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Abstract. For a d-generated finite group G we consider the graph ∆d(G)
(swap graph) in which the vertices are the ordered generating d-tuples and
in which two vertices (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if

they differ only by one entry. It was conjectured by Tennant and Turner that
∆d(G) is a connected graph. We prove that this conjecture is true if G is a
finite soluble group.

1. Introduction

Let G be a finite group and let d(G) be the minimal number of generators of G.
For any integer d ≥ d(G), let Vd(G) = {(g1, . . . , gd) ∈ Gd | ⟨g1, . . . , gd⟩ = G} be the
set of all generating d-tuples of G. In [5] Tennant and Turner introduced the notion
of “swap equivalence”: the d-tuples γ1 and γ2 ∈ Vd(G) are said to be swap equiva-
lent if there is a sequence of elementary swaps passing through elements of Vd(G)
and leading from γ1 to γ2. An elementary swap is thought of as a transformation
changing one element of the sequence to an arbitrary element of G. The property of
this equivalence relation can be encoded in the “swap graph” ∆d(G): two vertices
(x1, . . . , xd), (y1, . . . , yd) ∈ Vd(G) are adjacent in the swap graph if and only if they
differ only by one entry. Tennant and Turner proposed the conjecture that ∆d(G)
is connected (swap conjecture). In [4] it is proved that the free metabelian group of
rank 3 does not satisfy this conjecture, but no counterexample is known in the class
of finite groups. In [1] it was proved that the conjecture is true if d ≥ d(G) + 1.
The case when d = d(G) is much more difficult. Partial results have been obtained
by the second author in [3], proving for example that a finite group G satisfies the
swap conjecture if the derived subgroup of G has odd order or is nilpotent. Here
we complete the investigation started in [3] obtaining a complete solution in the
soluble case.

Theorem 1. Let G be a finite soluble group. If d ≥ d(G), then the swap graph
∆d(G) is connected.

The proof depends on the solution of a combinatorial problem in linear algebra.
Denote by Mp×q(F ) the set of the p × q matrices with coefficients over the finite
field F . Let r and n be integers such that 0 ≤ r < n and let A ∈ Mr×n(F ) with
rank

(
A
)
= r. Moreover let ΩA be the set of matrices B ∈ M(n−r)×n(F ) with the

property that

det

(
A
B

)
̸= 0.

We define a graph ΓA whose vertices are the matrices in ΩA and in which two
vertices B1 and B2 are adjacent if and only if they differ only by one column. In [3]
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it is shown that, in order to settle the swap conjecture for the finite soluble groups,
it would suffice to prove that the graph ΓA is connected whenever r = 0 or r divides
n and (r, |F |) ̸= (1, 2). In [3] the connectivity of ΓA has been established only in
the case that |F | ≥ 3. Now we give a complete solution.

Theorem 2. Let F be a finite field and let A ∈ Mr×n(F ) be a matrix with
rank

(
A
)
= r, where 0 ≤ r < n. Then the graph ΓA is not connected if and

only if each of the following conditions is satisfied:

(i) |F | = 2,
(ii) r ≥ 1,
(iii) n = r + 1,
(iv) A has no all-zero column.

2. Proof of Theorem 2

We first prove that if conditions (i)–(iv) are not all satisfied, then ΓA is connected.
To this purpose, we fix two distinct nodes B and B′ of ΓA and show that there is a
path connecting them. We use the notation A = (a1, . . . , an), B = (b1, . . . , bn) and
B′ = (b′1, . . . , b

′
n) to indicate the columns of A, B and B′.

When |F | ≥ 3, our proof strategy relies on the following lemma.

Lemma 3. Let |F | ≥ 3. Suppose that there exist an index i ∈ {1, . . . , n} and
µ = t(µ1, . . . , µi−1, µi+1, . . . , µn) ∈ Fn−1 such that

(2.1)

(
a1 · · · ai−1 ai+1 · · · an
b1 · · · bi−1 bi+1 · · · bn

)
· µ =

(
ai
b′i

)
.

Pick any index j ̸= i such that µj ̸= 0. Then there exists y ∈ Fn−r such that B and

B̃ are connected nodes of ΓA, where B̃ is the matrix obtained from B by replacing
bi with b′i and bj with y.

Proof. Let C be the matrix obtained from B by replacing bj with some (at the

moment unknown) vector y ∈ Fn−r. Note that C and B̃ differ only in column i.

In the following we prove that it is possible to choose y such that det

(
A
C

)
̸= 0 and

det

(
A

B̃

)
̸= 0. This implies that B̃ is a node of ΓA adjacent to C, which is in turn

adjacent to B, thus concluding the proof of the lemma.
Define

(2.2) S = {λ ∈ Fn−1 | (a1, . . . , aj−1, aj+1, . . . , an)λ = aj}.

Since the matrix obtained from

(
A
C

)
by removing its jth column has rank n − 1,

we have that det

(
A
C

)
̸= 0 if and only if there is no λ ∈ S such that

(2.3) (b1, . . . , bj−1, bj+1, . . . , bn)λ = y.
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Since µj ̸= 0, the matrix obtained from

(
A

B̃

)
by removing its jth column has rank

n− 1. Then det

(
A

B̃

)
̸= 0 if and only if there is no λ ∈ S such that

(2.4) (b1, . . . , bi−1, b
′
i, bi+1, . . . , bj−1, bj+1, . . . , bn)λ = y.

(For notational convenience, we assumed here that i < j; if i > j, the argument is
the same.) Therefore it will be sufficient to argue that there is at least one vector
y ∈ Fn−r such that (2.3) and (2.4) are not satisfied for any λ ∈ S.

Since rank(A) = r, |S| = |F |n−r−1. On the other hand, there are |F |n−r possible
choices for y in Fn−r. It follows that there are at least p := |F |n−r − 2|F |n−r−1

choices of y such that (2.3) and (2.4) are not satisfied for any λ ∈ S. Since |F | ≥ 3,
we have p > 0 and the proof of the lemma is complete. �

The above lemma allows us to prove that Theorem 2 holds if |F | ≥ 3, as shown
below.

Lemma 4. If |F | ≥ 3 then ΓA is a connected graph.

Proof. Given two nodes B,B′ of ΓA, we prove that there is a path connecting B
and B′. We proceed as follows: we assume that B and B′ coincide in the first h

columns, where h ∈ {0, . . . , n− 1}, and show that there exists a node B̃ connected

to B such that B̃ and B′ coincide in h+1 columns; by iterating this procedure, we
eventually find a path connecting B and B′.

Choose any index i > h. If (2.1) does not hold for any µ ∈ Fn−1, we construct

B̃ by replacing bi with b′i in B: B̃ coincides with B′ in h + 1 columns and it is
adjacent to B in ΓA, as required.

So we assume that (2.1) holds for some µ ∈ Fn−1. Since(
a1
b1

)
, . . . ,

(
ah
bh

)
,

(
ai
b′i

)
are all columns of B′, they are linearly independent; thus there exists j > h (with

j ̸= i) such that µj ̸= 0. We can then apply Lemma 3 and obtain a matrix B̃ that
is a node of ΓA connected to B coinciding with B′ in h+1 columns. This concludes
the proof of Theorem 2 when |F | ≥ 3. �

We now assume |F | = 2. In this case the above approach fails because in the
last part of the proof of Lemma 3 we have p = |F |n−r − 2|F |n−r−1 = 0. However,
the following variant of Lemma 3 holds. (For every i ∈ {1, . . . , n} we denote by ei
the unit vector in Fn with a 1 in position i.)

Lemma 5. Let |F | = 2. Assume that (2.1) holds for some i ∈ {1, . . . , n} and
µ ∈ Fn−1. Pick any index j ̸= i such that µj = 1 and assume that the vector ei+ej
does not belong to the space spanned by the rows of A. Then there exists y ∈ Fn−r

such that B and B̃ are connected nodes of ΓA, where B̃ is the matrix obtained from
B by replacing bi with b′i and bj with y.

Proof. By proceeding exactly as in the proof of Lemma 3 (and adopting the notation
defined there), we find p = |F |n−r − 2|F |n−r−1 = 0. Then it will be sufficient to
argue that there exists λ ∈ S such that the left-hand sides of (2.3) and (2.4)
coincide.
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Since ei+ej does not belong to the space spanned by the rows of A, the equations
of the system defining S in (2.2) do not imply the equation λi = 1. This means
that there exists λ ∈ S such that λi = 0. For this choice of λ, the left-hand sides
of (2.3) and (2.4) coincide. �

We need an additional lemma.

Lemma 6. Assume that |F | = 2 but conditions (ii)–(iv) of Theorem 2 are not all
satisfied. Fix h ∈ {0, . . . , n−1} and let B and B′ be two nodes of ΓA, where B and
B′ coincide in at least h columns, say the columns with indices i1, . . . , ih. Assume
that the matrix (ai1 , . . . , aih) has full rank if h ̸= r and has rank at least r − 1 if
h = r. Then B and B′ are connected in ΓA.

Proof. The proof is by induction on h. The result is correct if h = n− 1, as in this
case B and B′ differ in at most one column and thus are adjacent nodes of ΓA.

We now prove the result for 0 ≤ h ≤ n − 2 assuming that it holds for larger
values of h. To simplify notation, we assume that B and B′ coincide in the first h
columns, i.e., i1 = 1, . . . , ih = h. We distinguish four cases, depending on the rank
of the matrix (a1, . . . , ah).

Case 1: rank(a1, . . . , ah) = r.
Choose any index i > h. Suppose first that (2.1) does not hold for any vector

µ ∈ Fn−1. Let B̃ be the matrix obtained from B by replacing bi with b′i. B̃ is
a node of ΓA adjacent to B that coincides with B′ in the columns with indices

1, . . . , h, i. Since rank(a1, . . . , ah, ai) = r, by induction B̃ and B′ are connected in
ΓA, and therefore so are B and B′.

We now suppose that there is a vector µ ∈ Fn−1 such that (2.1) holds. Since
B and B′ coincide in the first h columns, there exists an index j > h, with j ̸= i,
such that µj = 1. Since rank(a1, . . . , ah) = r, there is no linear combination of the

rows of A that gives ei + ej . Then Lemma 5 yields a matrix B̃ that is a node of

ΓA connected to B. As both i and j are larger than h, B̃ and B′ coincide in the

columns with indices 1, . . . , h, i. Since rank(a1, . . . , ah, ai) = r, by induction B̃ and
B′ are connected in ΓA, and therefore so are B and B′.

Case 2: rank(a1, . . . , ah) = h ≤ r − 2.
Since rank(A) = r, there exist two indices i, j, with i > h and j > h, such

that rank(a1, . . . , ah, ai, aj) = h + 2. This implies that it is possible to construct
a node C of ΓA as follows: start from B, replace column bj with b′j , and then
suitably modify the entries in columns bt with t ̸∈ {1, . . . , h, i, j} in such a way

that the resulting matrix C satisfies det

(
A
C

)
̸= 0. Since B and C coincide in

the columns with indices 1, . . . , h, i and rank(a1, . . . , ah, ai) = h+ 1, the inductive
hypothesis implies that B and C are connected in ΓA. Now, C and B′ coincide in
the columns with indices 1, . . . , h, j and rank(a1, . . . , ah, aj) = h + 1. By applying
again induction, we conclude that C and B′ are connected in ΓA, and therefore so
are B and B′.

Case 3: rank(a1, . . . , ah) = h = r − 1.
Suppose first that h = n−2. Then n = h+2 = r+1. Also, we have r ≥ 1. Thus

conditions (i)–(iii) of Theorem 2 are satisfied, and therefore (iv) must be violated;
i.e., A has an all-zero column aj . Note that j > h, as (a1, . . . , ah) has full column-
rank. Let i be the only index larger than h and distinct from j. If (2.1) does not



SWAP CONJECTURE 5

hold for any µ ∈ Fn−1, we construct B̃ by replacing bi with b′i in B: B̃ is a node of

ΓA adjacent to B that differs from B′ in at most one column; thus B̃ is connected
to B′ and therefore so is B. If (2.1) holds for some µ ∈ Fn−1, then µj = 1. Since
aj is an all-zero column, ei + ej does not belong to the space spanned by the rows

of A. By Lemma 5 we then conclude that there is a node B̃ of ΓA connected to B

that differs from B′ in at most one column; thus B̃ is connected to B′.
We now suppose that h ≤ n − 3. Let i be any index such that i > h and

rank(a1, . . . , ah, ai) = r.

Claim. There is an index j ̸= i such that j > h and

(
aj
b′j

)
is not a linear combi-

nation of the columns

(2.5)

(
a1
b1

)
, . . . ,

(
ah
bh

)
,

(
ai
bi

)
.

Proof of Claim. Assume by contradiction that the claim is false. Then, since
h ≤ n−3, there are at least two distinct indices j, k, both distinct from i and larger

than h, such that

(
aj
b′j

)
and

(
ak
b′k

)
are both linear combinations of the columns in

(2.5). Note however that they cannot be linear combinations of the first h columns
in (2.5). Then(

aj
b′j

)
=

(
ai
bi

)
+

h∑
t=1

µt

(
at
bt

)
and

(
ak
b′k

)
=

(
ai
bi

)
+

h∑
t=1

νt

(
at
bt

)

for some µ, ν ∈ Fh. It follows that

(
aj
b′j

)
+

(
ak
b′k

)
belongs to the space generated

by the first h columns of

(
A
B′

)
and thus det

(
A
B′

)
= 0, a contradiction. 3

Therefore there is an index j ̸= i such that j > h and

(
aj
b′j

)
is not a linear

combination of the columns in (2.5). This implies that it is possible to construct a
node C of ΓA as follows: start from B, replace column bj with b′j , and then suitably
modify the entries in columns bt with t ̸∈ {1, . . . , h, i, j}. Since B and C coincide in
the columns with indices 1, . . . , h, i and rank(a1, . . . , ah, ai) = h+ 1, the inductive
hypothesis implies that B and C are connected in ΓA. Now, C and B′ coincide
in the columns with indices 1, . . . , h, j and rank(a1, . . . , ah, aj) ≥ h = r − 1. By
applying again induction, we conclude that C and B′ are connected in ΓA, and
therefore so are B and B′.

Case 4: h = r and rank(a1, . . . , ar) = r − 1.
We assume without loss of generality that rank(a1, . . . , ar−1) = r − 1, thus

ar +
∑r−1

t=1 νtat = 0 for some ν ∈ F r−1.
Let i be an index such that i > r and rank(a1, . . . , ar, ai) = r. Suppose first

that (2.1) does not hold for any µ ∈ Fn−1. If we define B̃ as the matrix obtained

from B by replacing bi with b′i, then B̃ is a node of ΓA adjacent to B that coincides
with B′ in the columns with indices 1, . . . , r, i. Since rank(a1, . . . , ar, ai) = r, by

induction B̃ is connected to B′.
Suppose now that (2.1) holds for some µ ∈ Fn−1. We first assume that µr = 1

and apply Lemma 5 with j = r. This is possible because since ar is a linear
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combination of the first r−1 columns of A, no combination of the rows of A can give

ei+er. By Lemma 5, we find a node B̃ of ΓA connected to B that coincides with B′

in the h columns with indices 1, . . . , r−1, i. Furthermore, rank(a1, . . . , ar−1, ai) = r.
By Case 1, we are done.

We finally assume that µr = 0 in (2.1). Note that there is an index j > r such
that µj = 1. Let C be the matrix obtained from B by replacing column bj with

cj := bj + br +
∑r−1

t=1 νtbt. C is a node of ΓA and it is adjacent to B. Now, recalling
(2.1) and the fact that µj = 1,(

ai
b′i

)
=

∑
t ̸=i

µt

(
at
bt

)
=

∑
t̸=i,j

µt

(
at
bt

)
+

(
aj
cj

)
+

(
ar
br

)
+

r−1∑
t=1

νt

(
at
bt

)
.

The above right-hand side is a linear combination of the columns of C (except the
ith column) in which the coefficient of the rth column is 1, as µr = 0. Thus we are
back to the case µr = 1 analyzed above. �

The proof that for |F | = 2 the graph ΓA is connected whenever conditions (i)–
(iv) of Theorem 2 are not all satisfied now follows immediately from the above
lemma with h = 0.

To conclude, we assume that conditions (i)–(iv) of Theorem 2 are all satisfied and
prove that ΓA is not connected. Since |F | = 2 and rank(A) = r = n− 1, the rows
of A span a hyperplane defined by an equation of the form

∑
i∈I xi = 0, where I is

a nonempty subset of {1, . . . , n}. Note that |I| ≥ 2, otherwise the above equation
would be of the form xi = 0 for some i and thus, by also using (ii), ai would be
the all-zero vector, contradicting condition (iv). The nodes of ΓA are precisely the
n-dimensional row vectors satisfying

∑
i∈I xi = 1. Fix any two distinct indices

i, j ∈ I. It is immediate to verify that the nodes ei and ej are not connected in ΓA.

3. Proof of Theorem 1

The proof of Theorem 1 uses exactly the same arguments as the proof of [3,
Theorem 2]. We give only a sketch referring to [3, Section 4] for more details.

The first step is a reduction to a particular situation. We need to recall some
terminology to describe this reduction. Let V be a finite dimensional vector space
over a finite field and let H be a d-generated linear soluble group acting irreducibly
and faithfully on V . (We include the possibility that H acts trivially on V , in which
case H = 1 and V is a 1-dimensional vector space over a finite field of prime order.)
Let F = EndH(V ), r = dimF V and m = r(d− 1) + θ where θ = 1 if V is a trivial
H-module, θ = 0 otherwise. We consider the semidirect product V m oH where H
acts in the same way on each of the m direct factors. Now fix (h1, . . . , hd) ∈ Hd

such that H = ⟨h1, . . . , hd⟩. We define a graph Γ(V, h1, . . . , hd) in which the vertices
are the ordered d-tuples (w1, . . . , wd) in (V m)d with ⟨h1w1, . . . , hdwd⟩ = V m oH
(it turns out that the set of these d-tuples is not empty and its cardinality is
independent of the choice of (h1, . . . , hd)) and in which two vertices (x1, . . . , xd)
and (y1, . . . , yd) are adjacent if and only if they differ only by one entry. Exactly as
in the proof of [3, Theorem 2], using the concept of crown introduced by Gaschütz
in [2] and an inductive argument, the following reduction statement can be proved:
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Claim. Theorem 1 holds if the graph Γ(V, h1, . . . , hd) is connected for every
(h1, . . . , hd) generating a solvable irreducible subgroup of GL(V ).

The caseH = 1 is easy: V = F is a finite field of prime order and Γ(V, h1, . . . , hd)
is the graph whose vertices are the ordered bases (v1, . . . , vd) of F

d and two bases
are adjacent if and only if they differ only by one entry: it was already noticed
in [3, Lemma 5] that this graph is connected (and it follows also from Theorem 2
taking r = 0 and n = d). Now assume that h1, . . . , hd generate a soluble irreducible
non-trivial subgroup H of GL(V ) and that F = EndH(V ) has cardinality q. We
may identify H = ⟨h1, . . . , hd⟩ with a subgroup of the general linear group GL(r, q).
In this identification hi becomes an r × r matrix with coefficients in F : denote by
xi the matrix 1 − hi. Let n = r · d and, as before, m = r(d − 1) = n − r. The
fact that h1, . . . , hd generate an irreducible subgroup of GL(r, q) implies that the
r × n matrix A =

(
x1 · · · xd

)
has rank r (see [3, Proposition 7]). Let now

wi = (vi,1, . . . , vi,n) ∈ V m. Every vi,j can be viewed as a 1 × r matrix over F and
we denote by yi the m × r matrix with rows vi,1, . . . , vi,r. It turns out (see [3,
Proposition 7]) that

⟨h1w1, . . . , hdwd⟩ = V m oH if and only if det

(
x1 · · · xd

y1 · · · yd

)
̸= 0.

This implies that the graph Γ(V, h1, . . . , hd) is isomorphic to the graph ∆A whose
vertices are the block matrices B =

(
y1 · · · yd

)
with the property that

det

(
A
B

)
̸= 0

and two of these block matrices are adjacent if and only if they differ only by one
block. This graph ∆A has the same vertices as the graph ΓA which appears in the
statement of Theorem 2, and clearly if B1 and B2 are adjacent in ΓA, then they are
also adjacent in ∆A. But then either the connectivity of ∆A follows from Theorem 2
or n = r · d = r + 1 and q = |F | = 2. In the second case we would have r = 1 and
consequently |V | = qr = 2, but then H ≤ GL(1, q) = 1, against our assumption.
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