is the index such that $\bar{w}_{0,i} = 1$ then, by (12), $f_0(\bar{s}) = \alpha_0(b_i) \ge \alpha_0(b_t) = f_0(b_t)$.

We now fix $0 \le k < n$ and assume by induction that the result holds for any index $t \in J_k$. We have to prove that if

$$\sum_{\substack{i \in J_{k+1}:\\f_{k+1}(b_i) \ge f_{k+1}(b_t)}} w_{k+1,i}^{\downarrow} + \sum_{\substack{i \in J_{k+1}:\\\alpha_{k+1}(b_i+C_k) \ge \alpha_{k+1}(b_t)+1}} w_{k+1,i}^{\uparrow} = 1$$
(19)

for some $t \in J_{k+1}$, then $f_{k+1}(\overline{s}) \ge f_{k+1}(b_t)$.

If $\bar{w}_{k+1,i}^{\uparrow} = 1$ for some index $i \in J_{k+1}$, then (13) and the above equation give $\alpha_{k+1}(\bar{s}) = \alpha_{k+1}(b_i + C_k) \ge \alpha_{k+1}(b_t) + 1$, thus $f_{k+1}(\bar{s}) \ge f_{k+1}(b_t)$.

If $\bar{w}_{k+1,i}^{\downarrow} = 1$ for some index $i \in J_{k+1}$, then (19) implies that $f_{k+1}(b_i) \geq f_{k+1}(b_t)$, thus $\alpha_{k+1}(b_i) \geq \alpha_{k+1}(b_t)$. Assume first that $\alpha_{k+1}(b_i) \geq \alpha_{k+1}(b_t) + 1$. Then $\alpha_{k+1}(\bar{s}) = \alpha_{k+1}(b_i) \geq \alpha_{k+1}(b_t) + 1$, thus $f_{k+1}(\bar{s}) \geq f_{k+1}(b_t)$.

Finally assume that $\bar{w}_{k+1,i}^{\downarrow} = 1$ for some $i \in J_{k+1}$ such that $\alpha_{k+1}(b_i) = \alpha_{k+1}(b_t)$. Since (19) implies $f_{k+1}(b_i) \ge f_{k+1}(b_t)$, we then have $f_k(b_i) \ge f_k(b_t)$. Inequality (17) for the index *i* implies that

$$\sum_{\substack{j \in J_k: \\ f_k(b_j) \ge f_k(b_i)}} \bar{w}_{k,j}^{\downarrow} + \sum_{\substack{j \in J_k: \\ \alpha_k(b_j + C_{k-1}) \ge \alpha_k(b_i) + 1}} \bar{w}_{k,j}^{\uparrow} = 1 .$$

Then, by induction, $f_k(\bar{s}) \ge f_k(b_i)$. This, together with inequality $f_k(b_i) \ge f_k(b_t)$ proven above, shows that $f_k(\bar{s}) \ge f_k(b_t)$. Using $\alpha_{k+1}(\bar{s}) = \alpha_{k+1}(b_i) = \alpha_{k+1}(b_t)$, we conclude that $f_{k+1}(\bar{s}) \ge f_{k+1}(b_t)$.

Lemma 5 and the same argument used in the final part of the proof of Lemma 4 prove the following:

Remark 6. If $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ is a standard completion of a vertex (\bar{s}, \bar{z}) of conv(DIV), then

$$f_0(s) \ge f_0(b_t) \Longleftrightarrow \sum_{\substack{i \in J_0:\\\alpha_0(b_i) \ge \alpha_0(b_t)}} w_{0,i} = 1, \qquad t \in J_0,$$

$$f_k(s) \ge f_k(b_t) \Longleftrightarrow \sum_{\substack{i \in J_k:\\f_k(b_i) \ge f_k(b_t)}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_k:\\\alpha_k(b_i+C_{k-1}) \ge \alpha_k(b_t)+1}} w_{k,i}^{\uparrow} = 1, \quad t \in J_k, k \ge 1.$$

4 Linearizing (10)

Lemma 7. Let $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ be a vector satisfying (12)–(18). Then (s, z) satisfies inequality $s + C_k z_t \ge b_t$ if and only if $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ satisfies the inequality:

$$\Delta_{0} + \sum_{\substack{i \in J_{0}:\\\alpha_{0}(b_{i}) \ge \alpha_{0}(b_{t})}} w_{0,i} + z_{t} \ge \left\lfloor \frac{b_{t}}{C_{0}} \right\rfloor + 1 \quad if \ t \in J_{0},$$

$$+ \sum_{\substack{i \in I_{1}:\\j \in I_{1}:}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in I_{1}:\\j \in I_{1}:}} w_{k,i}^{\uparrow} + z_{t} \ge \left\lfloor \frac{b_{t}}{C_{k}} \right\rfloor + 1$$
(20)

$$\Delta_k + \sum_{\substack{i \in J_k:\\f_k(b_i) \ge f_k(b_t)}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_k:\\\alpha_k(b_i + C_{k-1}) \ge \alpha_k(b_t) + 1}} w_{k,i}^{\uparrow} + z_t \ge \left\lfloor \frac{b_t}{C_k} \right\rfloor + 1$$

$$if \ t \in J_k, \ k \ge 1.$$
(21)

Proof. We prove the following two facts: (i) if $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ is a standard completion of a vertex of conv(*DIV*), then (20)–(21) hold; (ii) if the vector $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ satisfies (12)–(18) along with (20) (if $t \in J_0$) or (21) (if $t \in J_k$ with $k \geq 1$), then it also satisfies $s + C_k z_t \geq b_t$.

By Lemma 1, inequality $s + C_{\ell} z_t \geq b_t$ is equivalent to $\Delta_k(s) + \frac{C_{\ell}}{C_k} z_t \geq \Delta_k \left(b_t^k\right)$ for $\ell \geq k$. In particular, for $\ell = k$ the latter inequality is in turn equivalent to the inequality $\Delta_k(s) + z_t + \delta \geq \Delta_k(b_t + C_k) = \left\lfloor \frac{b_t}{C_k} \right\rfloor + 1$, where δ is a 0, 1 variable that takes value 1 whenever $f_k(s) \geq f_k(b_t)$ and 0 otherwise.

If $t \in J_0$, by Remark 6 a standard completion $(\bar{s}, \bar{z}, \Delta, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow})$ of any vertex (\bar{s}, \bar{z}) of conv(DIV) satisfies

$$\sum_{\substack{i \in J_0:\\ \alpha_0(b_i) \ge \alpha_0(b_t)}} w_{0,i} = 1 \iff f_0(s) \ge f_0(b_t)$$

Then substituting the above expression for δ shows that $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow})$ satisfies (20). If $t \in J_k$ with $k \ge 1$, the proof that $(\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\uparrow}, \bar{w}^{\downarrow})$ satisfies (21) is similar. This proves (i).

By Lemma 5, with the above definition of δ , one observes that $\delta = 0$ for every vector $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ satisfying (12)–(18) such that $f_k(s) < f_k(b_t)$. This implies (ii).

The following result is readily checked:

Remark 8. Let $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ be a vector satisfying (12)–(18). Then (s, z) satisfies inequality $s \ge 0$ if and only if $(s, z, \Delta, w, w^{\uparrow}, w^{\downarrow})$ satisfies the inequality

$$\Delta_n \ge 0 \quad . \tag{22}$$

5 Strengthening (16)-(17)

Lemma 9. The following inequalities are valid for the set defined by (12)–(18) and dominate (16)–(17):

$$\sum_{\substack{i \in J_0: \\ \alpha_0(b_i) \ge \alpha_0(b_t)}} w_{0,i} \ge \sum_{\substack{i \in J_1: \\ f_0(b_i) \ge f_0(b_t)}} w_{1,i}^{\downarrow}, \quad t \in J_1,$$
(23)
$$\sum_{\substack{i \in J_k: \\ f_k(b_i) \ge f_k(b_t)}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_k: \\ \alpha_k(b_i + C_{k-1}) \ge \alpha_k(b_t) + 1}} w_{k,i}^{\uparrow} \ge \sum_{\substack{i \in J_{k+1}: \\ f_k(b_i) \ge f_k(b_t)}} w_{k+1,i}^{\downarrow},$$
$$t \in J_{k+1}, \ 1 \le k \le n-1.$$
(24)

Proof. Fix $t \in J_{k+1}$ for $k \ge 1$ and define $L = \{i \in J_{k+1} : f_k(b_i) \ge f_k(b_t)\}$. Inequality (24) can be derived by applying the Chvátal-Gomory procedure to the following |L| + 1 inequalities, which are all valid for (12)–(18):

$$\sum_{\substack{i \in J_k: \\ f_k(b_i) \ge f_k(b_j)}} w_{k,i}^{\downarrow} + \sum_{\substack{i \in J_k: \\ \alpha_k(b_i + C_{k-1}) \ge \alpha_k(b_j) + 1}} w_{k,i}^{\uparrow} \ge w_{k+1,j}^{\downarrow}, \quad j \in L,$$
(25)

$$1 \ge \sum_{j \in L} w_{k+1,j}^{\downarrow}, \tag{26}$$

with multipliers 1/|L| for each of (25) and 1 - 1/|L| for (26). The derivation of (23) is similar.

6 The Main Result

Let Q be the polyhedron in the space of variables $x = (s, z, \Delta, w, w^{\downarrow}, w^{\uparrow})$ defined by (12)–(15) together with (20)–(21), (22) and (23)–(24). We denote by $Ax \sim b$ the system comprising such equations and inequalities.

Lemma 10. Let M be the submatrix of A indexed by the columns corresponding to variables $w, w^{\downarrow}, w^{\uparrow}$ and the rows corresponding to (14)–(15) and (23)–(24). The matrix M is totally unimodular.

Proof. We use a characterization of Ghouila-Houri [8], which states that a $0, \pm 1$ matrix $B = (b_{ij})$ is totally unimodular if and only if for every row submatrix B' of B, the set of row indices of B' can be partitioned into two subsets R_1, R_2 such that $\sum_{i \in R_1} b_{ij} - \sum_{i \in R_2} b_{ij} \in \{0, \pm 1\}$ for all column indices j. We partition the rows of M into the submatrices M_0, \ldots, M_n defined as

We partition the rows of M into the submatrices M_0, \ldots, M_n defined as follows:

- M_0 consists of the rows corresponding to equation (14) and inequalities (23) for $t \in J_1$;
- for $1 \le k \le n-1$, M_k consists of the rows corresponding to equation (15) and inequalities (24) for $t \in J_{k+1}$;
- M_n consists of the row corresponding to equation (15) for k = n.

For each odd k, we multiply by -1 the rows of M that belongs to M_k and the columns of M corresponding to variables $w_{k,t}^{\downarrow}, w_{k,t}^{\uparrow}$ for all $t \in J_k$. Then M becomes a 0-1 matrix.

For $1 \leq k \leq n-1$, we order the rows of M_k as follows: first the row corresponding to (15), then those corresponding to (24) according to a non-decreasing order of the values $f_k(b_t)$. The order for the rows of M_0 is analogous. Note that in every matrix M_k the support of any row, say the *j*-th row, contains that of the (j + 1)-th row (in other words, the rows of M_k form a laminar family).

We now define a bipartition (R_1, R_2) of the rows of M: for each odd k, we include in R_1 the odd row indices of M_k and in R_2 the even row indices; for each even k, we include in R_1 the even row indices of M_k and in R_2 the odd row indices. One can check that the condition of the theorem of Ghouila-Houri is thus satisfied for B' = M. If B' is a row submatrix of M, the bipartition is defined similarly.

Theorem 11. If $\bar{x} = (\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ is a vertex of Q, then $(\bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ is an integral vector. It follows that the inequalities defining Q provide an extended formulation for the polyhedron conv(DIV) with $\mathcal{O}(mn)$ variables and constraints, where $m = |I_0| + \cdots + |I_n|$.

Proof. Note that the columns of A corresponding to variables s and z_t for $t \in I_k$ and $0 \le k \le n$ are unit columns (as s only appears in (12) and each variable z_t only appears in one of (20)–(21)).

Also note that in the subsystem of $Ax \sim b$ comprising (13)–(15), (22) and (23)–(24) (i.e. with (12) and (20)–(21) removed) variables $\Delta_0, \ldots, \Delta_n$ appear

with nonzero coefficient only in (13) and (22). Furthermore the submatrix of A indexed by the rows corresponding to (13) and (22) and the columns corresponding to variables $\Delta_0, \ldots, \Delta_n$ is an upper triangular matrix with 1 on the diagonal.

Let Cx = d be a nonsingular subsystem of tight inequalities taken in $Ax \sim b$ that defines a vertex $\bar{x} = (\bar{s}, \bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ of Q. The above observations show that (12)–(13), (20)–(21) and (22) must be present in this subsystem. Furthermore let C' be the submatrix of C indexed by the columns corresponding to variables $w, w^{\downarrow}, w^{\uparrow}$ and the rows that do not correspond to (12)–(13), (20)–(21) and (22). Then the computation of a determinant with Laplace expansion shows that $|\det(C)| = |\det(C')| \neq 0$.

Since C' is a nonsingular submatrix of the matrix M defined in Lemma 10, by Lemma 10 $|\det(C)| = |\det(C')| = 1$. Since all entries of A (except those corresponding to (12)) are integer and the right-hand side vector b is integral, by Cramer's rule we have that $(\bar{z}, \bar{\Delta}, \bar{w}, \bar{w}^{\downarrow}, \bar{w}^{\uparrow})$ is an integral vector. \Box

7 The Mixing Set with Divisible Capacities and Nonnegative Integer Variables

The mixing set with divisible capacities and nonnegativity bounds on the integer variables DIV^+ is the following:

$$s + C_k z_t \ge b_t, \quad t \in I_k, \ 0 \le k \le n,$$

$$b_l \le s \le b_u,$$

$$z_t \ge 0 \text{ integer}, \quad t \in I_0 \cup \dots \cup I_n,$$

where the capacities C_k 's and the sets I_k 's are as in the previous sections.

Di Summa [6] gave a polynomial time algorithm to optimize a linear function over DIV^+ . We discuss the problem of finding an extended formulation for the polyhedron conv (DIV^+) which is compact.

We do not know how to incorporate the bounds $z_t \ge 0$ in a formulation of the type given for the polyhedron Q of Theorem 11, as the standard approach requires that the system, purged of the equations defining s and Δ_k , be defined by a totally unimodular matrix (see for instance [3, 12, 15, 18, 19]). However this is not the case, as discussed in the next paragraph. So we use an approach based on union of polyhedra in a manner described e.g. in [1, 4].

To this purpose, let $\{\beta_1, \ldots, \beta_q\}$ be the set of distinct values in the set $\{b_i : i \in I_0 \cup \cdots \cup I_n, b_l < b_i < b_u\}$. Assume $\beta_1 < \cdots < \beta_q$ and define $\beta_0 := b_l$ and $\beta_{q+1} := b_u$. For each $0 \le \ell \le q$, let $DIV(\ell)$ be the following set:

$$\begin{split} s + C_k z_i &\geq b_i, \quad i \in I_k : b_i > \beta_\ell, \ 0 \leq k \leq m, \\ \beta_\ell &\leq s \leq \beta_{\ell+1}, \\ z_i &\geq 0, \qquad i \in I_k : b_i \leq \beta_\ell, \ 0 \leq k \leq m, \\ z_i \text{ integer}, \qquad i \in I_0 \cup \cdots \cup I_m. \end{split}$$

We will use the following fact:

$$\operatorname{conv}(DIV^+) = \operatorname{conv}\left(\bigcup_{\ell=1}^q DIV(\ell)\right) \quad . \tag{27}$$

We now examine the problem of finding extended formulations which are compact for the polyhedra $\operatorname{conv}(DIV(\ell))$. Note that $DIV(\ell)$ is the cartesian product of the following two sets:

$$\begin{split} s+C_k z_i \geq b_i, & i \in I_k : b_i > \beta_\ell, \ 0 \leq k \leq m, \\ \beta_\ell \leq s \leq \beta_{\ell+1}, \\ z_i \text{ integer}, & i \in I_k : b_i > \beta_\ell, \ 0 \leq k \leq m, \end{split}$$

and

$$z_i \ge 0, \qquad i \in I_k : b_i \le \beta_\ell, \ 0 \le k \le m$$

$$z_i \text{ integer}, \qquad i \in I_k : b_i \le \beta_\ell, \ 0 \le k \le m$$

If we denote by $UDIV(\ell)$ the first of the above two sets, then $conv(DIV(\ell)) = conv(UDIV(\ell)) \times \{z : z_i \ge 0\}.$

Remark that $UDIV(\ell)$ is a mixing set with divisible capacities without nonnegativity bounds on the integer variables, except that now we have an upper bound $s \leq \beta_{\ell+1}$. A compact extended formulation for $UDIV(\ell)$ can be derived by using the same ideas presented in this paper (but there are more technicalities) and can be found in [7].

Using (27) and a classical result of Balas [2], a compact extended formulation for $\operatorname{conv}(DIV^+)$ can be derived from the compact extended formulations of the q polyhedra $\operatorname{conv}(DIV(\ell))$.

7.1 An Instance with non-TU Matrix

We show an instance of DIV for which the formulation given by the inequalities describing Q in Theorem 11, purged of the equations defining s and Δ_k , is not defined by a totally unimodular matrix. The instance is the following:

$$s + z_1 \ge 0.1,$$

 $s + 10z_2 \ge 6.3,$
 $s + 100z_3 \ge 81.4,$
 $s + 100z_4 \ge 48.6,$
 $s \ge 0; z_1, \dots, z_4$ integer.

Note that $I_0 = \{1\}, I_1 = \{2\}$ and $I_3 = \{3, 4\}.$

Among the constraints defining the extended formulation of the convex hull of the above set, we consider the following four inequalities:

$$\begin{split} w_{1,2}^{\downarrow} + w_{1,2}^{\uparrow} + w_{1,3}^{\downarrow} + w_{1,3}^{\uparrow} + w_{1,4}^{\downarrow} + w_{1,4}^{\uparrow} \ge w_{2,3}^{\downarrow} + w_{2,4}^{\downarrow}, \\ w_{0,3} + w_{0,4} \ge w_{1,3}^{\downarrow} + w_{1,4}^{\downarrow}, \\ w_{1,4}^{\downarrow} + w_{1,4}^{\uparrow} \ge w_{2,4}^{\downarrow}, \\ \Delta_1 + w_{1,2}^{\downarrow} + w_{1,2}^{\uparrow} + w_{1,4}^{\downarrow} + w_{1,4}^{\uparrow} + z_2 \ge 1, \end{split}$$

which correspond respectively to (24) for k = 1 and t = 3, (23) for t = 3, (24) for k = 1 and t = 4, and (21) for k = 1 and t = 2.

The constraint matrix of the above four inequalities is not totally unimodular, as the determinant of the column submatrix corresponding to variables $w_{1,4}^{\downarrow}, w_{1,3}^{\downarrow}, w_{2,4}^{\downarrow}, w_{1,2}^{\uparrow}$ is -2.

8 Remarks and Open Questions

- The extended formulation presented here is based on the expansion $x = \alpha_0(x) + \sum_{j=1}^{n+1} \alpha_j(x) C_{j-1}$ of a real number x and then exploits the fact that, if \bar{x} is a vertex of the polyhedron to be studied, then for fixed $0 \le j \le n+1$, there are few values that $\alpha_j(\bar{x})$ can take. This is essential for the extended formulation to be compact.

This can be seen as a nontrivial extension of the technique used by Miller and Wolsey [12] in the single capacity mixing set (i.e. n = 0) to model a continuous variable x by taking $C_0 = 1$ and $x = \alpha_0(x) + \alpha_1(x)C_0$. Indeed, If one imposes in DIV the further restriction that s is integer (which removes all the complexity in the single capacity mixing set), the complexity of DIVremains essentially unchanged.

-CAP is the following mixed-integer set:

$$\begin{aligned} s_i + C_t z_t \geq b_{it}, & 1 \leq i \leq q, \ 0 \leq t \leq m, \\ s_i \geq b_{\ell_i}, & 1 \leq i \leq q, \\ z_t \text{ integer}, & 0 \leq t \leq m, \end{aligned}$$

where again C_0, \ldots, C_m is a sequence of divisible numbers. Note that the set DIV is a special case of CAP, obtained by taking q = 1. What is the complexity of optimizing a linear function over CAP? Does CAP admit a formulation that is computationally useful? These questions were investigated and answered by Miller and Wolsey [12] for the single capacity case.

- Our last question concerns the mixing set with arbitrary capacities, defined by (1)-(3) in the introduction of this paper. Again, what is the complexity of optimizing a linear function over (1)-(3)? In the case where the number of distinct capacities is small, does there exist an extended formulation which is compact?

References

- A. Atamtürk. Strong formulations of robust mixed 0-1 programming. *Mathematical Programming*, 108:235–250, 2006.
- E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics, 89:3–44, 1998.
- M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey. Network formulations of mixed-integer programs. CORE Discussion Paper 2006/117, Université catholique de Louvain, Belgium, 2006. Accepted by Mathematics of Operations Research.
- 4. M. Conforti and L.A. Wolsey. Compact formulations as a union of polyhedra. *Mathematical Programming*, 2007. To appear (published online).
- 5. M. Constantino, A.J. Miller, and M. Van Vyve. Mixing MIR inequalities with two divisible coefficients. Manuscript, 2007.
- 6. M. Di Summa. The mixing set with divisible capacities. Manuscript, 2007.
- M. Di Summa. Formulations of Mixed-Integer Sets Defined by Totally Unimodular Constraint Matrices. PhD thesis, Università degli Studi di Padova, Italy, 2008.
- A. Ghouila-Houri. Caractérisations des matrices totalement unimodulaires. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, 254:1192–1194, 1962.
- O. Günlük and Y. Pochet. Mixing mixed-integer inequalities. Mathematical Programming, 90:429–457, 2001.
- M. Henk and R. Weismantel. Diophantine approximations and integer points of cones. *Combinatorica*, 22:401–408, 2002.
- O. Marcotte. The cutting stock problem and integer rounding. Mathematical Programming, 33:82–92, 1985.
- A.J. Miller and L.A. Wolsey. Tight formulations for some simple mixed integer programs and convex objective integer programs. *Mathematical Programming*, 98:73–88, 2003.
- Y. Pochet and R. Weismantel. The sequential knapsack polytope. SIAM Journal on Optimization, 8:248–264, 1998.
- Y. Pochet and L.A. Wolsey. Network design with divisible capacities: Aggregated flow and knapsack subproblems. In E. Balas, G. Cornuéjols, and R. Kannan, editors, *Integer Programming and Combinatorial Optimization*, pages 324–336. Carnegie Mellon University, 1992.
- Y. Pochet and L.A. Wolsey. Polyhedra for lot-sizing with Wagner-Whitin costs. Mathematical Programming, 67:297–323, 1994.
- Y. Pochet and L.A. Wolsey. Integer knapsack and flow covers with divisible coefficients: Polyhedra, optimization and separation. *Discrete Applied Mathematics*, 59:57–74, 1995.
- 17. Y. Pochet and L.A. Wolsey. *Production Planning by Mixed Integer Programming*. Springer, 2006.
- M. Van Vyve. A Solution Approach of Production Planning Problems Based on Compact Formulations for Single-Item Lot-Sizing Models. PhD thesis, Faculté des Sciences Appliquées, Université catholique de Louvain, Belgium, 2003.
- M. Van Vyve. Linear-programming extended formulations for the single-item lotsizing problem with backlogging and constant capacity. *Mathematical Program*ming, 108:53–77, 2006.
- 20. M. Zhao and I.R. de Farias, Jr. The mixing-MIR set with divisible capacities. *Mathematical Programming*, 2007. To appear (published online).