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de Louvain. 34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium.

laurence.wolsey@uclouvain.be

Abstract. Given rational numbers C0, . . . , Cm and b0, . . . , bm, the mix-
ing set with arbitrary capacities is the mixed-integer set defined by con-
ditions

s + Ctzt ≥ bt, 0 ≤ t ≤ m,

s ≥ 0,

zt integer, 0 ≤ t ≤ m.

Such a set has applications in lot-sizing problems. We study the special
case of divisible capacities, i.e. Ct/Ct−1 is a positive integer for 1 ≤
t ≤ m. Under this assumption, we give an extended formulation for the
convex hull of the above set that uses a quadratic number of variables
and constraints.
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1 Introduction

Given rational numbers C0, . . . , Cm and b0, . . . , bm, the mixing set with arbitrary
capacities is the mixed-integer set defined by conditions

s + Ctzt ≥ bt, 0 ≤ t ≤ m, (1)
s ≥ 0, (2)

zt integer, 0 ≤ t ≤ m. (3)

The above set generalizes the mixing set, which is a set of the type (1)–(3) with
Ct = 1 for all 0 ≤ t ≤ m. The mixing set, which was introduced and studied by
Günlük and Pochet [9] and further investigated by Miller and Wolsey [12], has
played an important role in studying production planning problems (in particular
lot-sizing [17]).

? This work was partly carried out within the framework of ADONET, a European
network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.



When the values of the capacities Ct are arbitrary, (1)–(3) constitutes a
relaxation of lot-sizing problems where different batch sizes or velocities of the
machines are allowed. Giving a linear inequality description of the convex hull
of such a set seems to be difficult and indeed it is not known whether linear
optimization over (1)–(3) can be carried out in polynomial time.

We consider here the special case of a set defined by (1)–(3) where the capac-
ities form a sequence of divisible numbers: that is, Ct/Ct−1 is a positive integer
for 1 ≤ t ≤ m. We call such a set the mixing set with divisible capacities and we
denote it by DIV . Our main result is a compact extended formulation for the
polyhedron conv(DIV ), the convex hull of DIV .

Here we use the following terminology. A formulation of a polyhedron P (in
its original space) is a description of P as the intersection of a finite number of
half-spaces. So it consists of a system of linear inequalities Cx ≥ d such that
P = {x : Cx ≥ d}. A formulation of P is extended whenever it gives a polyhedral
description of the type Q = {(x, µ) : Ax+Bµ ≥ d} in a space that uses variables
(x, µ) and includes the original x-space, so that P is the projection of Q onto
the x-space.

If P is the convex hull of a mixed-integer set (such as the convex hull of the
set defined by (1)–(3)), we say that a formulation is compact if its size (i.e. the
number of inequalities and variables of the system defining P or Q as above) is
bounded by a polynomial function of the description of the mixed-integer set (in
our case the size of the system (1)–(2)).

The assumption of divisibility of the coefficients was exploited by several au-
thors to tackle integer sets that are otherwise untractable, such as integer knap-
sack problems. Under the divisibility assumption, Marcotte [11] gave a simple
formulation of the integer knapsack set without upper bounds on the variables.
Pochet and Wolsey [16] studied the same set where the knapsack inequality is of
the “≥” type. Pochet and Weismantel [13] provided a linear inequality descrip-
tion of the knapsack set where all variables are bounded. Other hard problems
studied under the assumption of divisibility of the coefficients include network
design [14], lot-sizing problems [4] and the integer Carathéodory property for
rational cones [10].

The mixing set with divisible capacities DIV was studied recently by Zhao
and de Farias [20], who gave a polynomial-time algorithm to optimize a linear
function over DIV (see also Di Summa [6]).

A formulation of the polyhedron conv(DIV ) either in the original space or
in an extended space was not known for the general case and such a formulation
does not seem to be easily obtainable by applying known techniques for con-
structing compact extended formulations, such as taking unions of polyhedra [1,
4] or enumeration of fractional parts [12, 3, 18, 19].

A formulation of conv(DIV ) was only known for some special cases. For the
set DIV with Ct = 1 for 0 ≤ t ≤ m (i.e. the mixing set), a linear inequal-
ity description of the convex hull in the original space was given by Günlük
and Pochet [9] and a compact extended formulation was obtained by Miller and
Wolsey [12]. For the set DIV with only two distinct values of the capacities,



Van Vyve [18] and Constantino, Miller and Van Vyve [5] gave a linear inequal-
ity description of the convex hull of the set both in the original space and in
an extended space. Zhao and de Farias [20] gave a linear inequality formula-
tion of conv(DIV ) in its original space under some special assumptions on the
parameters C0, . . . , Cm and b0, . . . , bm.

Since a polynomial-time algorithm for the set DIV was already known, one
might wonder why we are interested in giving a polyhedral description of DIV .
However recall that mixed-integer sets of the type (1)–(3) appear as substruc-
tures in multi-item lot-sizing problems, thus a linear inequality description of
conv(DIV ) leads to strong formulations for such problems.

In order to study the set DIV , we rewrite (1)–(3) in a slightly different form,
as we need to have Ct 6= Ct′ for t 6= t′. In other words, we group together the
inequalities (1) associated with the same capacity Ct and write the set DIV as
follows:

s + Ckzt ≥ bt, t ∈ Ik, 0 ≤ k ≤ n, (4)
s ≥ 0, (5)

zt integer, t ∈ I0 ∪ · · · ∪ In, (6)

where I0, . . . , In are pairwise disjoint sets of indices and Ck/Ck−1 is an integer
greater than one for 1 ≤ k ≤ n.

The main idea of our approach to construct a compact extended formula-
tion for conv(DIV ) can be summarized as follows: We consider the following
expansion of s:

s = α0(s) +
n+1∑

j=1

αj(s)Cj−1 ,

where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ n, and 0 ≤ α0(x) < C0. Furthermore αj(x)

is an integer for 1 ≤ j ≤ n + 1. We show that for fixed j, the number of possible
values that αj(s) can take over the set of vertices of conv(DIV ) is bounded by a
linear function of the number of constraints (1). To each of these possible values
(say v), we associate an indicator variable that takes value 1 if αj(s) = v and
0 otherwise. These indicator variables are the important additional variables of
our compact extended formulation.

2 Expansion of a Number

Our arguments are based on the following expansion of a real number x:

x = α0(x) +
n+1∑

j=1

αj(x)Cj−1 , (7)



where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ n, and 0 ≤ α0(x) < C0. Furthermore αj(x)

is an integer for 1 ≤ j ≤ n + 1. Note that this expansion is unique. If we let

f0(x) = α0(x), fk(x) = f0(x) +
k∑

j=1

αj(x)Cj−1 for 1 ≤ k ≤ n ,

we have that

x = fk(x) +
n+1∑

j=k+1

αj(x)Cj−1 for 0 ≤ k ≤ n . (8)

Therefore for 0 ≤ k ≤ n, fk(x) is the remainder of the division of x by Ck and
it can be checked that

αk(x) =
⌊

fk(x)
Ck−1

⌋
=

fk(x)− fk−1(x)
Ck−1

for 1 ≤ k ≤ n ,

αn+1(x) =
⌊

x

Cn

⌋
=

x− fn(x)
Cn

.

We also define ∆k(x) as the integer quotient of the division of x by Ck, i.e.

∆k(x) =
x− fk(x)

Ck
=

n+1∑

j=k+1

Cj−1

Ck
αj(x) for 0 ≤ k ≤ n . (9)

3 The Vertices of conv(DIV)

We consider the mixed-integer set DIV defined by (4)–(6) with the divisibility
assumption. That is, C0 > 0 and for 1 ≤ k ≤ n, Ck/Ck−1 ≥ 2 is an integer. Also
Ij ∩ Ik = ∅ for j 6= k and we set bl := 0 where l /∈ I0 ∪ · · · ∪ In. For 0 ≤ k ≤ n,
define Jk = Ik ∪ Ik+1 ∪ · · · ∪ In ∪ {l}.

We give an extended formulation for conv(DIV ) with O(mn) constraints
and variables, where m = |I0|+ · · ·+ |In|. The first step is studying the vertices
of the polyhedron conv(DIV ). Several properties of the vertices of conv(DIV )
were given by Zhao and de Farias [20], who also described an algorithm to list
all the vertices. We introduce here the properties that will be needed for our
formulation.

Given s and an index 1 ≤ k ≤ n, for t ∈ J0 define

bk
t =

{
bt + Ck if fk(bt) > fk(s)
bt if fk(bt) ≤ fk(s) .

Lemma 1. Consider indices 0 ≤ k ≤ `. Then, for t ∈ I`, the inequality

∆k(s) +
C`

Ck
zt ≥ ∆k

(
bk
t

)
(10)

is valid for conv(DIV ) and implies inequality s + C`zt ≥ bt.



Proof. Expanding s and bt as in the first part of (9), inequality s + C`zt ≥ bt

can be rewritten as

∆k(s) +
C`

Ck
zt ≥ ∆k(bt) +

fk(bt)− fk(s)
Ck

.

Since ` ≥ k, ∆k(s) + C`

Ck
zt is an integer. Therefore

∆k(s) +
C`

Ck
zt ≥ ∆k(bt) +

⌈
fk(bt)− fk(s)

Ck

⌉
= ∆k

(
bk
t

)
.

This also shows that (10) implies the original inequality s + C`zt ≥ bt. ut

Note that (10) involves the term bk
t and thus is not a linear inequality. We

will show how to linearize this constraint, using the fact that for fixed k, the
number bk

t can take only two values.

Lemma 2. Let (s̄, z̄) be any vector in conv(DIV ).

1. Given indices 1 ≤ k ≤ ` and t ∈ I`, if αk(s̄) 6= αk

(
bk−1
t

)
then s̄ + C`z̄t ≥

bt + Ck−1.
2. Given an index k ≥ 1, if αk(s̄) 6= 0 then s̄ ≥ Ck−1.

Proof. We prove the first statement. By Lemma 1, (s̄, z̄) satisfies (10) for the
pair of indices k − 1, `, that is,

∆k−1(s) +
C`

Ck−1
zt ≥ ∆k−1

(
bk−1
t

)
.

By (9), the above inequality can be rewritten as

n+1∑

j=k

Cj−1

Ck−1
αj(s) +

C`

Ck−1
zt ≥

n+1∑

j=k

Cj−1

Ck−1
αj

(
bk−1
t

)
,

or equivalently as

n+1∑

j=k+1

Cj−1

Ck−1
αj(s) +

C`

Ck−1
zt −

n+1∑

j=k+1

Cj−1

Ck−1
αj

(
bk−1
t

) ≥ αk

(
bk−1
t

)−αk(s) . (11)

Since
{

Cj−1
Ck−1

, k < j ≤ n + 1
}

is a sequence of divisible integers and since ` ≥ k,
the left-hand side of the above inequality is an integer multiple of Ck/Ck−1. Since
the right-hand side is an integer satisfying −Ck/Ck−1 < αk

(
bk−1
t

) − αk(s) <

Ck/Ck−1, this shows that if αk(s̄) 6= αk

(
bk−1
t

)
, then (11) cannot be tight for

(s̄, z̄), thus

∆k−1(s̄) +
C`

Ck−1
z̄t ≥ ∆k−1

(
bk−1
t

)
+ 1 .



Since bk−1
t = bt + Ck−1 if fk−1(bt) > fk−1(s̄) and bk−1

t = bt if fk−1(bt) ≤
fk−1(s̄), this shows that in both cases

fk−1(s̄)
Ck−1

+ ∆k−1(s̄) +
C`

Ck−1
z̄t ≥ ∆k−1(bt) +

fk−1(bt)
Ck−1

+ 1 .

Multiplying the above inequality by Ck−1 gives s̄ + C`z̄t ≥ bt + Ck−1.
The proof of the second statement is an immediate consequence of expan-

sion (7). ut

Lemma 3. If (s̄, z̄) is a vertex of conv(DIV ), then the following two properties
hold:

1. α0(s̄) = α0(bt) for some t ∈ J0.
2. For 1 ≤ k ≤ n, αk(s̄) = αk

(
bk−1
t

)
for some t ∈ Jk.

Proof. Let (s̄, z̄) be a vertex of conv(DIV ). Since z̄ is an integral vector, if 1. is
violated then there is ε 6= 0 such that (s̄± ε, z̄) ∈ conv(DIV ), a contradiction.

Assume that 2. is violated, i.e. there is an index k such that αk(s̄) 6= αk

(
bk−1
t

)
for all t ∈ Jk. In particular, for t = l we have αk(s̄) 6= 0. Consider the vector
vk−1 defined as follows:

s = −Ck−1, zt =
Ck−1

C`
, t ∈ I`, ` ≤ k − 1, zt = 0, t ∈ I`, ` > k − 1 .

By Lemma 2 we have that s ≥ Ck−1 and s̄ + C`z̄t ≥ bt + Ck−1 for t ∈ I`, ` ≥ k.
This shows that the vectors (s̄, z̄) ± vk−1 belong to conv(DIV ). Hence (s̄, z̄) is
not a vertex of conv(DIV ). ut

We now introduce extra variables to model the possible values taken by s at
a vertex of conv(DIV ). The new variables are the following:

– ∆0, w0,t for t ∈ J0;

– ∆k, w↓k,t, w
↑
k,t for 1 ≤ k ≤ n and t ∈ Jk.

The role of the above variables is as follows:

– Variables ∆k are the integer quotients of the division of s by Ck. That is,
∆k = ∆k(s) as defined in (9).

– Variable w0,t = 1 whenever α0(s) = α0(bt) and w0,t = 0 otherwise.

– Variable w↓k,t = 1 whenever αk(s) = αk(bt) and w↑k,t = 1 whenever αk(s) =
αk(bt + Ck−1); w↓k,t = w↑k,t = 0 otherwise.



Consider the following conditions:

s = C0∆0 +
∑

i∈J0

α0(bi)w0,i, (12)

∆k−1 =
Ck

Ck−1
∆k +

∑

i∈Jk

(
αk(bi)w

↓
k,i + αk(bi + Ck−1)w

↑
k,i

)
, 1 ≤ k ≤ n, (13)

w0,i ≥ 0, i ∈ J0;
∑

i∈J0

w0,i = 1, (14)

w↓k,i, w
↑
k,i ≥ 0, : i ∈ Jk, 1 ≤ k ≤ n;

∑

i∈Jk

(
w↓k,i + w↑k,i

)
= 1, 1 ≤ k ≤ n, (15)

∑

i∈J0:
α0(bi)≥α0(bt)

w0,i ≥ w↓1,t, t ∈ J1, (16)

∑

i∈Jk:
fk(bi)≥fk(bt)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bt)+1

w↑k,i ≥ w↓k+1,t, t ∈ Jk+1, 1 ≤ k ≤ n− 1,

(17)

∆k, w0,i, w
↓
k,i, w

↑
k,i integer, i ∈ Jk, 0 ≤ k ≤ n. (18)

Lemma 4. If (s̄, z̄) is a vertex of conv(DIV ), then (s̄, z̄) can be completed to a
vector

(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
satisfying (12)–(18).

Proof. Given vertex (s̄, z̄), let i0 be any index in J0 such that α0(bi0) = α0(s̄)
(i0 exists by Lemma 3). Take w̄0,i0 = 1 and w̄0,i = 0 for i 6= i0.
Now fix k ≥ 1 and define

Tk(s̄) = {i ∈ Jk : αk(s̄) = αk(bi), fk−1(s̄) ≥ fk−1(bi)} .

If Tk(s̄) 6= ∅, then define ik as any element in Tk(s̄) such that fk−1(bik
) is

maximum and take w̄↓k,ik
= 1. Otherwise (Tk(s̄) = ∅) define ik as any index in

Jk such that αk(s̄) = αk(bik
+Ck−1) (ik exists by Lemma 3) and take w̄↑k,ik

= 1.
Finally take ∆̄k = ∆k(s̄) for 0 ≤ k ≤ n.

We prove that the point thus constructed satisfies (12)–(18). To see that (12)
is satisfied, note that

C0∆̄0 +
∑

i∈J0

α0(bi)w̄0,i = C0∆0(s̄) + α0(bi0) = C0∆0(s̄) + f0(bi0) = s̄ .

To prove (13), note that the following chain of equations holds:

Ck

Ck−1
∆̄k +

∑

i∈Jk

(
αk(bi)w̄

↓
k,i + αk(bi + Ck−1)w̄

↑
k,i

)

=
Ck

Ck−1
∆k(s̄) + αk(s̄) = ∆k−1(s̄) = ∆̄k−1 .



To see that (16) is verified, suppose that w̄↓1,t = 1 for an index t ∈ J1. Then
necessarily t = i1 ∈ T1(s̄) and thus f0(s̄) ≥ f0(bt), that is, α0(s̄) ≥ α0(bt). Then
α0(bi0) = α0(s̄) ≥ α0(bt) and (16) is satisfied.

We now consider (17) for k ≥ 1. Suppose that w↓k+1,t = 1 for an index
t ∈ Jk+1. Then necessarily t = ik+1 ∈ Tk+1(s̄). Therefore αk+1(s̄) = αk+1(bt)
and fk(s̄) ≥ fk(bt). This implies αk(s̄) ≥ αk(bt). We distinguish two cases.

1. Assume αk(s̄) ≥ αk(bt) + 1. If Tk(s̄) 6= ∅ then w̄↓k,i = 1 for an index i ∈ Jk

such that αk(bi) = αk(s̄) ≥ αk(bt) + 1. Then fk(bi) ≥ fk(bt). If Tk(s̄) = ∅
then w̄↑k,i = 1 for an index i ∈ Jk such that αk(bi + Ck−1) = αk(s̄) ≥
αk(bt) + 1. In both cases (17) is satisfied.

2. Now assume αk(s̄) = αk(bt). In this case inequality fk(s̄) ≥ fk(bt) implies
fk−1(s̄) ≥ fk−1(bt), thus t ∈ Tk(s̄) 6= ∅. Then the choice of ik shows that
αk(bik

) = αk(s̄) = αk(bt) and fk−1(bik
) ≥ fk−1(bt), thus fk(bik

) ≥ fk(bt)
and (17) is satisfied.

Constraints (14)–(15) and (18) are clearly satisfied. ut
We say that

(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
is a standard completion of a vertex (s̄, z̄) if

∆̄, w̄, w̄↓, w̄↑ are chosen as in the above proof. Then the above proof shows that
every vertex of conv(DIV ) has a standard completion satisfying (12)–(18).

Lemma 5. If
(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
satisfies (12)–(18), then

f0(s) ≥ f0(bt) if
∑

i∈J0:
α0(bi)≥α0(bt)

w0,i = 1, t ∈ J0,

fk(s) ≥ fk(bt) if
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bt)+1

w↑k,i = 1, t ∈ Jk, k ≥ 1.

Proof. Let t ∈ J0 and assume that
∑

i∈J0:
α0(bi)≥α0(bt)

w̄0,i = 1

holds. If i ∈ J0 is the index such that w̄0,i = 1 then, by (12), f0(s̄) = α0(bi) ≥
α0(bt) = f0(bt).

We now fix 0 ≤ k < n and assume by induction that the result holds for any
index t ∈ Jk. We have to prove that if

∑

i∈Jk+1:
fk+1(bi)≥fk+1(bt)

w↓k+1,i +
∑

i∈Jk+1:
αk+1(bi+Ck)≥αk+1(bt)+1

w↑k+1,i = 1 (19)

for some t ∈ Jk+1, then fk+1(s̄) ≥ fk+1(bt).

If w̄↑k+1,i = 1 for some index i ∈ Jk+1, then (13) and the above equation give
αk+1(s̄) = αk+1(bi + Ck) ≥ αk+1(bt) + 1, thus fk+1(s̄) ≥ fk+1(bt).



If w̄↓k+1,i = 1 for some index i ∈ Jk+1, then (19) implies that fk+1(bi) ≥
fk+1(bt), thus αk+1(bi) ≥ αk+1(bt). Assume first that αk+1(bi) ≥ αk+1(bt) + 1.
Then αk+1(s̄) = αk+1(bi) ≥ αk+1(bt) + 1, thus fk+1(s̄) ≥ fk+1(bt).

Finally assume that w̄↓k+1,i = 1 for some i ∈ Jk+1 such that αk+1(bi) =
αk+1(bt). Since (19) implies fk+1(bi) ≥ fk+1(bt), we then have fk(bi) ≥ fk(bt).
Inequality (17) for the index i implies that

∑

j∈Jk:
fk(bj)≥fk(bi)

w̄↓k,j +
∑

j∈Jk:
αk(bj+Ck−1)≥αk(bi)+1

w̄↑k,j = 1 .

Then, by induction, fk(s̄) ≥ fk(bi). This, together with inequality fk(bi) ≥ fk(bt)
proven above, shows that fk(s̄) ≥ fk(bt). Using αk+1(s̄) = αk+1(bi) = αk+1(bt),
we conclude that fk+1(s̄) ≥ fk+1(bt). ut

Lemma 5 and the same argument used in the final part of the proof of
Lemma 4 prove the following:

Remark 6. If
(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
is a standard completion of a vertex (s̄, z̄) of

conv(DIV ), then

f0(s) ≥ f0(bt) ⇐⇒
∑

i∈J0:
α0(bi)≥α0(bt)

w0,i = 1, t ∈ J0,

fk(s) ≥ fk(bt) ⇐⇒
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bt)+1

w↑k,i = 1, t ∈ Jk, k ≥ 1.

4 Linearizing (10)

Lemma 7. Let
(
s, z, ∆,w, w↑, w↓

)
be a vector satisfying (12)–(18). Then (s, z)

satisfies inequality s + Ckzt ≥ bt if and only if
(
s, z,∆, w, w↑, w↓

)
satisfies the

inequality:

∆0 +
∑

i∈J0:
α0(bi)≥α0(bt)

w0,i + zt ≥
⌊

bt

C0

⌋
+ 1 if t ∈ J0, (20)

∆k +
∑

i∈Jk:
fk(bi)≥fk(bt)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bt)+1

w↑k,i + zt ≥
⌊

bt

Ck

⌋
+ 1

if t ∈ Jk, k ≥ 1. (21)

Proof. We prove the following two facts: (i) if
(
s, z, ∆, w,w↑, w↓

)
is a standard

completion of a vertex of conv(DIV ), then (20)–(21) hold; (ii) if the vector(
s, z, ∆, w,w↑, w↓

)
satisfies (12)–(18) along with (20) (if t ∈ J0) or (21) (if t ∈ Jk

with k ≥ 1), then it also satisfies s + Ckzt ≥ bt.



By Lemma 1, inequality s+C`zt ≥ bt is equivalent to ∆k(s)+ C`

Ck
zt ≥ ∆k

(
bk
t

)
for ` ≥ k. In particular, for ` = k the latter inequality is in turn equivalent to
the inequality ∆k(s)+zt +δ ≥ ∆k(bt +Ck) =

⌊
bt

Ck

⌋
+1, where δ is a 0, 1 variable

that takes value 1 whenever fk(s) ≥ fk(bt) and 0 otherwise.
If t ∈ J0, by Remark 6 a standard completion

(
s̄, z̄, ∆̄, w̄, w̄↑, w̄↓

)
of any

vertex (s̄, z̄) of conv(DIV ) satisfies
∑

i∈J0:
α0(bi)≥α0(bt)

w0,i = 1 ⇐⇒ f0(s) ≥ f0(bt) .

Then substituting the above expression for δ shows that
(
s̄, z̄, ∆̄, w̄, w̄↑, w̄↓

)
sat-

isfies (20). If t ∈ Jk with k ≥ 1, the proof that
(
s̄, z̄, ∆̄, w̄, w̄↑, w̄↓

)
satisfies (21)

is similar. This proves (i).
By Lemma 5, with the above definition of δ, one observes that δ = 0 for

every vector
(
s, z, ∆, w,w↑, w↓

)
satisfying (12)–(18) such that fk(s) < fk(bt).

This implies (ii). ut
The following result is readily checked:

Remark 8. Let
(
s, z, ∆,w, w↑, w↓

)
be a vector satisfying (12)–(18). Then (s, z)

satisfies inequality s ≥ 0 if and only if
(
s, z, ∆, w,w↑, w↓

)
satisfies the inequality

∆n ≥ 0 . (22)

5 Strengthening (16)–(17)

Lemma 9. The following inequalities are valid for the set defined by (12)–(18)
and dominate (16)–(17):

∑

i∈J0:
α0(bi)≥α0(bt)

w0,i ≥
∑

i∈J1:
f0(bi)≥f0(bt)

w↓1,i, t ∈ J1, (23)

∑

i∈Jk:
fk(bi)≥fk(bt)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bt)+1

w↑k,i ≥
∑

i∈Jk+1:
fk(bi)≥fk(bt)

w↓k+1,i,

t ∈ Jk+1, 1 ≤ k ≤ n− 1. (24)

Proof. Fix t ∈ Jk+1 for k ≥ 1 and define L = {i ∈ Jk+1 : fk(bi) ≥ fk(bt)}.
Inequality (24) can be derived by applying the Chvátal-Gomory procedure to
the following |L|+ 1 inequalities, which are all valid for (12)–(18):

∑

i∈Jk:
fk(bi)≥fk(bj)

w↓k,i +
∑

i∈Jk:
αk(bi+Ck−1)≥αk(bj)+1

w↑k,i ≥ w↓k+1,j , j ∈ L, (25)

1 ≥
∑

j∈L

w↓k+1,j , (26)

with multipliers 1/|L| for each of (25) and 1− 1/|L| for (26). The derivation of
(23) is similar. ut



6 The Main Result

Let Q be the polyhedron in the space of variables x =
(
s, z, ∆, w,w↓, w↑

)
defined

by (12)–(15) together with (20)–(21), (22) and (23)–(24). We denote by Ax ∼ b
the system comprising such equations and inequalities.

Lemma 10. Let M be the submatrix of A indexed by the columns corresponding
to variables w,w↓, w↑ and the rows corresponding to (14)–(15) and (23)–(24).
The matrix M is totally unimodular.

Proof. We use a characterization of Ghouila-Houri [8], which states that a 0,±1
matrix B = (bij) is totally unimodular if and only if for every row submatrix
B′ of B, the set of row indices of B′ can be partitioned into two subsets R1, R2

such that
∑

i∈R1
bij −

∑
i∈R2

bij ∈ {0,±1} for all column indices j.
We partition the rows of M into the submatrices M0, . . . ,Mn defined as

follows:

– M0 consists of the rows corresponding to equation (14) and inequalities (23)
for t ∈ J1;

– for 1 ≤ k ≤ n − 1, Mk consists of the rows corresponding to equation (15)
and inequalities (24) for t ∈ Jk+1;

– Mn consists of the row corresponding to equation (15) for k = n.

For each odd k, we multiply by −1 the rows of M that belongs to Mk and
the columns of M corresponding to variables w↓k,t, w

↑
k,t for all t ∈ Jk. Then M

becomes a 0-1 matrix.
For 1 ≤ k ≤ n − 1, we order the rows of Mk as follows: first the row corre-

sponding to (15), then those corresponding to (24) according to a non-decreasing
order of the values fk(bt). The order for the rows of M0 is analogous. Note that
in every matrix Mk the support of any row, say the j-th row, contains that of
the (j + 1)-th row (in other words, the rows of Mk form a laminar family).

We now define a bipartition (R1, R2) of the rows of M : for each odd k, we
include in R1 the odd row indices of Mk and in R2 the even row indices; for
each even k, we include in R1 the even row indices of Mk and in R2 the odd
row indices. One can check that the condition of the theorem of Ghouila-Houri
is thus satisfied for B′ = M . If B′ is a row submatrix of M , the bipartition is
defined similarly. ut
Theorem 11. If x̄ =

(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
is a vertex of Q, then

(
z̄, ∆̄, w̄, w̄↓, w̄↑

)
is an integral vector. It follows that the inequalities defining Q provide an ex-
tended formulation for the polyhedron conv(DIV ) with O(mn) variables and
constraints, where m = |I0|+ · · ·+ |In|.
Proof. Note that the columns of A corresponding to variables s and zt for t ∈ Ik

and 0 ≤ k ≤ n are unit columns (as s only appears in (12) and each variable zt

only appears in one of (20)–(21)).
Also note that in the subsystem of Ax ∼ b comprising (13)–(15), (22) and

(23)–(24) (i.e. with (12) and (20)–(21) removed) variables ∆0, . . . , ∆n appear



with nonzero coefficient only in (13) and (22). Furthermore the submatrix of
A indexed by the rows corresponding to (13) and (22) and the columns corre-
sponding to variables ∆0, . . . , ∆n is an upper triangular matrix with 1 on the
diagonal.

Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼
b that defines a vertex x̄ =

(
s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)
of Q. The above observations

show that (12)–(13), (20)–(21) and (22) must be present in this subsystem.
Furthermore let C ′ be the submatrix of C indexed by the columns corresponding
to variables w, w↓, w↑ and the rows that do not correspond to (12)–(13), (20)–
(21) and (22). Then the computation of a determinant with Laplace expansion
shows that | det(C)| = |det(C ′)| 6= 0.

Since C ′ is a nonsingular submatrix of the matrix M defined in Lemma 10,
by Lemma 10 |det(C)| = |det(C ′)| = 1. Since all entries of A (except those
corresponding to (12)) are integer and the right-hand side vector b is integral,
by Cramer’s rule we have that (z̄, ∆̄, w̄, w̄↓, w̄↑) is an integral vector. ut

7 The Mixing Set with Divisible Capacities and
Nonnegative Integer Variables

The mixing set with divisible capacities and nonnegativity bounds on the integer
variables DIV + is the following:

s + Ckzt ≥ bt, t ∈ Ik, 0 ≤ k ≤ n,

bl ≤ s ≤ bu,

zt ≥ 0 integer, t ∈ I0 ∪ · · · ∪ In,

where the capacities Ck’s and the sets Ik’s are as in the previous sections.
Di Summa [6] gave a polynomial time algorithm to optimize a linear function

over DIV +. We discuss the problem of finding an extended formulation for the
polyhedron conv(DIV +) which is compact.

We do not know how to incorporate the bounds zt ≥ 0 in a formulation of
the type given for the polyhedron Q of Theorem 11, as the standard approach
requires that the system, purged of the equations defining s and ∆k, be defined
by a totally unimodular matrix (see for instance [3, 12, 15, 18, 19]). However this
is not the case, as discussed in the next paragraph. So we use an approach based
on union of polyhedra in a manner described e.g. in [1, 4].

To this purpose, let {β1, . . . , βq} be the set of distinct values in the set {bi :
i ∈ I0 ∪ · · · ∪ In, bl < bi < bu}. Assume β1 < · · · < βq and define β0 := bl and
βq+1 := bu. For each 0 ≤ ` ≤ q, let DIV (`) be the following set:

s + Ckzi ≥ bi, i ∈ Ik : bi > β`, 0 ≤ k ≤ m,

β` ≤ s ≤ β`+1,

zi ≥ 0, i ∈ Ik : bi ≤ β`, 0 ≤ k ≤ m,

zi integer, i ∈ I0 ∪ · · · ∪ Im.



We will use the following fact:

conv(DIV +) = conv

(
q⋃

`=1

DIV (`)

)
. (27)

We now examine the problem of finding extended formulations which are
compact for the polyhedra conv(DIV (`)). Note that DIV (`) is the cartesian
product of the following two sets:

s + Ckzi ≥ bi, i ∈ Ik : bi > β`, 0 ≤ k ≤ m,

β` ≤ s ≤ β`+1,

zi integer, i ∈ Ik : bi > β`, 0 ≤ k ≤ m,

and

zi ≥ 0, i ∈ Ik : bi ≤ β`, 0 ≤ k ≤ m,

zi integer, i ∈ Ik : bi ≤ β`, 0 ≤ k ≤ m.

If we denote by UDIV (`) the first of the above two sets, then conv(DIV (`)) =
conv(UDIV (`))× {z : zi ≥ 0}.

Remark that UDIV (`) is a mixing set with divisible capacities without non-
negativity bounds on the integer variables, except that now we have an upper
bound s ≤ β`+1. A compact extended formulation for UDIV (`) can be derived
by using the same ideas presented in this paper (but there are more technicali-
ties) and can be found in [7].

Using (27) and a classical result of Balas [2], a compact extended formulation
for conv(DIV +) can be derived from the compact extended formulations of the
q polyhedra conv(DIV (`)).

7.1 An Instance with non-TU Matrix

We show an instance of DIV for which the formulation given by the inequalities
describing Q in Theorem 11, purged of the equations defining s and ∆k, is not
defined by a totally unimodular matrix. The instance is the following:

s + z1 ≥ 0.1,

s + 10z2 ≥ 6.3,

s + 100z3 ≥ 81.4,

s + 100z4 ≥ 48.6,

s ≥ 0; z1, . . . , z4 integer.

Note that I0 = {1}, I1 = {2} and I3 = {3, 4}.



Among the constraints defining the extended formulation of the convex hull
of the above set, we consider the following four inequalities:

w↓1,2 + w↑1,2 + w↓1,3 + w↑1,3 + w↓1,4 + w↑1,4 ≥ w↓2,3 + w↓2,4,

w0,3 + w0,4 ≥ w↓1,3 + w↓1,4,

w↓1,4 + w↑1,4 ≥ w↓2,4,

∆1 + w↓1,2 + w↑1,2 + w↓1,4 + w↑1,4 + z2 ≥ 1,

which correspond respectively to (24) for k = 1 and t = 3, (23) for t = 3, (24)
for k = 1 and t = 4, and (21) for k = 1 and t = 2.

The constraint matrix of the above four inequalities is not totally unimod-
ular, as the determinant of the column submatrix corresponding to variables
w↓1,4, w

↓
1,3, w

↓
2,4, w

↑
1,2 is −2.

8 Remarks and Open Questions

– The extended formulation presented here is based on the expansion x =
α0(x)+

∑n+1
j=1 αj(x)Cj−1 of a real number x and then exploits the fact that,

if x̄ is a vertex of the polyhedron to be studied, then for fixed 0 ≤ j ≤ n+1,
there are few values that αj(x̄) can take. This is essential for the extended
formulation to be compact.
This can be seen as a nontrivial extension of the technique used by Miller
and Wolsey [12] in the single capacity mixing set (i.e. n = 0) to model a
continuous variable x by taking C0 = 1 and x = α0(x)+α1(x)C0. Indeed, If
one imposes in DIV the further restriction that s is integer (which removes
all the complexity in the single capacity mixing set), the complexity of DIV
remains essentially unchanged.

– CAP is the following mixed-integer set:

si + Ctzt ≥ bit, 1 ≤ i ≤ q, 0 ≤ t ≤ m,

si ≥ b`i , 1 ≤ i ≤ q,

zt integer, 0 ≤ t ≤ m,

where again C0, . . . , Cm is a sequence of divisible numbers. Note that the
set DIV is a special case of CAP , obtained by taking q = 1. What is the
complexity of optimizing a linear function over CAP? Does CAP admit a
formulation that is computationally useful? These questions were investi-
gated and answered by Miller and Wolsey [12] for the single capacity case.

– Our last question concerns the mixing set with arbitrary capacities, defined
by (1)–(3) in the introduction of this paper. Again, what is the complexity
of optimizing a linear function over (1)–(3)? In the case where the number of
distinct capacities is small, does there exist an extended formulation which
is compact?
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