THE SWAP GRAPH OF THE FINITE SOLUBLE GROUPS

MARCO DI SUMMA AND ANDREA LUCCHINI

Abstract

For a d-generated finite group G we consider the graph $\Delta_{d}(G)$ (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that $\Delta_{d}(G)$ is a connected graph. We prove that this conjecture is true if G is a finite soluble group.

1. Introduction

Let G be a finite group and let $d(G)$ be the minimal number of generators of G. For any integer $d \geq d(G)$, let $V_{d}(G)=\left\{\left(g_{1}, \ldots, g_{d}\right) \in G^{d} \mid\left\langle g_{1}, \ldots, g_{d}\right\rangle=G\right\}$ be the set of all generating d-tuples of G. In [5] Tennant and Turner introduced the notion of "swap equivalence": the d-tuples γ_{1} and $\gamma_{2} \in V_{d}(G)$ are said to be swap equivalent if there is a sequence of elementary swaps passing through elements of $V_{d}(G)$ and leading from γ_{1} to γ_{2}. An elementary swap is thought of as a transformation changing one element of the sequence to an arbitrary element of G. The property of this equivalence relation can be encoded in the "swap graph" $\Delta_{d}(G)$: two vertices $\left(x_{1}, \ldots, x_{d}\right),\left(y_{1}, \ldots, y_{d}\right) \in V_{d}(G)$ are adjacent in the swap graph if and only if they differ only by one entry. Tennant and Turner proposed the conjecture that $\Delta_{d}(G)$ is connected (swap conjecture). In [4] it is proved that the free metabelian group of rank 3 does not satisfy this conjecture, but no counterexample is known in the class of finite groups. In [1] it was proved that the conjecture is true if $d \geq d(G)+1$. The case when $d=d(G)$ is much more difficult. Partial results have been obtained by the second author in [3], proving for example that a finite group G satisfies the swap conjecture if the derived subgroup of G has odd order or is nilpotent. Here we complete the investigation started in [3] obtaining a complete solution in the soluble case.

Theorem 1. Let G be a finite soluble group. If $d \geq d(G)$, then the swap graph $\Delta_{d}(G)$ is connected.

The proof depends on the solution of a combinatorial problem in linear algebra. Denote by $M_{p \times q}(F)$ the set of the $p \times q$ matrices with coefficients over the finite field F. Let r and n be integers such that $0 \leq r<n$ and let $A \in M_{r \times n}(F)$ with $\operatorname{rank}(A)=r$. Moreover let Ω_{A} be the set of matrices $B \in M_{(n-r) \times n}(F)$ with the property that

$$
\operatorname{det}\binom{A}{B} \neq 0
$$

We define a graph Γ_{A} whose vertices are the matrices in Ω_{A} and in which two vertices B_{1} and B_{2} are adjacent if and only if they differ only by one column. In [3]

[^0]it is shown that, in order to settle the swap conjecture for the finite soluble groups, it would suffice to prove that the graph Γ_{A} is connected whenever $r=0$ or r divides n and $(r,|F|) \neq(1,2)$. In [3] the connectivity of Γ_{A} has been established only in the case that $|F| \geq 3$. Now we give a complete solution.

Theorem 2. Let F be a finite field and let $A \in M_{r \times n}(F)$ be a matrix with $\operatorname{rank}(A)=r$, where $0 \leq r<n$. Then the graph Γ_{A} is not connected if and only if each of the following conditions is satisfied:
(i) $|F|=2$,
(ii) $r \geq 1$,
(iii) $n=r+1$,
(iv) A has no all-zero column.

2. Proof of Theorem 2

We first prove that if conditions (i)-(iv) are not all satisfied, then Γ_{A} is connected. To this purpose, we fix two distinct nodes B and B^{\prime} of Γ_{A} and show that there is a path connecting them. We use the notation $A=\left(a_{1}, \ldots, a_{n}\right), B=\left(b_{1}, \ldots, b_{n}\right)$ and $B^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ to indicate the columns of A, B and B^{\prime}.

When $|F| \geq 3$, our proof strategy relies on the following lemma.
Lemma 3. Let $|F| \geq 3$. Suppose that there exist an index $i \in\{1, \ldots, n\}$ and $\mu={ }^{t}\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i+1}, \ldots, \mu_{n}\right) \in F^{n-1}$ such that

$$
\left(\begin{array}{cccccc}
a_{1} & \cdots & a_{i-1} & a_{i+1} & \cdots & a_{n} \tag{2.1}\\
b_{1} & \cdots & b_{i-1} & b_{i+1} & \cdots & b_{n}
\end{array}\right) \cdot \mu=\binom{a_{i}}{b_{i}^{\prime}} .
$$

Pick any index $j \neq i$ such that $\mu_{j} \neq 0$. Then there exists $y \in F^{n-r}$ such that B and \widetilde{B} are connected nodes of Γ_{A}, where \widetilde{B} is the matrix obtained from B by replacing b_{i} with b_{i}^{\prime} and b_{j} with y.

Proof. Let C be the matrix obtained from B by replacing b_{j} with some (at the moment unknown) vector $y \in F^{n-r}$. Note that C and \widetilde{B} differ only in column i. In the following we prove that it is possible to choose y such that $\operatorname{det}\binom{A}{C} \neq 0$ and $\operatorname{det}\binom{A}{\widetilde{B}} \neq 0$. This implies that \widetilde{B} is a node of Γ_{A} adjacent to C, which is in turn adjacent to B, thus concluding the proof of the lemma.

Define

$$
\begin{equation*}
S=\left\{\lambda \in F^{n-1} \mid\left(a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}\right) \lambda=a_{j}\right\} . \tag{2.2}
\end{equation*}
$$

Since the matrix obtained from $\binom{A}{C}$ by removing its j th column has rank $n-1$, we have that $\operatorname{det}\binom{A}{C} \neq 0$ if and only if there is no $\lambda \in S$ such that

$$
\begin{equation*}
\left(b_{1}, \ldots, b_{j-1}, b_{j+1}, \ldots, b_{n}\right) \lambda=y \tag{2.3}
\end{equation*}
$$

Since $\mu_{j} \neq 0$, the matrix obtained from $\binom{A}{\widetilde{B}}$ by removing its j th column has rank $n-1$. Then $\operatorname{det}\binom{A}{\widetilde{B}} \neq 0$ if and only if there is no $\lambda \in S$ such that

$$
\begin{equation*}
\left(b_{1}, \ldots, b_{i-1}, b_{i}^{\prime}, b_{i+1}, \ldots, b_{j-1}, b_{j+1}, \ldots, b_{n}\right) \lambda=y \tag{2.4}
\end{equation*}
$$

(For notational convenience, we assumed here that $i<j$; if $i>j$, the argument is the same.) Therefore it will be sufficient to argue that there is at least one vector $y \in F^{n-r}$ such that (2.3) and (2.4) are not satisfied for any $\lambda \in S$.

Since $\operatorname{rank}(A)=r,|S|=|F|^{n-r-1}$. On the other hand, there are $|F|^{n-r}$ possible choices for y in F^{n-r}. It follows that there are at least $p:=|F|^{n-r}-2|F|^{n-r-1}$ choices of y such that (2.3) and (2.4) are not satisfied for any $\lambda \in S$. Since $|F| \geq 3$, we have $p>0$ and the proof of the lemma is complete.

The above lemma allows us to prove that Theorem 2 holds if $|F| \geq 3$, as shown below.

Lemma 4. If $|F| \geq 3$ then Γ_{A} is a connected graph.
Proof. Given two nodes B, B^{\prime} of Γ_{A}, we prove that there is a path connecting B and B^{\prime}. We proceed as follows: we assume that B and B^{\prime} coincide in the first h columns, where $h \in\{0, \ldots, n-1\}$, and show that there exists a node \widetilde{B} connected to B such that \widetilde{B} and B^{\prime} coincide in $h+1$ columns; by iterating this procedure, we eventually find a path connecting B and B^{\prime}.

Choose any index $i>h$. If (2.1) does not hold for any $\mu \in F^{n-1}$, we construct \widetilde{B} by replacing b_{i} with b_{i}^{\prime} in $B: \widetilde{B}$ coincides with B^{\prime} in $h+1$ columns and it is adjacent to B in Γ_{A}, as required.

So we assume that (2.1) holds for some $\mu \in F^{n-1}$. Since

$$
\binom{a_{1}}{b_{1}}, \ldots,\binom{a_{h}}{b_{h}},\binom{a_{i}}{b_{i}^{\prime}}
$$

are all columns of B^{\prime}, they are linearly independent; thus there exists $j>h$ (with $j \neq i$) such that $\mu_{j} \neq 0$. We can then apply Lemma 3 and obtain a matrix \widetilde{B} that is a node of Γ_{A} connected to B coinciding with B^{\prime} in $h+1$ columns. This concludes the proof of Theorem 2 when $|F| \geq 3$.

We now assume $|F|=2$. In this case the above approach fails because in the last part of the proof of Lemma 3 we have $p=|F|^{n-r}-2|F|^{n-r-1}=0$. However, the following variant of Lemma 3 holds. (For every $i \in\{1, \ldots, n\}$ we denote by e_{i} the unit vector in F^{n} with a 1 in position i.)

Lemma 5. Let $|F|=2$. Assume that (2.1) holds for some $i \in\{1, \ldots, n\}$ and $\mu \in F^{n-1}$. Pick any index $j \neq i$ such that $\mu_{j}=1$ and assume that the vector $e_{i}+e_{j}$ does not belong to the space spanned by the rows of A. Then there exists $y \in F^{n-r}$ such that B and \widetilde{B} are connected nodes of Γ_{A}, where \widetilde{B} is the matrix obtained from B by replacing b_{i} with b_{i}^{\prime} and b_{j} with y.
Proof. By proceeding exactly as in the proof of Lemma 3 (and adopting the notation defined there), we find $p=|F|^{n-r}-2|F|^{n-r-1}=0$. Then it will be sufficient to argue that there exists $\lambda \in S$ such that the left-hand sides of (2.3) and (2.4) coincide.

Since $e_{i}+e_{j}$ does not belong to the space spanned by the rows of A, the equations of the system defining S in (2.2) do not imply the equation $\lambda_{i}=1$. This means that there exists $\lambda \in S$ such that $\lambda_{i}=0$. For this choice of λ, the left-hand sides of (2.3) and (2.4) coincide.

We need an additional lemma.
Lemma 6. Assume that $|F|=2$ but conditions (ii)-(iv) of Theorem 2 are not all satisfied. Fix $h \in\{0, \ldots, n-1\}$ and let B and B^{\prime} be two nodes of Γ_{A}, where B and B^{\prime} coincide in at least h columns, say the columns with indices i_{1}, \ldots, i_{h}. Assume that the matrix $\left(a_{i_{1}}, \ldots, a_{i_{h}}\right)$ has full rank if $h \neq r$ and has rank at least $r-1$ if $h=r$. Then B and B^{\prime} are connected in Γ_{A}.
Proof. The proof is by induction on h. The result is correct if $h=n-1$, as in this case B and B^{\prime} differ in at most one column and thus are adjacent nodes of Γ_{A}.

We now prove the result for $0 \leq h \leq n-2$ assuming that it holds for larger values of h. To simplify notation, we assume that B and B^{\prime} coincide in the first h columns, i.e., $i_{1}=1, \ldots, i_{h}=h$. We distinguish four cases, depending on the rank of the matrix $\left(a_{1}, \ldots, a_{h}\right)$.

Case 1: $\operatorname{rank}\left(a_{1}, \ldots, a_{h}\right)=r$.
Choose any index $i>h$. Suppose first that (2.1) does not hold for any vector $\mu \in F^{n-1}$. Let \widetilde{B} be the matrix obtained from B by replacing b_{i} with b_{i}^{\prime}. \widetilde{B} is a node of Γ_{A} adjacent to B that coincides with B^{\prime} in the columns with indices $1, \ldots, h, i$. Since $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}\right)=r$, by induction \widetilde{B} and B^{\prime} are connected in Γ_{A}, and therefore so are B and B^{\prime}.

We now suppose that there is a vector $\mu \in F^{n-1}$ such that (2.1) holds. Since B and B^{\prime} coincide in the first h columns, there exists an index $j>h$, with $j \neq i$, such that $\mu_{j}=1$. Since $\operatorname{rank}\left(a_{1}, \ldots, a_{h}\right)=r$, there is no linear combination of the rows of A that gives $e_{i}+e_{j}$. Then Lemma 5 yields a matrix \widetilde{B} that is a node of Γ_{A} connected to B. As both i and j are larger than h, \widetilde{B} and B^{\prime} coincide in the columns with indices $1, \ldots, h, i$. Since $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}\right)=r$, by induction \widetilde{B} and B^{\prime} are connected in Γ_{A}, and therefore so are B and B^{\prime}.

Case 2: $\operatorname{rank}\left(a_{1}, \ldots, a_{h}\right)=h \leq r-2$.
Since $\operatorname{rank}(A)=r$, there exist two indices i, j, with $i>h$ and $j>h$, such that $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}, a_{j}\right)=h+2$. This implies that it is possible to construct a node C of Γ_{A} as follows: start from B, replace column b_{j} with b_{j}^{\prime}, and then suitably modify the entries in columns b_{t} with $t \notin\{1, \ldots, h, i, j\}$ in such a way that the resulting matrix C satisfies $\operatorname{det}\binom{A}{C} \neq 0$. Since B and C coincide in the columns with indices $1, \ldots, h, i$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}\right)=h+1$, the inductive hypothesis implies that B and C are connected in Γ_{A}. Now, C and B^{\prime} coincide in the columns with indices $1, \ldots, h, j$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{j}\right)=h+1$. By applying again induction, we conclude that C and B^{\prime} are connected in Γ_{A}, and therefore so are B and B^{\prime}.
Case 3: $\operatorname{rank}\left(a_{1}, \ldots, a_{h}\right)=h=r-1$.
Suppose first that $h=n-2$. Then $n=h+2=r+1$. Also, we have $r \geq 1$. Thus conditions (i)-(iii) of Theorem 2 are satisfied, and therefore (iv) must be violated; i.e., A has an all-zero column a_{j}. Note that $j>h$, as $\left(a_{1}, \ldots, a_{h}\right)$ has full columnrank. Let i be the only index larger than h and distinct from j. If (2.1) does not
hold for any $\mu \in F^{n-1}$, we construct \widetilde{B} by replacing b_{i} with b_{i}^{\prime} in $B: \widetilde{B}$ is a node of Γ_{A} adjacent to B that differs from B^{\prime} in at most one column; thus \widetilde{B} is connected to B^{\prime} and therefore so is B. If (2.1) holds for some $\mu \in F^{n-1}$, then $\mu_{j}=1$. Since a_{j} is an all-zero column, $e_{i}+e_{j}$ does not belong to the space spanned by the rows of A. By Lemma 5 we then conclude that there is a node \widetilde{B} of Γ_{A} connected to B that differs from B^{\prime} in at most one column; thus \widetilde{B} is connected to B^{\prime}.

We now suppose that $h \leq n-3$. Let i be any index such that $i>h$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}\right)=r$.
CLAIM. There is an index $j \neq i$ such that $j>h$ and $\binom{a_{j}}{b_{j}^{\prime}}$ is not a linear combination of the columns

$$
\begin{equation*}
\binom{a_{1}}{b_{1}}, \ldots,\binom{a_{h}}{b_{h}},\binom{a_{i}}{b_{i}} . \tag{2.5}
\end{equation*}
$$

Proof of Claim. Assume by contradiction that the claim is false. Then, since $h \leq n-3$, there are at least two distinct indices j, k, both distinct from i and larger than h, such that $\binom{a_{j}}{b_{j}^{\prime}}$ and $\binom{a_{k}}{b_{k}^{\prime}}$ are both linear combinations of the columns in (2.5). Note however that they cannot be linear combinations of the first h columns in (2.5). Then

$$
\binom{a_{j}}{b_{j}^{\prime}}=\binom{a_{i}}{b_{i}}+\sum_{t=1}^{h} \mu_{t}\binom{a_{t}}{b_{t}} \quad \text { and } \quad\binom{a_{k}}{b_{k}^{\prime}}=\binom{a_{i}}{b_{i}}+\sum_{t=1}^{h} \nu_{t}\binom{a_{t}}{b_{t}}
$$

for some $\mu, \nu \in F^{h}$. It follows that $\binom{a_{j}}{b_{j}^{\prime}}+\binom{a_{k}}{b_{k}^{\prime}}$ belongs to the space generated by the first h columns of $\binom{A}{B^{\prime}}$ and thus $\operatorname{det}\binom{A}{B^{\prime}}=0$, a contradiction.

Therefore there is an index $j \neq i$ such that $j>h$ and $\binom{a_{j}}{b_{j}^{\prime}}$ is not a linear combination of the columns in (2.5). This implies that it is possible to construct a node C of Γ_{A} as follows: start from B, replace column b_{j} with b_{j}^{\prime}, and then suitably modify the entries in columns b_{t} with $t \notin\{1, \ldots, h, i, j\}$. Since B and C coincide in the columns with indices $1, \ldots, h, i$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{i}\right)=h+1$, the inductive hypothesis implies that B and C are connected in Γ_{A}. Now, C and B^{\prime} coincide in the columns with indices $1, \ldots, h, j$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{h}, a_{j}\right) \geq h=r-1$. By applying again induction, we conclude that C and B^{\prime} are connected in Γ_{A}, and therefore so are B and B^{\prime}.
Case 4: $h=r$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{r}\right)=r-1$.
We assume without loss of generality that $\operatorname{rank}\left(a_{1}, \ldots, a_{r-1}\right)=r-1$, thus $a_{r}+\sum_{t=1}^{r-1} \nu_{t} a_{t}=0$ for some $\nu \in F^{r-1}$.

Let i be an index such that $i>r$ and $\operatorname{rank}\left(a_{1}, \ldots, a_{r}, a_{i}\right)=r$. Suppose first that (2.1) does not hold for any $\mu \in F^{n-1}$. If we define \widetilde{B} as the matrix obtained from B by replacing b_{i} with b_{i}^{\prime}, then \widetilde{B} is a node of Γ_{A} adjacent to B that coincides with B^{\prime} in the columns with indices $1, \ldots, r, i$. Since $\operatorname{rank}\left(a_{1}, \ldots, a_{r}, a_{i}\right)=r$, by induction \widetilde{B} is connected to B^{\prime}.

Suppose now that (2.1) holds for some $\mu \in F^{n-1}$. We first assume that $\mu_{r}=1$ and apply Lemma 5 with $j=r$. This is possible because since a_{r} is a linear
combination of the first $r-1$ columns of A, no combination of the rows of A can give $e_{i}+e_{r}$. By Lemma 5 , we find a node \widetilde{B} of Γ_{A} connected to B that coincides with B^{\prime} in the h columns with indices $1, \ldots, r-1, i$. Furthermore, $\operatorname{rank}\left(a_{1}, \ldots, a_{r-1}, a_{i}\right)=r$. By Case 1, we are done.

We finally assume that $\mu_{r}=0$ in (2.1). Note that there is an index $j>r$ such that $\mu_{j}=1$. Let C be the matrix obtained from B by replacing column b_{j} with $c_{j}:=b_{j}+b_{r}+\sum_{t=1}^{r-1} \nu_{t} b_{t} . C$ is a node of Γ_{A} and it is adjacent to B. Now, recalling (2.1) and the fact that $\mu_{j}=1$,

$$
\binom{a_{i}}{b_{i}^{\prime}}=\sum_{t \neq i} \mu_{t}\binom{a_{t}}{b_{t}}=\sum_{t \neq i, j} \mu_{t}\binom{a_{t}}{b_{t}}+\binom{a_{j}}{c_{j}}+\binom{a_{r}}{b_{r}}+\sum_{t=1}^{r-1} \nu_{t}\binom{a_{t}}{b_{t}} .
$$

The above right-hand side is a linear combination of the columns of C (except the i th column) in which the coefficient of the r th column is 1 , as $\mu_{r}=0$. Thus we are back to the case $\mu_{r}=1$ analyzed above.

The proof that for $|F|=2$ the graph Γ_{A} is connected whenever conditions (i)(iv) of Theorem 2 are not all satisfied now follows immediately from the above lemma with $h=0$.

To conclude, we assume that conditions (i)-(iv) of Theorem 2 are all satisfied and prove that Γ_{A} is not connected. Since $|F|=2$ and $\operatorname{rank}(A)=r=n-1$, the rows of A span a hyperplane defined by an equation of the form $\sum_{i \in I} x_{i}=0$, where I is a nonempty subset of $\{1, \ldots, n\}$. Note that $|I| \geq 2$, otherwise the above equation would be of the form $x_{i}=0$ for some i and thus, by also using (ii), a_{i} would be the all-zero vector, contradicting condition (iv). The nodes of Γ_{A} are precisely the n-dimensional row vectors satisfying $\sum_{i \in I} x_{i}=1$. Fix any two distinct indices $i, j \in I$. It is immediate to verify that the nodes e_{i} and e_{j} are not connected in Γ_{A}.

3. Proof of Theorem 1

The proof of Theorem 1 uses exactly the same arguments as the proof of [3, Theorem 2]. We give only a sketch referring to [3, Section 4] for more details.

The first step is a reduction to a particular situation. We need to recall some terminology to describe this reduction. Let V be a finite dimensional vector space over a finite field and let H be a d-generated linear soluble group acting irreducibly and faithfully on V. (We include the possibility that H acts trivially on V, in which case $H=1$ and V is a 1-dimensional vector space over a finite field of prime order.) Let $F=\operatorname{End}_{H}(V), r=\operatorname{dim}_{F} V$ and $m=r(d-1)+\theta$ where $\theta=1$ if V is a trivial H-module, $\theta=0$ otherwise. We consider the semidirect product $V^{m} \rtimes H$ where H acts in the same way on each of the m direct factors. Now fix $\left(h_{1}, \ldots, h_{d}\right) \in H^{d}$ such that $H=\left\langle h_{1}, \ldots, h_{d}\right\rangle$. We define a graph $\Gamma\left(V, h_{1}, \ldots, h_{d}\right)$ in which the vertices are the ordered d-tuples $\left(w_{1}, \ldots, w_{d}\right)$ in $\left(V^{m}\right)^{d}$ with $\left\langle h_{1} w_{1}, \ldots, h_{d} w_{d}\right\rangle=V^{m} \rtimes H$ (it turns out that the set of these d-tuples is not empty and its cardinality is independent of the choice of $\left.\left(h_{1}, \ldots, h_{d}\right)\right)$ and in which two vertices $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ are adjacent if and only if they differ only by one entry. Exactly as in the proof of [3, Theorem 2], using the concept of crown introduced by Gaschütz in [2] and an inductive argument, the following reduction statement can be proved:

Claim. Theorem 1 holds if the graph $\Gamma\left(V, h_{1}, \ldots, h_{d}\right)$ is connected for every $\left(h_{1}, \ldots, h_{d}\right)$ generating a solvable irreducible subgroup of GL (V).

The case $H=1$ is easy: $V=F$ is a finite field of prime order and $\Gamma\left(V, h_{1}, \ldots, h_{d}\right)$ is the graph whose vertices are the ordered bases $\left(v_{1}, \ldots, v_{d}\right)$ of F^{d} and two bases are adjacent if and only if they differ only by one entry: it was already noticed in [3, Lemma 5] that this graph is connected (and it follows also from Theorem 2 taking $r=0$ and $n=d$). Now assume that h_{1}, \ldots, h_{d} generate a soluble irreducible non-trivial subgroup H of $\operatorname{GL}(V)$ and that $F=\operatorname{End}_{H}(V)$ has cardinality q. We may identify $H=\left\langle h_{1}, \ldots, h_{d}\right\rangle$ with a subgroup of the general linear group GL (r, q). In this identification h_{i} becomes an $r \times r$ matrix with coefficients in F : denote by x_{i} the matrix $1-h_{i}$. Let $n=r \cdot d$ and, as before, $m=r(d-1)=n-r$. The fact that h_{1}, \ldots, h_{d} generate an irreducible subgroup of $\operatorname{GL}(r, q)$ implies that the $r \times n$ matrix $A=\left(\begin{array}{lll}x_{1} & \cdots & x_{d}\end{array}\right)$ has rank r (see [3, Proposition 7]). Let now $w_{i}=\left(v_{i, 1}, \ldots, v_{i, n}\right) \in V^{m}$. Every $v_{i, j}$ can be viewed as a $1 \times r$ matrix over F and we denote by y_{i} the $m \times r$ matrix with rows $v_{i, 1}, \ldots, v_{i, r}$. It turns out (see [3, Proposition 7]) that

$$
\left\langle h_{1} w_{1}, \ldots, h_{d} w_{d}\right\rangle=V^{m} \rtimes H \text { if and only if } \operatorname{det}\left(\begin{array}{lll}
x_{1} & \cdots & x_{d} \\
y_{1} & \cdots & y_{d}
\end{array}\right) \neq 0 .
$$

This implies that the graph $\Gamma\left(V, h_{1}, \ldots, h_{d}\right)$ is isomorphic to the graph Δ_{A} whose vertices are the block matrices $B=\left(\begin{array}{lll}y_{1} & \cdots & y_{d}\end{array}\right)$ with the property that

$$
\operatorname{det}\binom{A}{B} \neq 0
$$

and two of these block matrices are adjacent if and only if they differ only by one block. This graph Δ_{A} has the same vertices as the graph Γ_{A} which appears in the statement of Theorem 2, and clearly if B_{1} and B_{2} are adjacent in Γ_{A}, then they are also adjacent in Δ_{A}. But then either the connectivity of Δ_{A} follows from Theorem 2 or $n=r \cdot d=r+1$ and $q=|F|=2$. In the second case we would have $r=1$ and consequently $|V|=q^{r}=2$, but then $H \leq \mathrm{GL}(1, q)=1$, against our assumption.

References

1. E. Crestani and A. Lucchini, The graph of the generating d-tuples of a finite soluble group and the swap conjecture, J. Algebra 376 (2013), 79-88.
2. W. Gaschütz, Praefrattinigruppen, Arch. Mat. 13 (1962) 418-426.
3. A. Lucchini, Finite soluble groups satisfying the swap conjecture, J. Algebr. Comb. 42 (2015), no. 4, 907-915.
4. V. A. Roman'kov, The Tennant-Turner swap conjecture, Algebra and Logic 34 (1995), no. 4, 249-257.
5. R. F. Tennant and E. C. Turner, The swap conjecture, Rocky Mountain J. Math. 22 (1992), no. 3, 1083-1095.

Marco Di Summa and Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy

[^0]: 1991 Mathematics Subject Classification. 20D10, 20F05, 05C25.

