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AbstratA mixed-integer program is an optimization problem where one is required to minimize (ormaximize) a linear funtion over a subset of R
n de�ned by a system of linear inequalities, withthe additional restrition that some of the variables must take an integer value. Mixed-integerprogramming is a fundamental area of operations researh, as many real-world problems anbe formulated as mixed-integer programs.Solving mixed-integer programs is di�ult in general. A ommon approah to takle thiskind of problems exploits the fat that (under mild assumptions) the onvex hull of feasiblesolutions is a polyhedron, i.e. a subset of R

n de�ned by a system of linear inequalities. Whenthe inequalities desribing suh a polyhedron are known expliitly, the mixed-integer programredues to a linear program, whih is a tratable problem. Unfortunately it is usually very hardto �nd a linear inequality desription of the onvex hull of feasible solutions of a mixed-integerprogram. However in some ases the introdution of additional variables allows one to give asimple desription of suh a onvex hull by means of linear inequalities in a higher dimensionalspae. Suh a desription is alled an extended formulation. If an extended formulation isknown that is ompat (i.e. it uses a polynomial number of variables and onstraints), theoriginal mixed-integer programming problem an be solved in polynomial time by means oflinear programming algorithms.In this dissertation we study the family of mixed-integer programs whose feasible regionsare de�ned by linear systems with totally unimodular matries (i.e. all subdeterminants are
0, 1 or −1) having at most two nonzero entries per row. This lass of problems is interestingbeause many instanes arising e.g. in the ontext of prodution planning an be formulatedas mixed-integer programs of this type.We illustrate a tehnique to onstrut an extended formulation for any problem in thisfamily. The approah is based on the enumeration of all possible frational parts that thevariables take at the verties of the onvex hull of the feasible region. The expliit knowledgeof suh values allows us to model the problem as a pure integer program (i.e. all variables arepresribed to take an integer value) by means of additional variables. For suh a pure integerreformulation the onvex hull an be obtained very easily and thus an extended formulationfor the original problem is derived.We then disuss the ompatness of our extended formulation: we give su�ient onditionsensuring that the formulation is ompat. When one of these onditions holds, the mixed-integer program an be solved in polynomial time. We also show how our tehnique an besuessfully applied to some interesting pratial problems.v



vi Next we onsider the possibility of desribing the onvex hull of the feasible region in theoriginal spae of de�nition of the problem (i.e with no additional variables). Suh a formulationis found expliitly for some speial ases by using e.g. �ow tehniques or linear programmingduality.Finally a possible extension is disussed: we show how a generalization of our tehniquean lead to a ompat extended formulation for a problem that does not belong to the familyintrodued above.Most of the results presented in this thesis are joint work with Mihele Conforti, FriedrihEisenbrand and Laurene A. Wolsey.Aknowledgements I am partiularly grateful to my PhD advisor Mihele Conforti, whodediated a lot of his time to me in the last years. I also thank Laurene Wolsey for havinggiven me the opportunity of working with him at CORE. I onsider myself very luky to havebeen supervised by them.



Sommario (Italian abstrat)Un programma intero misto è un problema di ottimizzazione in ui si rihiede di minimizzare(o massimizzare) una funzione lineare su un sottoinsieme di R
n de�nito da un sistema di di-sequazioni lineari, on la ondizione aggiuntiva he alune delle variabili devono assumere unvalore intero. La programmazione intera mista è un'area molto importante della riera opera-tiva, poihé numerosi problemi di interesse pratio possono essere formulati ome programmiinteri misti.Risolvere un programma intero misto è in generale di�ile. Un approio omunemente u-sato per a�rontare problemi di questo tipo sfrutta il fatto he (sotto deboli ipotesi) l'inviluppoonvesso delle soluzioni ammissibili è un poliedro, ioè un sottoinsieme di R

n de�nito da unsistema di disequazioni lineari. Quando le disequazioni he desrivono tale poliedro sono noteespliitamente, il programma intero misto può essere riondotto ad un programma lineare, heè un problema trattabile. Purtroppo è generalmente molto ompliato trovare una desrizionein termini di disequazioni lineari dell'inviluppo onvesso delle soluzioni ammissibili di un pro-gramma intero misto. Tuttavia in erti asi l'introduzione di variabili aggiuntive permettedi dare una semplie desrizione di questo inviluppo onvesso tramite disequazioni lineari inuno spazio di dimensione superiore. Una tale desrizione è detta formulazione estesa. Se sionose una formulazione estesa ompatta (he usi ioè un numero polinomiale di variabili evinoli), il programma intero misto iniziale può essere risolto in tempo polinomiale per mezzodi algoritmi per la programmazione lineare.In questa tesi studieremo la famiglia di programmi interi misti le ui regioni ammissibilisono de�nite da sistemi lineari on matrii totalmente unimodulari (ioè tutti i sottodeter-minanti valgono 0, 1 o −1) ontenenti al massimo due elementi non nulli per riga. Questafamiglia è interessante perhé molti problemi pratii (ad esempio nel ampo della program-mazione della produzione) possono essere formulati ome programmi interi misti di questotipo.Illustreremo una tenia he permette di ostruire una formulazione estesa per un qualun-que problema nella famiglia de�nita sopra. L'approio he useremo si basa sull'enumerazionedi tutte le parti frazionarie he le variabili assumono nei vertii dell'inviluppo onvesso dellaregione ammissibile. La onosenza espliita di questi valori i permetterà di modellare ilproblema ome un programma intero puro (dove, ioè, tutte le variabili devono assumere unvalore intero) per mezzo di variabili aggiuntive. Per tale riformulazione l'inviluppo onvessopotrà essere ottenuto failmente e deriveremo quindi una formulazione estesa per il problemainiziale. vii



viii Disuteremo poi la ompattezza della nostra formulazione estesa: daremo ondizioni su�-ienti sotto le quali la formulazione è ompatta. Quando una di queste ondizioni è soddisfatta,il programma intero misto può essere risolto in tempo polinomiale. Mostreremo anhe omela nostra tenia possa essere appliata on suesso ad aluni problemi di interesse pratio.In seguito analizzeremo la possibilità di desrivere l'inviluppo onvesso della regione ammis-sibile nello spazio originale di de�nizione del problema (ioè senza l'introduzione di variabiliaggiuntive). Per aluni asi speiali riusiremo a trovare espliitamente una tale formulazioneusando ad esempio tenihe di �usso o la dualità della programmazione lineare.In�ne disuteremo una possibile estensione: mostreremo ome una generalizzazione dellanostra tenia possa essere usata per trovare una formulazione estesa ompatta per un proble-ma he non appartiene alla famiglia introdotta sopra.Gran parte dei risultati presentati in questa tesi sono stati ottenuti in ollaborazione onMihele Conforti, Friedrih Eisenbrand e Laurene A. Wolsey.
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Chapter 1IntrodutionA mixed-integer linear program (or simply mixed-integer program) is an optimization problemwhere one is required to minimize (or maximize) a linear funtion over a subset of R
n de�nedby a system of linear inequalities, with the additional restrition that some of the variablesmust take an integer value. Any mixed-integer program an then be formulated as

min cx (1.1)subjet to Ax ≥ b, (1.2)
xi integer for i ∈ I, (1.3)where A is an m × n matrix, b is a olumn vetor in R

m, c is a row vetor in R
n and I is anonempty subset of {1, . . . , n}. In the above problem, cx is the objetive funtion, while theset de�ned by onditions (1.2)�(1.3) is the feasible region. Variables xi for i ∈ I are alled theinteger variables, while xi for i /∈ I are the ontinuous variables. A subset of R
n that is thefeasible region of a mixed-integer program is alled a mixed-integer set.When I = {1, . . . , n}, problem (1.1)�(1.3) is a pure integer program (or simply integerprogram). Thus we view integer programs as speial types of mixed-integer programs. Aproblem of the form (1.1)�(1.2), with no integrality restritions, is a linear program.Linear and mixed-integer programming are fundamental areas of operations researh. Alarge number of real-world problems an be formulated as linear or mixed-integer programs,suh as problems arising in transportation, manufaturing, sheduling and many other �elds(see e.g. [33, 49, 55℄).While linear programming is a tratable problem, mixed-integer programming is di�ult ingeneral, as the region de�ned by onditions (1.2)�(1.3) is usually very ompliated to desribe.In some speial ases, the introdution of new variables in the problem allows one to give asimpler desription of a mixed-integer set. A desription of this type, whih is given in a higherdimensional spae, is alled an extended formulation of the set (a more preise de�nition isgiven in Setion 1.4).In this work we study mixed-integer sets (1.2)�(1.3) whose onstraint matrix A has somespeial struture that we will speify later. We present and disuss a tehnique that allowsone to onstrut extended formulations for an arbitrary set having suh a struture, and we1



2 Chapter 1. Introdutionalso explore the possibility of desribing the set in its original spae of de�nition. Furthermore,possible extensions to other sets are disussed.Before giving a more detailed outline of the thesis, we need to introdue some general on-epts and known results that will be used throughout. Spei�ally, in Setion 1.1 some usefulfats about polyhedra are realled. In Setions 1.2�1.3 we brie�y disuss linear programming,integer programming and mixed-integer programming. In Setion 1.4 we introdue the notionof extended formulation, whih is a key onept of this work, and in partiular we fous on theimportane of extended formulations in mixed-integer programming. Some of the most well-known approahes to onstruting extended formulations of a mixed-integer set are surveyedin Setion 1.5. Finally, an outline of the ontents of this dissertation is given in Setion 1.6.1.1 PolyhedraThis setion brie�y surveys the main de�nitions and results about polyhedra. A ompletepresentation of polyhedral theory, as well as the proofs of the theorems that are realled here,an be found in [49℄ or [58℄.We start with some well-known de�nitions about onvexity.Given a subset X of R
n, a point x ∈ R

n is a onvex ombination of the points in X if
x =

∑p
i=1 δix

i for some hoie of an integer p ≥ 1 and real numbers δ1, . . . , δp ≥ 0 satisfying
∑p

i=1 δi = 1. A set is onvex if it ontains all onvex ombinations of its points.The onvex hull ofX, denoted conv(X), is the smallest onvex set ontaining X: it onsistsof all possible onvex ombinations of its points.A polyhedron is the intersetion of a �nite number of half-spaes. This de�nition immedi-ately implies that every polyhedron is a onvex set.We disuss below two fundamental ways of desribing a polyhedron. We then onludethe setion by presenting a lassial result of Balas.1.1.1 External desription of a polyhedronSine a polyhedron is the intersetion of a �nite number of half-spaes, it follows that apolyhedron in R
n an be desribed as the set of points x ∈ R

n satisfying a linear system ofinequalities Ax ≥ b, where A is an m×n matrix and b is an m-vetor: this is alled an externaldesription of the polyhedron.When an external desription of a polyhedron is given, some of the inequalities of thesystem Ax ≥ b may be redundant, that is, their removal do not modify the set of solutionsto the system. We say that an external desription of a polyhedron is minimal if it does notontain any redundant inequalities. We illustrate below a fundamental result of polyhedraltheory onerning the number of inequalities in an external desription of a polyhedron, butbefore doing this, some standard terminology has to be realled.Let P be a polyhedron in R
n. Given an inequality cx ≥ δ whih is satis�ed by all points in

P , the set of points F := {x ∈ P : cx = δ} is alled a fae of P .1 We then say that inequality1Some authors require F to be nonempty.



1.1. Polyhedra 3
cx ≥ δ indues or de�nes fae F . A fae of P is a proper fae if it is nonempty and doesnot oinide with the whole polyhedron P . A faet of P is a proper fae of P whih is notontained in any other proper fae of P .Let aff(P ) be the a�ne hull of P , i.e. the smallest a�ne variety ontaining P . Thedimension of P , denoted dim(P ), is the dimension of aff(P ) as an a�ne variety. P is full-dimensional if aff(P ) = R

n.To state the next result, we assume that an external desription of P is given as a systemof linear inequalities and equations Ax ≥ b, A′x = b′, where the system Ax ≥ b does notontain any pair of inequalities of the type ax ≥ β, −ax ≥ −β (suh a pair ould be replaedwith equation ax = β).Theorem 1.1 Let Ax ≥ b, A′x = b′ be a minimal external desription of P , where the system
Ax ≥ b does not ontain any pair of inequalities of the type ax ≥ β, −ax ≥ −β. Then:(i) A′x = b′ onsists of n− dim(P ) linearly independent equations suh that aff(P ) = {x ∈

R
n : A′x = b′};(ii) eah inequality in the system Ax ≥ b indues a distint faet of P and eah faet of P isindued by a distint inequality of the system Ax ≥ b.The above theorem shows that all minimal external desriptions of a given polyhedron usethe same number of equations and inequalities.1.1.2 Internal desription of a polyhedronGiven a polyhedron P ⊆ R

n, a nonempty fae F of P is minimal if no proper fae of P isstritly ontained in F . It an be proven that all minimal faes of P are a�ne varieties of thesame dimension.When the minimal faes of a polyhedron P onsist of single points, they are alled vertiesor extreme points of P . In this ase P is alled a pointed polyhedron. An equivalent de�nitionof vertex an be given: a point v ∈ P is a vertex of P if and only if there do not exist
x1, x2 ∈ P \ {v} suh that v = 1

2x
1 + 1

2x
2. Every polyhedron has only a �nite numberof verties. However, suh a number may be exponential in the number of variables andinequalities used to give an external desription of the polyhedron.A ray of a nonempty polyhedron P is a vetor r ∈ R

n suh that x + r ∈ P for all x ∈ P .If there do not exist two rays r1, r2 of P suh that r = 1
2r

1 + 1
2r

2 and r1 6= λr2 for all λ ≥ 0,then r is alled an extreme ray of P . It an be proven that P has an extreme ray if and onlyif it is a pointed polyhedron. Also, every polyhedron has only a �nite number of extreme rays.Similarly to extreme points, suh a number might be exponentially large.The set of rays of P form a onvex one C(P ), i.e. C(P ) is nonempty (as 0, the all-zerovetor, is a ray of P ) and λ1r
1 + λ2r

2 ∈ C(P ) for all r1, r2 ∈ C(P ) and λ1, λ2 ≥ 0. C(P ) isalled the reession one (or harateristi one) of P . If P = ∅, the standard de�nition is
C(P ) := {0}. It an be proven that C(P ) is a polyhedron: if P is de�ned by the linear system
Ax ≥ b, then C(P ) is de�ned by Ax ≥ 0. It is easy to see that every system of the form



4 Chapter 1. Introdution
Ax ≥ 0 de�nes a one, whih is therefore alled a polyhedral one. A polyhedral one haseither a unique vertex (alled apex ) or no verties at all. In the former ase, the apex is 0.The following theorem summarizes fundamental results that are due to Minkowski [47℄,Motzkin [48℄ and Weyl [67℄:Theorem 1.2 (Minkowski-Weyl theorem) A subset P of R

n is a polyhedron if and onlyif there exist a �nite set of points {v1, . . . , vp} and a �nite set of vetors {r1, . . . , rq} suh that
P =

{
x ∈ R

n : x =
∑p

i=1 δiv
i +
∑q

j=1 λjr
j,

∑p
i=1 δi = 1, δi ≥ 0, 1 ≤ i ≤ p,

λj ≥ 0, 1 ≤ j ≤ q
}
.Furthermore, if P is a pointed polyhedron then {v1, . . . , vp} an be hosen as the set of extremepoints of P and {r1, . . . , rq} as the set of extreme rays of P .A desription of a polyhedron P as in the above theorem is alled an internal desriptionof P . We say that P is generated by points v1, . . . , vp and rays r1, . . . , rq. Every pointedpolyhedron is generated by its extreme points and extreme rays.Note that the desription of P given by Theorem 1.2 uses additional variables δ1, . . . , δpand λ1, . . . , λq. This is an example of extended formulation, a onept that will be disussedin Setion 1.4.1.1.3 Union of polyhedraWe onlude this setion by presenting a result due to Balas [4℄, whih an be viewed as anextension of Minkowski-Weyl theorem.Suppose that we know the external desriptions of k polyhedra P1, . . . , Pk in R

n and weare interested in �nding a desription of the onvex hull of P1 ∪ · · · ∪ Pk. The result belowprovides suh a desription.Theorem 1.3 For 1 ≤ i ≤ k, let Pi :=
{
x ∈ R

n : Aix ≥ bi
} be polyhedra in R

n having thesame reession one. Then the set P := conv(P1 ∪ · · · ∪ Pk) is a polyhedron and
P =

{
x ∈ R

n : x =
∑k

i=1w
i,

Aiwi ≥ biδi, 1 ≤ i ≤ k,
∑k

i=1 δi = 1, δi ≥ 0, 1 ≤ i ≤ k
}
.This version of the theorem is not the most general one (see [4, 18℄), but is su�ient forour purpose.We remark that if P is a bounded polyhedron, then Theorem 1.2 an be obtained byapplying the above result to the polyhedra Pi := {vi} for 1 ≤ i ≤ p. (One ould write avariant of Theorem 1.3 that subsumes the Minkowski-Weil theorem for unbounded polyhedratoo.) Also, if k = 1 the desription given above is essentially the original external desriptionof the polyhedron P1 = P . Therefore Theorem 1.3 provides in a sense an �intermediate�formulation of a polyhedron P , whih oinides with the external or internal desription inthe extreme ases.



1.2. Linear programming 51.2 Linear programmingReall that a linear program is a problem of the form
min cx (1.4)subjet to Ax ≥ b. (1.5)where A is an m × n matrix, b is a olumn vetor in R

m and c is a row vetor in R
n. Notethat the feasible region of a linear program is a polyhedron.Linear programming is a well-developed area of operations researh. The systemati studyof this subjet was initiated by Dantzig and von Neumann. Here we only reall a few basiaspets that will be useful in the remainder of the thesis. A omprehensive presentation ofthe theory of linear programming an be found e.g. in [58℄.Given a linear program (1.4)�(1.5), exatly one of the following alternatives holds:(i) the problem is infeasible (i.e. no point in R

n satis�es Ax ≥ b);(ii) the problem has an optimal solution;(iii) the problem is unbounded (i.e. system Ax ≥ b is feasible and there exists r ∈ R
n suhthat Ar ≥ 0 and cr < 0).Even though system (1.5) may de�ne a polyhedron without verties, every problem of theform (1.4)�(1.5) an be transformed into a linear program whose feasible region is a pointedpolyhedron. So we assume without loss of generality that the feasible region (1.5) has at leastone vertex (and thus it has at least one extreme ray).A fundamental result in linear programming is the following.Theorem 1.4 If a linear program (1.4)�(1.5) has an optimal solution, then it has an optimalsolution whih is an extreme point of the feasible region. If a linear program is unbounded,then there is an extreme ray r of the feasible region suh that cr < 0.Sine a polyhedron has only a �nite number of extreme points and extreme rays, a �rstapproah to solve a linear program in a �nite number of operations is simple enumeration.However, as mentioned in Setion 1.1.2, the number of extreme points and extreme rays of apolyhedron might be exponentially large, thus suh a tehnique annot be used in pratie.The �rst algorithm proposed to solve linear programming problems, the simplex method,is a re�nement of this approah. This method, whih was introdued by Dantzig [19℄, onsistsin visiting some of the verties of the feasible region, eah time hoosing the next vertex witha lever rule. This algorithm has a good performane in pratie and is ommonly used byommerial softwares. However, as shown by Klee and Minty [37℄, it is possible to onstrutlinear programs that ause the simplex method to perform an exponential number of iterations.The �rst polynomial time algorithm for linear programming, the ellipsoid method, wasobtained by Khahiyan [36℄, who adapted to this problem a tehnique that was already usedin nonlinear programming. Though Khahiyan's algorithm is not used in pratie, it yieldedthe �rst proof that linear programming an be solved in polynomial time:



6 Chapter 1. IntrodutionTheorem 1.5 There is a polynomial time algorithm for solving linear programming (withrational input) that �nds an optimal extreme point solution (if the problem has an optimalsolution).Apart from the above result, the theoretial importane of the ellipsoid method omesfrom the fat that it does not require that the inequalities de�ning the feasible region beexpliitly given. It is su�ient to have a polynomial time algorithm for the separation problem:given a point x̄, either deide that x̄ is feasible or �nd an inequality that is satis�ed by allpoints in the feasible region and violated by x̄. If the separation problem on a polyhedron issolvable in polynomial time, so is the linear optimization problem, even if the polyhedron hasexponentially-many faets. In fat the two problems are equivalent, as shown by Grötshel,Lovász and Shrijver [28℄:Theorem 1.6 Linear optimization is solvable in polynomial time if and only if so is theseparation problem.2A good tradeo� between running time in the worst ase and pratial performane isahieved by interior point methods. The �rst algorithm of this type was introdued by Kar-markar [35℄. Instead of moving on the boundary (like the simplex method), these algorithmsfollow a path in the interior of the feasible region that onverges to an optimal solution of theproblem.We onlude this setion by realling a well-known result due to Farkas (see e.g. [58℄),whih will be used in a subsequent hapter.Theorem 1.7 (Farkas' lemma) A linear system Ax ≥ b is feasible if and only if ub ≤ 0 foreah u ≥ 0 satisfying uA = 0.If some inequalities of the system Ax ≥ b are replaed by equations, the nonnegativitybounds on the orresponding omponents of u must be removed.1.3 Integer and mixed-integer programmingReall that a mixed-integer program is a problem of the form (1.1)�(1.3) with I 6= ∅, and a(pure) integer program is a problem of the same type with I = {1, . . . , n}.In ontrast to linear programming, whih an be solved e�iently, integer programmingand mixed-integer programming are di�ult problems: they are both NP-omplete problems[17℄. Thus a polynomial time algorithm for solving these two problems in the general ase isnot known.Given a mixed-integer set (1.2)�(1.3), the polyhedron de�ned by Ax ≥ b is alled the linearrelaxation (or ontinuous relaxation) of (1.2)�(1.3). The following fundamental result is dueto Meyer [44℄:2This result holds under some mild tehnial assumptions (see [29℄ for the details).



1.3. Integer and mixed-integer programming 7Theorem 1.8 If all entries of A and b are rational numbers, then the onvex hull of (1.2)�(1.3) is a polyhedron. Furthermore suh a polyhedron and the linear relaxation of (1.2)�(1.3)have the same reession one.Under the hypothesis of the above theorem, let P be the onvex hull of (1.2)�(1.3). Ifa linear inequality desription of the polyhedron P is known, then the optimization problem
min{cx : x ∈ P} is a linear program. Using the above result and Theorem 1.5, one an provethat suh a linear program is essentially equivalent to problem (1.1)�(1.3).Theorem 1.9 Assume that all entries of A and b are rational numbers and let P be theonvex hull of the mixed-integer set (1.2)�(1.3). Then one an solve the mixed-integer program(1.1)�(1.3) by applying an algorithm for linear programming to the problem min{cx : x ∈ P},provided that a linear inequality desription of P is available.Unfortunately, the onvex hull of (1.2)�(1.3) may be de�ned by a number of faet-de�ninginequalities whih is exponential in the size of the original desription of the problem, and itis usually very hard to haraterize them. Thus the approah in the above theorem does notresult (in general) in a polynomial time algorithm.We do not disuss here the various tehniques that are ommonly used to solve pure andmixed-integer programs either exatly or approximately (see e.g. [49, 69℄). We only spendsome words on two important aspets of this �eld: valid inequalities and total unimodularity.1.3.1 Valid inequalitiesIn the general ase, the linear relaxation of a mixed-integer set X is only a superset of conv(X).Thus the linear relaxation ontains points that should be �ut o�� in order to desribe conv(X).This leads to the following standard de�nitions.Given a mixed-integer set X ⊆ R

n, a valid inequality for X is a linear inequality whih issatis�ed by all points in X. It is readily heked that a linear inequality is valid for X if andonly if it is valid for conv(X). A utting plane for X is a inequality that is valid for X but isviolated by at least one point in the linear relaxation of X.Given a mixed-integer set (1.2)�(1.3), di�erent kinds of valid inequalities an be derivedin several ways (see [18℄ for a survey of the various tehniques). Methods based on uttingplanes are ommonly used to solve mixed-integer programs either exatly or approximately.Here we only reall two types of valid inequalities that will be used in the next hapters.The Chvátal-Gomory proedure [27℄ an be used to generate valid inequalities for a pureinteger set:Theorem 1.10 (Chvátal-Gomory rounding) Given a pure integer set (1.2)�(1.3) (thus
I = {1, . . . , n}), take a ombination of its inequalities: that is, for a nonnegative vetor
u ∈ R

m, onsider the valid inequality uAx ≥ ub, whih we denote by ax ≥ β. If a is anintegral vetor, then the inequality ax ≥ ⌈β⌉ is valid for (1.2)�(1.3).



8 Chapter 1. IntrodutionGiven a polyhedron P = {x ∈ R
n : Ax ≥ b} where A and b are rational, the set de�nedby all the inequalities that an be derived by using the above proedure is a polyhedron [57℄,denoted P (1) and alled the Chvátal-Gomory losure (or trunation) of P . For eah k ≥ 1,

P (k+1) is de�ned as the Chvátal-Gomory losure of P (k). Shrijver [57℄ proved that for everyrational polyhedron there is an integer k suh that P (k) = conv(P ∩ Z
n). (A similar resultholds if P is a bounded polyhedron, independently of the rationality assumption [10℄.) Suha number k is the Chvátal rank of P .We also need to introdue the simple mixed-integer rounding inequality, or simple MIR-inequality for short.Theorem 1.11 (Simple MIR-inequality [49℄) Let X be the mixed-integer set de�ned by

s+ z ≥ b,

s ≥ 0,

z integer,for some real number b. The simple mixed-integer rounding inequality s+f(b)z ≥ f(b)(⌊b⌋+1),where f(b) := b− ⌊b⌋ denotes the frational part of b, is valid for X.1.3.2 Totally unimodular matriesA matrix A is totally unimodular if every square submatrix of A has determinant 0, 1 or −1.Note that all entries of a totally unimodular matrix are 0, 1 or −1.Totally unimodular matries appear in several ombinatorial optimization problems, seee.g. [49℄. The main reason for the importane of this lass of matries omes from the followingharaterization, whih is due to Ho�man and Kruskal [34℄:Theorem 1.12 An m×n matrix A is totally unimodular if and only if for eah vetor b ∈ Z
m,all verties of the polyhedron {x ∈ R

n : Ax ≥ b, x ≥ 0} are integral.Sine in the next hapter the variables of our problems will not be fored to be all nonneg-ative, we will atually use the result below rather than Theorem 1.12:Theorem 1.13 If A is an m× n totally unimodular matrix and b is an integral vetor, then
conv{x ∈ Z

n : Ax ≥ b} = {x ∈ R
n : Ax ≥ b}.In other words, if A is totally unimodular and b is integral, the onvex hull of the pureinteger set {x ∈ Z

n : Ax ≥ b} and its linear relaxation {x ∈ R
n : Ax ≥ b} are the samepolyhedron. It follows that in this ase pure integer programming an be solved in polynomialtime by means of linear programming.We will make onstant use of totally unimodular matries. In partiular, we will need aharaterization due to Ghouila-Houri [26℄. To introdue it, the following de�nition is needed.



1.4. Extended formulations 9Given a 0,±1-matrix A, with entries aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, an equitablebioloring of the olumns of A is a partition of {1, . . . , n} into two lasses R and B suh that
∣
∣
∣
∣

∑

j∈R

aij −
∑

j∈B

aij

∣
∣
∣
∣
≤ 1 for 1 ≤ i ≤ m.The two lasses R and B are sometimes alled olors, hene the term bioloring (the names

R,B stand for red and blue respetively).Theorem 1.14 [26℄ A 0,±1-matrix A is totally unimodular if and only if every olumn sub-matrix of A admits an equitable bioloring of its olumns.Note that sine a matrix is totally unimodular if and only if so is its transpose, the abovetheorem admits a symmetri version in whih the roles of rows and olumns are interhanged.1.4 Extended formulationsAs disussed in Setion 1.1.1, for a �xed polyhedron P the number of inequalities in anyexternal desription of P in its original spae is bounded from below by the number of faets of
P . Therefore, if P has a huge number of faets, it is impossible to give an external desriptionof P having �small� size. Nonetheless, P may admit a desription of smaller size in a higherdimensional spae. To formalize this onept, we now give two de�nitions.Given a set Q in the spae R

n+p (that uses variables x ∈ R
n and y ∈ R

p), the projetionof Q onto the spae of the x-variables is the set of points x ∈ R
n that an be ompleted to avetor (x, y) of Q:

projx(Q) := {x ∈ R
n : there exists y ∈ R

p suh that (x, y) ∈ Q}.The projetion of a polyhedron is always a polyhedron (see also Setion 1.4.2).Given a polyhedron P in the spae R
n (that uses variables x), an extended formulationof P is the external desription of a polyhedron Q in a spae R

n+p (that uses variables xand y) suh that P = projx(Q). In other words, an extended formulation of P is a linearsystem in the variables (x, y) that de�nes a polyhedron whose projetion onto the spae ofthe x-variables is exatly P . We all R
n the original spae of variables and R

n+p the extendedspae.Every polyhedron P admits in�nitely-many extended formulations. The number of faetsof an extended formulation of P an be very far from that of P . In partiular, it may happenthat a polyhedron with an exponential number of faets admits an extended formulation withonly a polynomial number of faets. Suh an example is given by the permutahedron, whihis the onvex hull of the vetors in R
n whose omponents form a permutation of the numbers

1, . . . , n. The permutahedron has 2n − 2 faets, but it is the projetion of a polyhedron Q inan n(n−1)
2 -dimensional spae that has only n(n− 1) faets (Q is the image of a ube under ana�ne transformation). (See [74℄ for the details.)Therefore, among all the possible extended formulations of a polyhedron P , one an hopeto �nd a desription of P that requires a small number of faet-de�ning inequalities. However,



10 Chapter 1. IntrodutionYannakakis [71℄ proved a very interesting (and perhaps surprising) theorem that gives a lowerbound on the size of any extended formulation of a �xed polyhedron. Though suh a boundannot be easily used to predit the minimum size of an extended formulation of a given set,as an a priori knowledge of the faets and verties is required, the theoretial relevane of thisresult is remarkable.1.4.1 The role of extended formulations in mixed-integer programmingAs disussed in Setion 1.3 (see Theorem 1.9), a mixed-integer program redues to a linearprogram one a linear inequality desription of the onvex hull of the feasible region is known.However suh a onvex hull may have a huge number of faets and it may be very hard to�nd them. We point out here how extended formulations an be useful in this ontext.Let X ⊆ R
n be a mixed-integer set and suppose that we want to solve the problem

min{cx : x ∈ X}, or equivalently min{cx : x ∈ conv(X)}. Assume that we know an extendedformulation of conv(X) and let Q ⊆ R
n+p be the polyhedron de�ned by suh a formulation.It is immediate to see that then problem min{cx : x ∈ conv(X)} is equivalent to problem

min{cx : (x,w) ∈ Q}.This shows that if one knows an extended formulation of the onvex hull of the feasibleregion of a mixed-integer program, then the problem an be equivalently solved in the extendedspae by means of linear programming. If, in addition, the size of suh an extended formulationis polynomial in the size of the original desription of X, this allows one to solve the mixed-integer program in polynomial time.We say the an extended formulation of a mixed-integer set is ompat if its size is poly-nomial in the size of the original desription of the set. The above disussion an then besummarized in the following result:Theorem 1.15 If a mixed-integer set X admits an extended formulation whih is ompat,then linear optimization over X an be arried out in polynomial time by means of linearprogramming.1.4.2 ProjetionsWhen an extended formulation of a polyhedron P is available, in order to �nd a linear in-equality desription of P in its original spae one has to alulate the projetion of Q (thepolyhedron de�ned by the extended formulation) onto the spae where P is de�ned. We on-lude this setion by brie�y disussing two possible ways of omputing the projetion of apolyhedron.A �rst approah is Fourier-Motzkin elimination [25, 22, 48℄ (see e.g. [74℄). This tehniqueonsists in eliminating one variable at a time.Theorem 1.16 Let Q ∈ R
n+1 be a polyhedron in the variables (x1, . . . , xn, y). Assume withoutloss of generality that Q is desribed by a system of linear inequalities of the form ajx+βjy ≥ djfor j ∈ J , where βj ∈ {0,±1} for all j ∈ J . Then a linear inequality desription of the



1.5. Some well-known types of extended formulations 11polyhedron projx(Q) in the x-spae is given by the inequalities
ajx ≥ dj for j ∈ J suh that βj = 0,

(
aj + ak

)
x ≥ dj + dk for j, k ∈ J suh that βj = 1 and βk = −1.If p variables have to be eliminated, p repetitions of the above proedure are needed. Notethat at eah iteration the number of inequalities may be squared, thus the elimination of pvariables may result in a system with an exponential number of inequalities. This is oherentwith what we observed above, namely that an extended formulation of a polyhedron may haveless faet-de�ning inequalities than the polyhedron itself.Note that the above theorem yields a proof of the fat that the projetion of a polyhedronis a polyhedron. We also remark that Fourier-Motzkin elimination often produes a numberof redundant inequalities.A seond approah, whih allows one to eliminate all extra-variables together and will beused in Chapter 5, is now desribed. This result, whih appears in �ernikov [8℄, is based onFarkas' lemma (Theorem 1.7).Theorem 1.17 Let Q be a polyhedron in R

n+p de�ned by the linear system Ax+Dy ≥ b. Theprojetion of Q onto the spae of the x-variables is the polyhedron de�ned by the inequalities
u(Ax− b) ≥ 0 for all vetors u (of suitable dimension) that are extreme rays of the polyhedralone de�ned by

uD = 0, u ≥ 0. (1.6)If some inequalities of the system Ax+Dy ≥ b are replaed by equations, the nonnegativitybounds on the orresponding omponents of u must be removed. In this ase one (1.6) maybe non-pointed and �extreme rays� should be replaed with �rays� in the statement of thetheorem.Note that even if the system de�ning Q has few onstraints, the number of inequalitiesdesribing the projetion an be huge, as one has to write an inequality for eah extreme rayof one (1.6). Similarly to Fourier-Motzkin elimination, this method an produe redundantinequalities.In [6℄ the above result was applied for the �rst time to ompute a linear inequality desrip-tion of a ombinatorial optimization problem by projeting an extended formulation.1.5 Some well-known types of extended formulationsIt is not possible to give a systemati presentation of all the tehniques that have been suess-fully used to onstrut extended formulations in the past years, as suh formulations usuallyexploit the peuliarities of the set under onsideration. Nonetheless some of these approahesapply to a wide lass of problems and have been used by several authors. In this setion we sur-vey some of the most relevant tehniques that an be used to onstrut extended formulationsof mixed-integer sets.



12 Chapter 1. Introdution1.5.1 Hierarhies of formulationsWe onsider here mixed 0-1 programs, i.e. mixed-integer programs in whih every integervariable must take a value in {0, 1}. We also assume that all ontinuous variables are nonneg-ative. Mixed 0-1 programs arise in many important ombinatorial optimization problems, seee.g. [38, 49, 59℄.Let X be a mixed 0-1 set, whih we write in the form
Ax ≥ b, (1.7)
x ≥ 0, (1.8)

xi ∈ {0, 1}, i ∈ I, (1.9)where al entries of A and b are rational numbers. Without loss of generality we assume thatthe linear system Ax ≥ b inlude (or imply) inequalities xi ≤ 1 for i ∈ I.Let P be the onvex hull of X and P0 be the linear relaxation of X. Several authorsdeveloped hierarhies of approximate formulations of P , i.e. sequenes of polyhedra P1, . . . , P|I|suh that
P0 ⊇ P1 ⊇ · · · ⊇ P|I| = P. (1.10)In the hierarhies that we onsider here, eah of the polyhedra Pt for 1 ≤ t ≤ |I| is de�nedimpliitly as the projetion of a polyhedron Qt, whih is expliitly given in a higher dimensionalspae. Thus we are provided with a sequene of approximate extended formulations of P ,where the last formulation of the sequene is an exat extended formulation of P . As one anexpet, in general suh an exat formulation is non-ompat.We desribe below three of the main hierarhies of formulations that one an �nd in theliterature. The approahes that we desribe are also alled lift-and-projet tehniques, as thedesription of the set is �rst lifted (and strengthened) in a higher dimensional spae and thenprojeted onto the original spae.For the pure integer ase, a presentation of these hierarhies in a unitary setting as wellas an interesting omparison of the various relaxations an be found in [40℄.The Sherali-Adams hierarhySherali and Adams [60, 61℄ proposed the hierarhy of relaxations (1.10) that we now desribe.For eah �xed index 1 ≤ t ≤ |I|, the polyhedra Qt and Pt are onstruted as follows.1. Let S be the set of all polynomials of the form

∏

i∈J1

xi

∏

i∈J2

(1 − xi),where J1, J2 are disjoint subsets of I satisfying |J1| + |J2| = t. Construt the nonlinearsystem onsisting of all inequalities obtained by multiplying an inequality of the system
Ax ≥ b by a polynomial in S.2. Linearize the resulting system by performing the following two operations:



1.5. Some well-known types of extended formulations 13(a) for i ∈ |I|, substitute xi for x2
i in all the inequalities of the system;(b) for eah monomial ∏i∈J xi, where J ⊆ {1, . . . , n} and |J | ≥ 2, introdue a newvariable yJ and substitute yJ for ∏i∈J xi throughout.Let Qt be the polyhedron de�ned by the resulting linear system of inequalities and let

Pt be the projetion of Qt onto the x-spae of variables.Note that Steps 1 and 2 (a) give rise to inequality that are valid for X, as any point in Xsatis�es xi ∈ {0, 1} for all i ∈ I.Sherali and Adams [60, 61℄ proved that (1.10) holds for the polyhedra thus onstruted. Itis lear that the exat extended formulation Q|I| onsists of an exponential number of variablesand onstraints.The Sherali-Adams relaxation an be de�ned for a more general lass of sets, namelymixed 0-1 polynomial sets that are linear in the ontinuous variables [61℄. These sets have theform (1.7)�(1.9), exept that the linear system Ax ≥ b is replaed by a system of inequalitiesinvolving polynomials in whih the ontinuous variables appear with degree at most one.The proedure is similar to that desribed above and produes two sequenes of polyhedra
Q1, . . . , Q|I| and P1, . . . , P|I|, where for eah t the polyhedron Pt is the projetion of Qt ontothe original spae. Condition (1.10) is again satis�ed, exept for the inlusion P0 ⊇ P1 whihmight be violated. Note that linear optimization over a mixed 0-1 polynomial set of this typeis onverted into linear programming over Q|I|.A generalization of the proedure presented above was desribed in [62℄, while an extensionto a more general lass of sets was studied reently in [1℄.The Lovász-Shrijver hierarhyLovász and Shrijver [41℄ proposed two hierarhies of formulations of P (in fat their originalonstrution is for pure 0-1 problems only). The �rst hierarhy an be de�ned iteratively asfollows: for 1 ≤ r ≤ |I|, the polyhedra Qr and Pr are obtained by applying the Sherali-Adamsproedure with t = 1 to the linear system de�ning Pr−1. That is, the inequalities desribing
Pr−1 have to be multiplied only by xi and 1 − xi for eah i ∈ I and then linearized.It an be shown that (1.10) holds for the polyhedra thus onstruted. Note in partiularthat P|I| = P even though the above onstrution uses only a partial version of the Sherali-Adams proedure.The de�nition of the polyhedra P1, . . . , P|I| given above is di�erent from (though equivalentto) that appearing in [41℄. The original equivalent onstrution of Pt is given below.1. De�ne the one P̃t−1 :=

{

λ

(

1

x

)

: x ∈ Pt−1, λ ≥ 0

}

⊆ R
n+1. The additional oordinateis indexed by 0.2. Let Mt−1 be the set of symmetri (|I| + 1) × (|I| + 1) matries Y = (yij : i, j ∈ I ∪ {0})suh that(a) Yii = Y0i for i ∈ I,



14 Chapter 1. Introdution(b) Y0, Y0 − Yi ∈ P̃t−1 for i ∈ I, where Yi denotes the olumn of Y orresponding toindex i.3. De�ne Pt :=

{

x ∈ R
n :

(

1

x

)

= Y0 for some Y ∈Mt−1

}.The relaxation that is ommonly referred to as the Lovász-Shrijver relaxation is obtainedas above, exept that Step 3 is replaed by the following:3'. De�ne P+
t :=

{

x ∈ R
n :

(

1

x

)

= Y0 for some Y ∈M+
t−1

}, where M+
t−1 onsists of thematries in Mt−1 that are positive semide�nite.The onvex sets P+

t satisfy (1.10). Furthermore it is lear that P+
t ⊆ Pt for 1 ≤ t ≤ |I|.Note however that P+

t is not a polyhedron: it is the feasible region of a semide�nite program.The interest in a relaxation of this type omes from the fat that semide�nite programs anbe solved e�iently through interior point algorithm (see e.g. [66℄ for a survey on semide�niteprogramming).Another hierarhy of semide�nite relaxations was given by Lasserre [39℄.The Balas-Ceria-Cornuéjols hierarhyBalas, Ceria and Cornuéjols [5℄ proposed the following lift-and-projet proedure:1. Pik an index i1 ∈ I.2. Construt the nonlinear system onsisting of all inequalities obtained by multiplying aninequality of the system Ax ≥ b by one of xi1 and 1 − xi1 .3. Linearize the resulting system by performing the following two operations:(a) substitute xi1 for x2
i1
in all the inequalities of the system;(b) for eah i 6= i1, introdue a new variable yi and substitute yi for xi1xi throughout.Let Q1 be the polyhedron de�ned by the resulting linear system of inequalities and let

P1 be the projetion of Q1 onto the x-spae of variables.The polyhedra Q2 and P2 are onstruted by hoosing a di�erent index i2 ∈ I \ {i1}and performing the above operations on the linear system de�ning P1. By iterating thisonstrution, one de�nes the polyhedra Qt and Pt for 1 ≤ t ≤ |I|.Results of Balas, Ceria and Cornuéjols [5℄ and Balas [3℄ show that
Pt = conv

(
{x ∈ Pt−1 : xit = 0} ∪ {x ∈ Pt−1 : xit = 1}

)

= conv
(
{x ∈ P0 : xir ∈ {0, 1} for 1 ≤ r ≤ t}

)
,whih implies all the inlusions and the equation in (1.10). In other words, at eah iterationthe lift-and-projet proedure omputes the onvex hull of the urrent relaxation, where eah



1.5. Some well-known types of extended formulations 15time a single variable xi ∈ I is treated as a binary variable. Suh a sequential onvexi�ationleads to the onvex hull of the original set, i.e. P|I| = P .We remark that though this proedure requires muh less e�ort than the Sherali-Adamsand Lovász-Shrijver relaxations, still the |I|-th step yields a desription of the onvex hullin the original set. However, the intermediate relaxations P1, . . . , P|I|−1 are not as strong asthose arising from the Sherali-Adams and Lovász-Shrijver proedures.In [5℄ it is also shown how lift-and-projet an be used to generate utting planes.1.5.2 Extended formulations based on Minkowski-Weyl theoremWe remarked in Setion 1.1.2 that the formulation of a polyhedron given by Theorem 1.2 usesadditional variables. Thus that theorem yields an extended formulation of a polyhedron.In general an extended formulation of this type an hardly be expliitly given for theonvex hull of a mixed-integer set, as it is usually di�ult to haraterize the extreme pointsand extreme rays of suh a polyhedron (assuming it is pointed). Furthermore, the number ofextreme points and extreme rays of the onvex hull of a mixed-integer set is often huge, evenif the original desription of the set is small.1.5.3 Extended formulations based on the properties of the extreme pointsA re�nement of the approah desribed in Setion 1.5.2 is sometimes possible: the key idea isthat some basi properties of the verties, rather than their omplete enumeration, may su�eto desribe the onvex hull of a mixed-integer set. This idea, whih already appears in [53℄,will be exploited in the next hapters.We demonstrate this tehnique by showing how Miller and Wolsey [45℄ used this approahto onstrut an extended formulation of the onvex hull of the following mixed-integer set:
s+ zi ≥ bi, 1 ≤ i ≤ n, (1.11)
s ≥ 0 (1.12)

zi integer, 1 ≤ i ≤ n, (1.13)where bi ∈ R for 1 ≤ i ≤ n. The above set, whih is now alled mixing set, has important ap-pliations in prodution planning problems (in partiular lot-sizing [55℄). We will be analyzingit again in Setions 4.2 and 5.2.3.The onstrution of an extended formulation of (1.11)�(1.13) an be divided into the threemain steps below. We do not go into details or give any proofs, as we only want to onveythe main idea of the tehnique. Furthermore, sine an extension of this approah is desribedin Chapter 2, rigorous proofs an be found there.1. First one observes that in every extreme point of the onvex hull of (1.11)�(1.13), thefrational part of s is one of the values f0, . . . , fn, where for 1 ≤ i ≤ n, fi := bi − ⌊bi⌋ isthe frational part of bi, and f0 := 0.



16 Chapter 1. Introdution2. Then one adds the following onstraints to the original formulation (1.11)�(1.13):
s = µ+

∑n
i=0 fiδi, (1.14)

∑n
i=0 δi = 1, δ1, . . . , δn ≥ 0, (1.15)
µ, δ1, . . . , δn integer. (1.16)The above onditions fore variable s to take a frational part in the set of values

{f0, . . . , fn}. One an show that adding onstraints (1.14)�(1.16) does not hange theonvex hull of feasible solutions.3. The set of onstraints (1.11)�(1.13) and (1.14)�(1.16) is then tightened and an equivalentdesription is obtained that has the following form:
s = µ+

∑n
i=0 fiδi, (1.17)

Aµ+Bδ + Cz ≥ d, (1.18)
µ, δ1, . . . , δn, z1, . . . , zn integer, (1.19)where [A | B | C] is a totally unimodular matrix and d is an integral vetor. Sinevariable s does not appear in any of inequalities (1.18), by Theorem 1.13 the integralityonditions (1.19) an be removed without a�eting the onvex hull of feasible solutions.The resulting linear system is an extended formulation of the mixing set (1.11)�(1.13).Step 3 suggests that suh an approah an only be used for some partiular mixed-integersets, as one needs to obtain a linear system with totally unimodular matrix. The idea of ex-ploiting the total unimodularity of a pure integer reformulation of a mixed-integer set appearsin [53℄.The general idea underlying the above tehnique �modeling the ontinuous variable a-ording to the possible frational parts taken at the verties� an be extended to mixed-integersets with more than one ontinuous variable. Suh an extension was suessfully used by Millerand Wolsey [45, 46℄, Van Vyve [63, 65℄ and Conforti, Di Summa and Wolsey [12℄ in taklingspei� mixed-integer sets that appear in lot-sizing problems.In Chapter 2 we present a modeling tehnique that generalizes that desribed here andan be used to formulate a quite large family of mixed-integer sets, whih inludes as speialases several sets studied by the authors ited above.We remark that the tehnique skethed above is just one of the possible ways of exploitingthe properties of the verties (see e.g. [53, 63, 65℄).1.5.4 Extended formulations based on the union of polyhedraTheorem 1.3 yields an extended formulation for the onvex hull of several polyhedra P1, . . . , Pkin R

n, provided that external desriptions of these polyhedra are available. We remark thatsuh an extended formulation is ompat, while the desription of conv(P1 ∪ · · · ∪ Pk) in itsoriginal spae R
n may have an exponential number of faet-de�ning inequalities (suh anexample is given in [18℄).



1.5. Some well-known types of extended formulations 17Balas' result was reently applied by Conforti and Wolsey in [16℄, where a tehnique isintrodued and used to �nd extended formulations of some mixed-integer sets arising in lot-sizing problems. The same idea, whih we present below, had been also used by Atamtürk [2℄to formulate a simple mixed-integer set that has appliation in robust optimization.To summarize the approah, we use the following notation: given a mixed-integer set X,let V be the set of verties of conv(X) and let R be the set of its extreme rays (we assume that
conv(X) is a pointed polyhedron). The tehnique proposed in [16℄ is as follows (we present itin a simpli�ed version):1. First the set of verties V is partitioned into subsets V1, . . . , Vk aording to some rite-rion (usually the frational part of one or some of the ontinuous variables).2. For eah 1 ≤ i ≤ k, let Pi be the polyhedron generated by the points in Vi and therays in R. Note that conv(X) = conv(P1 ∪ · · · ∪ Pk), as all these polyhedra have thesame reession one. For 1 ≤ i ≤ k, an extended formulation Qi of Pi is onstruted insome way: this is usually done by (i) introduing new variables to model the ommonproperty of the verties in Vi and (ii) observing that the resulting set belongs to a lassof mixed-integer sets for whih an extended formulation is known.3. Balas' result is then applied either to the polyhedra P1, . . . , Pk (whih an be deter-mined by omputing the projetion of Q1, . . . , Qk), or to their extended formulations

Q1, . . . , Qk. In both ases an extended formulation of conv(X) is found.The above approah will be used in Setion 8.3 to takle a mixed-integer set whih hasappliation both in deterministi and stohasti lot-sizing problems with baklogging.1.5.5 Extended formulations more generallyThe de�nition of extended formulation of a polyhedron that we gave at the beginning ofSetion 1.4 an be stated in a di�erent way, as the following result shows:Proposition 1.18 Let P be a polyhedron in the variables x ∈ R
n and Q a polyhedron in thevariables (x,w) ∈ R

n+p. The following onditions are equivalent:(i) P is the projetion of Q onto the x-spae of variables;(ii) for every vetor c ∈ R
n, x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if there exists w̄ suh that (x̄, w̄) is an optimal solution of the linear program

min{cx : (x,w) ∈ Q}.Thus ondition (ii) ould be taken as de�nition of extended formulation. We now showthat suh a de�nition is sometimes too restritive, in the sense that a softer version may besu�ient to transform a mixed-integer program into a linear program on a di�erent spae ofvariables.



18 Chapter 1. IntrodutionSpei� objetive funtionsIn many ases the mixed-integer program under onsideration is the model of a real-worldproblem for whih not all possible objetive funtions are meaningful. For instane, when theobjetive funtion cx represents a ost, one will probably be interested only in vetors c thathave nonnegative omponents.For a �xed mixed-integer set X, let F be the set of vetors c ∈ R
n that orrespond to�interesting� objetive funtions, i.e. objetive funtions that an really our in the problemthat is modeled by X. De�ne P := conv(X) and let Q be a polyhedron in the variables

(x,w) ∈ R
n+p that satis�es the following weak version of ondition (ii) of Proposition 1.18:(ii') For every vetor c ∈ F , x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if there exists w̄ suh that (x̄, w̄) is an optimal solution of the linear program

min{cx : (x,w) ∈ Q}.Suh a polyhedron Q is not an extended formulation of P aording to the de�nition givenin Setion 1.4, however it is su�ient to onvert the mixed-integer program min{cx : x ∈ X}into the linear program min{cx : (x,w) ∈ Q} for all �interesting� objetive funtions.To demonstrate that suh a weaker version of the onept of extended formulation anbe useful, we onsider lot-sizing problems. In a lot-sizing problem several osts need to beonsidered: for eah period i, one usually has a per unit prodution ost pi, a �xed ost qithat one must pay if prodution takes plae in period i, a per unit holding ost hi for storingthe exess of prodution at the end of period i and a per unit baklogging (reovery) ost ri.Several kinds of lot-sizing problems (and relaxations of them) were studied and suessfullyformulated without any assumptions on the objetive funtion (i.e. on the osts), see e.g. [12,13, 16, 30, 45, 46, 64, 65℄, but many others do not seem to be easily tratable in the general ase.However it turns out that in pratie many instanes satis�es the following speial ondition:for 2 ≤ i ≤ N (where N is the total number of periods), pi−1 +hi−1 ≥ pi and pi + ri−1 ≥ pi−1.A problem satisfying suh a property is said to have Wagner-Whitin osts.A number of lot-sizing problems with Wagner-Whitin osts were studied in the last years,see e.g. [45, 53, 63, 65℄. Under Wagner-Whitin hypotheses, the optimal solutions satisfy somespeial properties that an be exploited to onstrut ompat extended formulation in theweaker sense disussed above.Linear inequality formulations based on dynami programming(We use here some basi onepts about dynami programming, shortest path problems ondigraphs and linear programming duality, see e.g. [7, 38, 58℄ respetively. Our presentation ismostly based on [68℄.)A number of problems that an be solved through dynami programming an be formalizedas follows: states are labeled 0, . . . , N and the reursive funtion has the form
F (0) = 0, F (j) = min

0≤i<j
{F (i) + c(i, j)} for 1 ≤ j ≤ n, (1.20)where c(i, j) is the nonnegative ost of the transition from state i to state j. The appliation ofthe reursion yields the optimal value F (n) along with an optimal solution that is determined



1.5. Some well-known types of extended formulations 19as follows: if 0 = j0 < j1 < · · · < jk = N is a sequene of indies suh that F (jℓ) =

F (jℓ−1)+c(jℓ−1, jℓ) for 1 ≤ ℓ ≤ k, then the optimal solution onsists of the following deisions:for eah 1 ≤ ℓ ≤ k, go from state jℓ−1 to state jℓ.Let D = (V,A) be the direted graph with node set V := {0, . . . , N} and ar set A :=

{(i, j) : 0 ≤ i < j ≤ N}. Note that D ontains no yles. If we assign weight c(i, j) to ar (i, j),then the dynami programming reursion amounts to �nding a shortest path in D onnetingnodes 0 and N . The well-known linear programming formulation of suh a problem is
min

∑

0≤i<j≤N

c(i, j)wijsubjet to ∑

j>0

w0j = 1,

∑

j>k

wjk −
∑

i<k

wik = 0, 1 ≤ k ≤ N − 1,

∑

i<N

wiN = 1,

wij ≥ 0, 0 ≤ i < j ≤ N.The above problem has an optimal solution with wij ∈ {0, 1} for all 0 ≤ i < j ≤ N . Ars
(i, j) orresponding to variables that take value 1 form an optimal path. By interpreting eah
wij as a deision variable orresponding to the transition from state i to state j, suh a pathyields an optimal solution of the original problem.This shows that the above linear program is a linear formulation of the original problem,in the sense that solving it yields the optimal solution of the original problem. This propertyis similar to ondition (ii) of Proposition 1.18, in the sense that a given problem is onvertedinto a linear program on a di�erent spae.The same linear program an also be obtained by using linear programming duality. Speif-ially, observe that the following linear program is the equivalent of reursion (1.20):

max F (n)subjet to F (j) − F (i) ≤ cij , 0 ≤ i < j ≤ N,

F (0) = 0.By interpreting F (0), . . . , F (n) as variables, the dual of the above linear program is essentiallythe linear programming formulation of the shortest path problem seen above.Clearly suh a shortest path formulation an be given only for problems that admit adynami programming algorithm with a reursion of type (1.20). However Martin, Rardinand Campbell [43℄ showed that this approah an be generalized to a wider lass of problemthat an be solved by disrete dynami programming: given a dynami programming algo-rithm, they formulate the original instane as a linear program arising from a problem on ahypergraph.



20 Chapter 1. IntrodutionGeneral a�ne transformationsThe de�nition of extended formulation given in Setion 1.4 is based on the notion of projetion.Sine a projetion is a partiular type of full-rank a�ne transformation, suh a de�nition anbe generalized as we now desribe.Let P be a polyhedron in the variables x ∈ R
n and Q a polyhedron in the variables y ∈ R

m,where m ≥ n. Let T be a full-rank n×m matrix and let t be a vetor in R
n. The mapping gde�ned by g(y) := Ty + t for y ∈ R

m is a full-rank a�ne transformation of R
m into R

n.Assume that g(Q) = P . Then one an easily hek that the following analogue of ondi-tion (ii) of Proposition 1.18 holds:(ii�) For every c ∈ R
n, x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if x̄ = T ȳ + t, where ȳ ∈ Q is an optimal solution of the linear program

min{cTy + ct : y ∈ Q}.Note that if t = 0 and T = [In | O] (where In is the n × n identity matrix), we reobtainondition (ii) of Proposition 1.18 and Q is an extended formulation of P aording to ourde�nition.This more general kind of extended formulation was studied by Padberg and Sung [50℄,who proved a generalization of Theorem 1.17 that we now desribe. Following [50℄, we assumewithout loss of generality that the olumns of T are ordered so that T = [T1 | T2], where T1 isa non-singular n× n matrix.Theorem 1.19 Let Q be a polyhedron in R
m de�ned by the linear system

Ay ≥ b, Cy = d.Partition A = [A1 | A2] and C = [C1 | C2], where A1, C1 are the olumn submatries formedby the �rst n olumns of A,C respetively. The polyhedron g(Q) is de�ned by the inequalities
(uA1 + vC1)T

−1
1 (x− t) ≥ ub+ vdfor all vetors (u, v) (of suitable dimension) belonging the following polyhedral one:

u(A2 −A1T
−1
1 T2) + v(C2 − C1T

−1
1 T2) = 0, u ≥ 0.If the above is a polyhedral one with apex, then its extreme rays are su�ient.If t = 0 and T = [In | O], the above statement oinides with Theorem 1.17. Padberg andSung [50℄ used this result to ompare four approximate extended formulations of the travelingsalesman problem, eah de�ned on a di�erent spae of variables.1.6 Outline of the thesisThe main subjet of this work is the study of a lass of mixed-integer sets whose onstraintmatries are totally unimodular. A tehnique is presented that allows one to onstrut ex-tended formulations for suh sets, and the desription in the original spae is also onsideredfor some speial ases. Furthermore, possible extensions to other sets are onsidered.



1.6. Outline of the thesis 21In Chapter 2 we study mixed-integer sets of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I}, (1.21)where A is a totally unimodular matrix, b is a olumn vetor and I is a nonempty subset of
{1, . . . , n}. By a result of Eisenbrand [23, 11℄, the problem of heking nonemptiness of a set
MIXTU is NP-omplete, even if A is a totally unimodular matrix with at most two nonzeroentries per olumn and b is a half-integral vetor (i.e. 2b is integral). This, together withthe equivalene between separation and optimization (Theorem 1.6), indiates that �nding anexpliit inequality desription of the polyhedron conv

(
MIXTU

) will most likely be an elusivetask.We then fous on sets of the type MIXTU for whih the matrix A ontains at most twononzero entries per row (a set of this type is denoted by MIX2TU ), and sets of the type
MIXTU for whih A is the transpose of a �ow network matrix (denoted MIXDN ). Weprovide an extended formulation for the polyhedron conv

(
MIXDN

), and this will also yieldan extended formulation for conv
(
MIX2TU

). We summarize below the approah used to�nd an extended formulation of conv
(
MIXDN

), whih is based on a general idea that wasalso adopted by Miller and Wolsey [45, 46℄ and Van Vyve [63, 65℄ to takle some spei�mixed-integer sets arising from lot-sizing problems.First we study a mixed-integer set XF , whih is the set of points that satisfy the system
Ax ≥ b (whih de�nes MIXDN ), where all variables are required to take a frational partbelonging to a given list F . We introdue additional variables to model the onditions de�ning
XF and obtain a pure integer desription of this set. The onstraints are then strengthenedand an equivalent pure integer desription is obtained, where the onstraint matrix is nowtotally unimodular. This will provide an extended formulation of conv

(
XF

).Next we study the ase in whih the list F is omplete: that is, it ontains all possiblefrational parts that the variables take over the set of verties of conv
(
MIXDN

). We provethat under this assumption the above result yields an extended formulation of conv
(
MIXDN

).We show that a omplete list for a set of the type MIXDN an always be exhibited, thusan extended formulation of our type an be onstruted in all ases. We also show that ifthere is a omplete list F that ontains a polynomial number of elements, then the extendedformulation is ompat. This proves that linear optimization over sets of the typeMIXDN (or
MIX2TU ) that have this property an be arried out e�iently through linear programming.This is in ontrast to the NP-ompleteness result mentioned above, whih holds when thematrix A in (1.21) has at most two nonzero entries per olumn.In Chapter 3 we disuss the size of an extended formulation of the type introdued inChapter 2.On the negative side, we show that there exist mixed-integer sets of the type MIX2TUthat do not admit a omplete list of frational parts ontaining only a polynomial number ofelements. This implies that for suh sets, no extended formulation of our type is ompat.On the other hand, we give some su�ient onditions ensuring that a mixed-integer set
MIX2TU admits a omplete list of polynomial length, thus proving that under these onditionsthe extended formulation of Chapter 2 is polynomial in the original desription of the set. The



22 Chapter 1. Introdutionlist of frational parts is expliitly given through a onstrution based on a graph assoiatedwith the set.In Chapter 4 we show that several mixed-integer sets that have been studied in the litera-ture an be transformed into sets of the typeMIX2TU and thus admit an extended formulationof the type introdued in Chapter 2. For many of these sets, one of the onditions ensuringthe existene of a omplete list of frational parts with a polynomial number of elements is sat-is�ed, and suh a list an be expliitly given. Therefore the extended formulation is ompatfor suh sets.We will see that most of the mixed-integer sets onsidered in this hapter have appliationin real-word problems, suh as prodution planning. Our results provide a uni�ed frameworkfor the extended formulations of these sets found in the last years.In Chapter 5 we onsider the problem of arrying out expliitly the projetion of anextended formulation of a mixed-integer set of the type MIX2TU . When this an be done, weobtain a linear inequality desription of the polyhedron conv
(
MIX2TU

) in its original spae.Sine omputing the projetion of our extended formulation seems to be an extremely hardtask in general, we only onsider two speial ases for whih the projetion an be alulated:the �rst ase is a general set of the type MIX2TU having a single ontinuous variable, whilethe seond set studied is a mixed-integer set arising from some lot-sizing problems.We will see that the problem of omputing the projetion of an extended formulation ofthe type given in Chapter 2 amounts to solving a family of irulation problems on a networkdepending on ontinuous parameters.Chapter 6 is entirely devoted to mixed-integer sets of the type MIX2TU having a singleinteger variable. We give a linear inequality desription (in the original spae) of the onvexhull of an arbitrary set in this lass. In ontrast to the �opposite� ase of a single ontinu-ous variable onsidered in Chapter 5, suh a desription is obtained without onstruting orprojeting any extended formulation of the set. A tehnique appearing in [24℄ will be used.We will point out that all the inequalities of the formulation an be derived as simple MIR-inequalities, while the Chvátal-Gomory proedure is not su�ient to generate all of them.In Chapter 7 we onsider two examples of a mixed-integer set whose onstraint matrix hasa simple struture but is not totally unimodular (in fat, it is not even a 0,±1-matrix). Weshow how the approah desribed in Chapter 2 an be extended and how this yields extendedformulations for the two sets that are analyzed.The oe�ients of the �rst set form a sequene of divisible number, while the onstraintsof the seond set ontain only two distint (but arbitrary) oe�ients on the integer variables.For the former set the size of the extended formulation is polynomial in the size of the originaldesription of the set, while for the latter we an only obtain a pseudo-polynomial desription.We will also point out that in both ases the suess in �nding suh formulations reliesupon the very speial properties that eah integer variable appears in a single inequality ofthe original desription of the set.



1.6. Outline of the thesis 23In Chapter 8 we present a di�erent approah to onstrut formulations of mixed-integersets in the original spae or in an extended spae. In ontrast to the tehnique of Chapter 2and its extension desribed in Chapter 7, no expliit enumeration of frational parts or othernumbers is required (exept possibly in the �nal phase of the proess). We adopt this tehniqueto formulate two spei� sets, but we annot determine a lass of mixed-integer sets for whihthis approah an be used.The idea an be summarized as follows. A given mixed-integer set X is written as X = Z∩

P for some mixed-integer set Z and some polyhedron P that is desribed by a small number ofinequalities. Then one proves that for a partiular hoie of Z and P , conv(X) = conv(Z)∩P .Next the set Z is shown to be equivalent to a mixed-integer set for whih a formulation isknown either in the original spae or in an extended spae. This an be used to derive aformulation of X.Finally in Chapter 9 some open problems in this �eld are disussed.Note The results presented in Chapters 2�4 are joint work with Mihele Conforti, FriedrihEisenbrand and Laurene A. Wolsey. The results of Chapter 8 and partly of Chapters 5 and 7are joint work with Mihele Conforti and Laurene A. Wolsey.





Chapter 2Extended formulations of dualnetwork setsIn this hapter we study mixed-integer sets of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I}, (2.1)where A is a totally unimodular matrix, b is a olumn vetor and I is a nonempty subset of
{1, . . . , n}.We point out in Setion 2.1 that the problem of heking nonemptiness of a set MIXTUis NP-omplete, even if A is a totally unimodular matrix with at most two nonzero entriesper olumn and b is a half-integral vetor (i.e. 2b is integral). This, together with the equiv-alene between separation and optimization (Theorem 1.6), indiates that �nding an expliitinequality desription of the polyhedron conv

(
MIXTU

) will most likely be an elusive task.In Setion 2.2 we introdue two families of matries that are studied in this hapter: oneis the lass of dual network matries, i.e. the transposes of matries of irulation problemson a network; the other onsists of the totally unimodular matries with at most two nonzeroentries per row. We reall some well-known results about these matries and in partiular weobserve that the matries of the seond lass an be easily �transformed� into matries of the�rst lass.LetMIXDN be a mixed-integer set of the typeMIXTU de�ned above, with the additionalrestrition that A is a dual network matrix. Similarly, let MIX2TU be a mixed-integer set ofthe type MIXTU where A has at most two nonzero entries per row. In Setions 2.3�2.4 weprovide an extended formulation for the polyhedron conv
(
MIXDN

). This, together with theobservations made in Setion 2.2, gives an extended formulation of conv
(
MIX2TU

).The tehnique that we present is based on a general idea that was also used by Miller andWolsey [45, 46℄ and Van Vyve [63, 65℄ to takle some spei� mixed-integer sets arising fromlot-sizing problems. Their ommon approah onsisted in modeling the ontinuous variablesof the problem by introduing integer variables, so that a pure integer desription of the setwas derived. A linear inequality desription of this pure integer formulation was then obtained(see also Setion 1.5.3). In this last step total unimodularity usually plays a entral role. The25



26 Chapter 2. Extended formulations of dual network setsidea of onstruting ompat extended formulations by exploiting the total unimodularity ofa pure integer reformulation of the set appears in a paper by Pohet and Wolsey [53℄.The approah used here to �nd an extended formulation of conv
(
MIXDN

) is now sum-marized. In Setion 2.3 we study a mixed-integer set XF , whih is the set of points thatsatisfy the system Ax ≥ b (whih de�nes MIXDN ), where all variables are required to takea frational part belonging to a given list F . We introdue additional variables to model theonditions de�ning XF and obtain a pure integer desription of this set. The onstraints arethen strengthened and an equivalent pure integer desription is obtained, where the onstraintmatrix is now totally unimodular. This will provide an extended formulation of conv
(
XF
).In Setion 2.4 we study the ase in whih the list F is omplete: that is, it ontains allpossible frational parts that the variables take over the set of verties of conv

(
MIXDN

). Weprove that under this assumption the result of Setion 2.3 yields an extended formulation of
conv

(
MIXDN

). We show that a omplete list for a set of the type MIXDN an always beexhibited, thus an extended formulation of our type an be onstruted in all ases. We alsoshow that if there is a omplete list F that ontains a polynomial number of elements, thenthe extended formulation is ompat. This proves that linear optimization over sets of thetype MIXDN (or MIX2TU ) that have this property an be arried out in polynomial timethrough linear programming. This is in ontrast to the NP-ompleteness result mentionedabove, whih holds when the matrix A in (2.1) has at most two nonzero entries per olumn.Finally in Setion 2.5 we disuss a variant of the above approah whih allows one toredue the size of the extended formulation. Suh a variant onsists in using a di�erent list offrational parts Fi for eah variable xi rather than a single list F for all variables of the set.This redues the number of variables and onstraints of the extended formulation.The results of this hapter are joint work with Mihele Conforti, Friedrih Eisenbrand andLaurene A. Wolsey and are also summarized in [11℄.2.1 ComplexityAs realled in Setion 1.3.2, a linear system with totally unimodular matrix and integralright-hand side de�nes an integral polyhedron, i.e. a polyhedron whih is the onvex hull ofits integral points. Thus optimization of a linear funtion over pure integer sets de�ned bysystems of this type an be arried out in polynomial time by means of linear programming.It is then natural to wonder whether a similar result also holds in the mixed-integer ase.A result due to Eisenbrand [23℄ (whih also appears in [11℄) shows that the answer to theabove question is negative (unless P = NP) even under some more restritive assumptions.Theorem 2.1 [23, 11℄ The problem of deiding whether a mixed-integer set with totally uni-modular onstraint matrix ontains a feasible point is NP-omplete, even if the onstraintmatrix has at most two nonzero entries per olumn and all omponents of the right-hand sidevetor are half-integer. In partiular, it follows that linear optimization over suh sets is an
NP-hard problem.The proof of the above theorem is via redution to CNF-SAT.



2.2. Dual network matries 27Consider a mixed-integer set of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I},where A is a totally unimodular matrix and I is a nonempty subset of {1, . . . , n}. Let cx bean objetive funtion to be minimized over MIXTU and assume that we know the frationalparts f1, . . . , fn of the omponents of an optimal solution. For 1 ≤ i ≤ n, we introdue aninteger variable µi that represents the integer part of xi and we onsider the mixed-integer set
xi = µi + fi, 1 ≤ i ≤ n,

Ax ≥ b,

µi integer, 1 ≤ i ≤ n.The above onstraints de�ne a subset of MIXTU (as fi = 0 for i ∈ I) whih ontains anoptimal solution of the minimization problem. Thus optimizing cx over this set is the same asoptimizing over the original set. Furthermore, sine we know that f1, . . . , fn are the frationalparts of an optimal solution, we an equivalently minimize the funtion cµ.System Ax ≥ b an now be rewritten as Aµ ≥ b − Af , whih an be tightened to Aµ ≥

⌈b−Af⌉, where ⌈b−Af⌉ indiates the vetor whose omponents are ⌈bj − (Af)j⌉. We thenobtain the system
xi = µi + fi, 1 ≤ i ≤ n,

Aµ ≥ ⌈b−Af⌉,

µi integer, 1 ≤ i ≤ n.Note that eah variable xi only appears in one equation, whih determines its value. Sine
A is a totally unimodular matrix and the right-hand side ⌈b−Af⌉ is an integral vetor, byTheorem 1.13 we an drop the integrality onstraints from the above system. The originalminimization problem an now be solved by means of linear programming.Together with Theorem 2.1, the above disussion shows that given an optimization problemof the form min

{
cx : x ∈MIXTU

}, �nding the frational parts of the omponents of anyoptimal solution is an NP-hard problem (even if the onstraint matrix ontains at most twononzero entries per olumn and all omponents of the right-hand side vetor are half-integer).2.2 Dual network matriesWe reall here some basi fats about the matries that are the objet of this study.Given a network N = (V,A) with node set V and ar set A, the node-ar inidene matrixof N is the matrix M = (mv,a : v ∈ V, a ∈ A) de�ned by
mv,a :=







+1 if v is the head of a,
−1 if v is the tail of a,
0 otherwise.



28 Chapter 2. Extended formulations of dual network setsSuh a matrix has exatly two nonzero entries per olumn (one +1 and one −1). If we allowars having only one endpoint in the network (the other endpoint being a dummy node),matrix M has at most two nonzero entries per olumn, and eah olumn with two nonzeroentries ontains one +1 and one −1. The matries of this type are the onstraint matries ofirulation problems on networks (this will be disussed in Setion 5.1).We say that a 0,±1-matrix A with at most two nonzero entries per row is a dual networkmatrix if eah row of A having two nonzero entries ontains one +1 and one −1. Thus dualnetwork matries are the transposes of the onstraint matries of irulation problems onnetworks.In this hapter we study mixed-integer sets whose onstraint matrix is totally unimodularand ontains at most two nonzero entries per row. A matrix of this type an be onverted intoa dual network matrix by hanging the sign of some of its olumns. To see this, we �rst reallthe following haraterization, whih is due to Heller and Tompkins [32℄, see e.g. Theorem 2.8in [49℄.Theorem 2.2 Let A be a 0,±1-matrix with at most two nonzero entries per row, where {aj :

j ∈ N} is the set of olumns of A. Then A is totally unimodular if and only if the set N anbe partitioned into two lasses R,B suh that all entries of the vetor ∑j∈R aj −
∑

j∈B aj are
0,±1.This is a partiular ase of the haraterization of totally unimodular matries given byGhouila-Houri [26℄ (see also Theorem 1.14). The ondition in the above theorem an be statedthis way: in every row of A with two nonzero elements, the nonzero entries have the samesign if and only if they belong to olumns in distint lasses.Corollary 2.3 Every dual network matrix is totally unimodular.Proof. Just hoose R := N and B := ∅. �Another well-known onsequene of Theorem 2.2 is the following:Corollary 2.4 Let A be a 0,±1-matrix with at most two nonzero entries per row, where
{aj : j ∈ N} is the set of olumns of A. Then A is totally unimodular if and only if Nontains a subset R suh that the matrix AR, obtained by multiplying by −1 the olumns ajfor j ∈ R, is a dual network matrix.Proof. If A is a totally unimodular matrix with at most two nonzero entries per row, take apartition (R,B) of N satisfying the ondition of Theorem 2.2. It is easily heked that then
AR is a dual network matrix.For the onverse, observe that if there is a subset R ⊆ N suh that AR is a dual networkmatrix, then the partition (R,B), where B := N \ R, satis�es the ondition of Theorem 2.2and thus A is totally unimodular. �



2.3. Dual network systems and lists of frational parts 292.3 Dual network systems and lists of frational partsThe goal of this hapter is to provide an extended formulation for a set of the type MIX2TU ,i.e. a mixed-integer set whose onstraint matrix is totally unimodular and ontains at mosttwo nonzero entries per row. To ahieve this result, we �rst study subsets of R
n that arede�ned by a linear system with dual network matrix, with the additional restrition that allvariables an only take a frational part belonging to a given list.Given a real number α, we write f(α) to denote the frational part of α. Also, throughoutthis dissertation frational part stands for any real number in the interval [0, 1).De�ne N := {1, . . . , n} and onsider a general linear system with dual network matrix inthe variables x1, . . . , xn:

xi − xj ≥ lij , (i, j) ∈ N e, (2.2)
xi ≥ li, i ∈ N l, (2.3)
xi ≤ ui, i ∈ Nu, (2.4)where N e ⊆ N × N and N l, Nu ⊆ N . The set N e does not ontain any pair of the type

(i, i) for i ∈ N . The values lij , li, ui are arbitrary real numbers. We remark that the abovesystem may also inlude onstraints of the type xi − xj ≤ uij , as this inequality is equivalentto xj − xi ≥ lij for lij := −uij.Suppose we are given a list of frational parts F = {f1, . . . , fk}, with f1 > · · · > fk, andlet K := {1, . . . , k} be its set of indies. Let XF be the set of points x satisfying inequalities(2.2)�(2.4) along with the additional ondition that all variables take a frational part in F :
XF := {x ∈ R

n : x satis�es (2.2)�(2.4), f(xi) ∈ F for i ∈ N}.That is, XF is the set of points x ∈ R
n suh that there exist µi, δi

ℓ, for i ∈ N and ℓ ∈ K,satisfying the following onstraints:
xi = µi +

∑k
ℓ=1 fℓδ

i
ℓ, i ∈ N, (2.5)

∑k
ℓ=1 δ

i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ K, (2.6)
xi − xj ≥ lij, (i, j) ∈ N e, (2.7)

xi ≥ li, i ∈ N l, (2.8)
xi ≤ ui, i ∈ Nu, (2.9)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ K. (2.10)In other words, XF is the projetion of the mixed-integer set (2.5)�(2.10) onto the x-spae ofvariables. In the remainder of this setion we give an extended formulation of the polyhedron

conv
(
XF

).Consider the following transformation:
µi

0 := µi, µi
ℓ := µi +

ℓ∑

j=1

δi
j for i ∈ N and ℓ ∈ K. (2.11)



30 Chapter 2. Extended formulations of dual network setsSine the above is a unimodular transformation (see e.g. [38℄), we an equivalently study thetransformed of (2.5)�(2.10) under (2.11).De�ne f0 := 1 and fk+1 := 0. For �xed i ∈ N , under transformation (2.11) an equationin (2.5) beomes
xi =

k∑

ℓ=0

(fℓ − fℓ+1)µ
i
ℓ (2.12)and the k + 1 onstraints in (2.6) beome

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0 for ℓ ∈ K. (2.13)In the following we strengthen onstraints (2.7)�(2.9). Consider �rst an inequality of thetype xi ≤ li with i ∈ N l. Let ℓ(li) be the highest index ℓ ∈ {0, . . . , k} suh that fℓ ≥ f(li).Lemma 2.5 Assume that xi, δi
ℓ and µi

ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and (2.11). Then
xi ≥ li if and only if

µi
ℓ(li)

≥ ⌊li⌋ + 1. (2.14)Proof. The result an be heked diretly. We show here that inequality (2.14) an be obtainedthrough the Chvátal-Gomory proedure (see Theorem 1.10).By equation (2.5), inequality xi ≥ li is equivalent to µi +
∑k

ℓ=1 fℓδ
i
ℓ ≥ li. For ε > 0 smallenough, ombining suh inequality with equation

−(f(li) − ε)

k∑

ℓ=1

δi
ℓ = −(f(li) − ε)(whih holds by (2.6)) and with the nonnegativity of the δi

ℓ, and then applying Chvátal-Gomoryrounding, gives inequality µi +
∑

ℓ≤ℓ(li)
δi
ℓ ≥ ⌊li⌋ + 1, whih is equivalent to (2.14). �For i ∈ Nu, let ℓ′(ui) be the highest index ℓ ∈ {0, . . . , k} suh that fℓ > f(ui).Lemma 2.6 Assume that xi, δi

ℓ and µi
ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and (2.11). Then

xi ≤ ui if and only if
µi

ℓ′(ui)
≤ ⌊ui⌋. (2.15)Proof. The proof is similar to that of Lemma 2.5, with ε = 0. �We now onsider an inequality of the type xi − xj ≥ lij for (i, j) ∈ N e. De�ne kij to bethe highest index ℓ ∈ {0, . . . , k} suh that fℓ + f(lij) ≥ 1. Given an index t ∈ K, de�ne t′ij tobe the highest index ℓ ∈ {0, . . . , k} suh that fℓ ≥ f(ft + f(lij)).Lemma 2.7 Assume that xi, xj , δi

ℓ, δj
ℓ , µi

ℓ, µj
ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and(2.11). Then xi − xj ≥ lij if and only if the following inequalities are satis�ed:

µi
t′ij

− µj
t ≥ ⌊lij⌋ + 1, 1 ≤ t ≤ kij, (2.16)

µi
t′ij

− µj
t ≥ ⌊lij⌋, kij < t ≤ k. (2.17)



2.3. Dual network systems and lists of frational parts 31Proof. Substituting for xj using equation (2.5), inequality xi − xj ≥ lij beomes
xi ≥ µj +

k∑

ℓ=1

fℓδ
j
ℓ + ⌊lij⌋ + f(lij). (2.18)First we show that inequality (2.17) is valid for t > kij . As ∑k

ℓ=1 fℓδ
j
ℓ ≥

∑

ℓ≤t fℓδ
j
ℓ ≥

ft

∑

ℓ≤t δ
j
ℓ , we obtain from (2.18) the following valid inequality:

xi ≥ µj + ft

∑

ℓ≤t

δj
ℓ + ⌊lij⌋ + f(lij).Adding the valid inequality (1 − ft) ≥ (1 − ft)
∑

ℓ≤t δ
j
ℓ and isolating xi gives

xi ≥ µj +
∑

ℓ≤t

δj
ℓ + ⌊lij⌋ + f(lij) − 1 + ft. (2.19)Let β be the right-hand side of the above inequality. We now strengthen inequality xi ≥ β byusing Lemma 2.5. For this purpose, we observe that ondition t > kij implies ft + f(lij) < 1,so ⌊β⌋ = µj +

∑

ℓ≤t δ
j
ℓ + ⌊lij⌋− 1 = µj

t + ⌊lij⌋− 1. Also f(β) = f(ft + f(lij)), thus Lemma 2.5yields the valid inequality µi
t′
ij
≥ µj

t + ⌊lij⌋ and the validity of (2.17) is proven.The argument when t ≤ kij is the same, exept that ft + f(lij) ≥ 1.To establish the onverse, let t ∈ K be the index suh that δj
t = 1. Then µj

t = µj
0 + 1,

µj
t−1 = µj

0 and xj = µj
0 +ft. Inequality µi

t′ij
≥ µj

t + ⌊lij⌋ implies that either µi
0 ≥ µj

0 +1+ ⌊lij⌋,or µi
0 = µj

0 + ⌊lij⌋ and ∑ℓ≤t′
ij
δi
ℓ = 1. In both ases, this implies that xi ≥ µj

0 + ⌊lij⌋ + ft′ij
.Now, assuming t > kij ,

xi − xj ≥ µj
0 + ⌊lij⌋ + ft′ij

− µj
0 − ft

= ⌊lij⌋ + ft′ij
− ft

≥ ⌊lij⌋ + f(lij),as ft′ij
≥ f(ft + f(lij)) and ft + f(lij) < 1. Again the other ase with t ≤ kij is similar. �We an now give an extended formulation of conv

(
XF

). For this purpose, let QF be thepolyhedron in the spae of the variables (xi, µ
i
ℓ : i ∈ N, ℓ ∈ K ∪ {0}

) de�ned by the inequalities(2.12), (2.13), (2.14), (2.15) and (2.16)�(2.17):
xi =

∑k
ℓ=0(fℓ − fℓ+1)µ

i
ℓ, i ∈ N, (2.20)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ K, (2.21)
µi

ℓ(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.22)

µi
ℓ′(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.23)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij, (2.24)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ k. (2.25)



32 Chapter 2. Extended formulations of dual network setsTheorem 2.8 The polyhedron conv
(
XF

) is the projetion of the polyhedron QF onto thespae of the x-variables.Proof. Reall that XF is the projetion onto the x-spae of the mixed-integer set (2.5)�(2.10),whih, as the above disussion shows, is equivalent to the mixed-integer set
{
(x, µ) ∈ QF : µ is integral} . (2.26)Therefore conv

(
XF
) is the projetion of the onvex hull of (2.26) onto the x-spae of variables.We then have to show that suh a onvex hull is given by inequalities (2.20)�(2.25).Sine, for i ∈ N , variable xi is determined by the orresponding equation (2.20) (and thisvariable does not appear in any other onstraints), we only need to show that the polyhedronde�ned by inequalities (2.21)�(2.25) is integral.Let Aµ be the onstraint matrix of the above system. By onstrution, Aµ is a dual networkmatrix. Sine dual network matries are totally unimodular (see Theorem 2.3) and the right-hand sides of the above inequalities are all integer, the statement follows from Theorem 1.13.

�2.4 Complete lists of frational partsWe use the results of the previous setion to onstrut an extended formulation of a set ofthe type MIX2TU , i.e. a mixed-integer set whose onstraint matrix is totally unimodular andontains at most two nonzero entries per row. For this purpose, we now introdue the oneptof ompete list of frational parts for an arbitrary mixed-integer set.Let X := {x ∈ R
n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set, where (A | b)is an arbitrary matrix and I is a nonempty subset of the set of olumn indies of A. A list

F = {f1, . . . , fk} of frational parts is omplete for X if the following property is satis�ed:Every minimal fae of conv(X) ontains a point x̄ suh that
f(x̄i) ∈ F for eah i ∈ N , and f(x̄i) = 0 for eah i ∈ I. (2.27)In our appliations (Chapters 4�5), minimal faes are verties and the above ondition be-omes: If x̄ is a vertex of conv(X), then f(x̄i) ∈ F for eah i ∈ N ,as every vertex x̄ of conv(X) ertainly satis�es f(x̄i) = 0 for all i ∈ I. However, for the sakeof generality we do not assume here that minimal faes are verties.We now onsider a mixed-integer set
MIXDN := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I},where A is a dual network matrix. That is, the system Ax ≥ b onsists of inequalities of type(2.2)�(2.4). We sometimes all a set of this type a dual network set.



2.4. Complete lists of frational parts 33We assume that we are given a list of frational parts F = {f1, . . . , fk}, with f1 > · · · > fk,whih is omplete for MIXDN . Note that sine I is nonempty, F must inlude the value 0,thus fk = 0.We �rst give an extended formulation of the polyhedron conv
(
MIXDN

) and then showhow this easily leads to an extended formulation for the onvex hull of a more general set
MIX2TU .In order to obtain an extended formulation of conv

(
MIXDN

), we onsider the followingmixed-integer set:
xi = µi +

∑k
ℓ=1 fℓδ

i
ℓ, i ∈ N, (2.28)

∑k
ℓ=1 δ

i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ K, (2.29)
δi
k = 1, i ∈ I, (2.30)

xi − xj ≥ lij, (i, j) ∈ N e, (2.31)
xi ≥ li, i ∈ N l, (2.32)
xi ≤ ui, i ∈ Nu, (2.33)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ K, (2.34)where inequalities (2.31)�(2.33) onstitute the system Ax ≥ b.Let MIXF be the set of points x ∈ R

n suh that there exist µi, δi
ℓ, for i ∈ N and ℓ ∈ K,satisfying onstraints (2.28)�(2.34). Note that equations (2.30) fore variables xi for i ∈ I tobe integer valued in MIXF .Lemma 2.9 conv

(
MIXDN

)
= conv

(
MIXF

).Proof. If x̄ ∈ MIXF then x̄ satis�es the system Ax ≥ b (i.e. inequalities (2.31)�(2.33)).Furthermore equations (2.30) fore xi for i ∈ I to take an integer value. So x̄ ∈ MIXDN .This shows that MIXF ⊆MIXDN and therefore conv
(
MIXF

)
⊆ conv

(
MIXDN

).To prove the reverse inlusion, we show that all rays and minimal faes of conv
(
MIXDN

)belong to conv
(
MIXF

). Reall that sine the onstraint matrix of the system Ax ≥ b isrational, the extreme rays of conv
(
MIXDN

) and conv
(
MIXF

) oinide with those of theirlinear relaxations (see Theorem 1.8). Now, if x̄ is a ray of conv
(
MIXDN

), the vetor de�nedby
xi := x̄i, µi := x̄i, δ

i
ℓ := 0 for i ∈ N and ℓ ∈ Kis a ray of the polyhedron that is the onvex hull of (2.28)�(2.34). This implies that x̄ is a rayof conv

(
MIXF

).Sine the list F is omplete, every minimal fae F of conv
(
MIXDN

) ontains a point
x̄ ∈ MIXF . Furthermore F is an a�ne subspae whih an be expressed as {x ∈ R

n : x =

x̄+
∑h

t=1 λtrt, λt ∈ R
} for some subset of rays r1, . . . , rh of conv

(
MIXDN

). Sine x̄ ∈MIXFand r1, . . . , rh are all rays of conv
(
MIXF

), then F ⊆ conv
(
MIXF

). �As shown in Setion 2.3, by applying the unimodular transformation (2.11) inequali-ties (2.28)�(2.29) beome inequalities (2.20)�(2.21), while (2.31)�(2.33) beome (2.22)�(2.25).



34 Chapter 2. Extended formulations of dual network setsLet Q be the polyhedron in the spae of the variables (xi, µ
i
ℓ : i ∈ N, ℓ ∈ K ∪ {0}

) de�ned byinequalities (2.20)�(2.25), whih orrespond to inequalities (2.28), (2.29), (2.31), (2.32), (2.33)under transformation (2.11), and let QI be the fae of Q de�ned by equations
µi

k − µi
k−1 = 1, i ∈ I, (2.35)whih are equivalent to equations (2.30) under transformation (2.11). More expliitly, QI isthe polyhedron de�ned by the following linear system:

xi =
∑k

ℓ=0(fℓ − fℓ+1)µ
i
ℓ, i ∈ N, (2.36)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ K, (2.37)
µi

k − µi
k−1 = 1, i ∈ I, (2.38)

µi
ℓ(li)

≥ ⌊li⌋ + 1, i ∈ N l, (2.39)
µi

ℓ′(ui)
≤ ⌊ui⌋, i ∈ Nu, (2.40)

µi
t′ij

− µj
t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.41)

µi
t′ij

− µj
t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ k. (2.42)Theorem 2.10 The polyhedron conv

(
MIXDN

) is the projetion of the fae QI of Q ontothe spae of the x-variables. In other words, the linear system (2.36)�(2.42) is an extendedformulation of conv
(
MIXDN

).Proof. Theorem 2.8 shows that every minimal fae of Q ontains a vetor (x̄, µ̄) with integral
µ̄. So the same holds for QI , whih is a fae of Q. By applying the transformation that is theinverse of (2.11), this shows that every minimal fae of the polyhedron de�ned by (2.28)�(2.33)ontains a point (x̄, µ̄, δ̄) where (µ̄, δ̄) is integral. So the projetion of this polyhedron ontothe x-spae oinides with conv

(
MIXF

) and by Lemma 2.9 we are done. �We now onsider a more general mixed-integer set of the type MIX2TU := {x ∈ R
n :

Ax ≥ b, xi integer for i ∈ I}, where A is a totally unimodular matrix with at most twononzero entries per row. By Corollary 2.4, A an be transformed into a dual network matrixby hanging the sign of some of its olumns. Then MIX2TU is transformed into a set of thetype MIXDN . Note that if F = {f1, . . . , fk} is a list of frational parts whih is omplete for
MIX2TU , then the list F ′ := {fℓ, 1−fℓ : 1 ≤ ℓ ≤ k−1}∪{0} is omplete for the transformedset MIXDN . This shows that an extended formulation of MIX2TU an be easily obtainedfrom the extended formulation of the orresponding set MIXDN . We also remark that thelist F ′ ontains at most the double of the number of elements in F .2.4.1 An expliit omplete list of frational partsClearly an extended formulation of the type (2.36)�(2.42) an be derived only if a ompletelist of frational parts is known for the set. However, the following result holds:



2.4. Complete lists of frational parts 35Lemma 2.11 Let X := {x ∈ R
n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set, where

A is an m × n totally unimodular matrix, b ∈ R
m and I ⊆ {1, . . . , n}. Then every minimalfae of conv(X) ontains a point x̄ ∈ X suh that

f(x̄i) = f
(
∑m

j=1 σijbj

) for i /∈ I, (2.43)where σij ∈ {0,±1} for all i /∈ I and 1 ≤ j ≤ m.Proof. Let F be a minimal fae of conv(X) and pik any point x̂ ∈ F ∩ X. De�ne thenonempty polyhedron
P := {x ∈ R

n : Ax ≥ b, xi = x̂i for i ∈ I}.Let G be a minimal fae of P . Then G is an a�ne variety in R
n. Let d denote the dimensionof G. Sine the equations x̄i = x̂i for i ∈ I are linearly independent, then d ≤ n−|I| and thereexists a subsystem A′x ≥ b′ of Ax ≥ b with n− |I| − d rows suh that the n− d equations

A′x = b′, xi = x̂i for i ∈ Iare linearly independent and de�ne G.By standard linear algebra, there is a subset J ⊆ {1, . . . , n} \ I, with |J | = d, suh thatthe n equations of the system
A′x = b′, xi = x̂i for i ∈ I, xi = 0 for i ∈ J (2.44)are linearly independent.Let x̄ be the unique solution to system (2.44). Sine x̄ ∈ G and x̄i = x̂i ∈ Z for i ∈ I, then

x̄ belongs to X. We now prove that x̄ satis�es onditions (2.43).Sine A is a totally unimodular, the onstraint matrix of system (2.44) is totally unimodularas well. Equation (2.43) then follows from the observation that the inverse of a nonsingulartotally unimodular matrix is a 0,±1-matrix. �Lemma 2.11 is useful for at least two reasons. First, it provides an expliit (though long)list of frational parts whih is guaranteed to be omplete for the set, thus showing that anextended formulation of the type (2.36)�(2.42) an be expliitly given for the onvex hull ofan arbitrary set MIXDN . We will show in Chapter 3 that suh a huge list an sometimes beshortened.To illustrate the seond reason why the above lemma is useful, observe that the size offormulation (2.36)�(2.42) depends not only on the number of variables and onstraints of theoriginal system Ax ≥ b, but on the size of the list F too. The size of F in turn depends ontwo elements: the number k of frational parts that it ontains and the size of suh frationalparts. However Lemma 2.11 shows that one an assume without loss of generality that thefrational parts of a omplete list F are all of the form f
(∑m

j=1 σjbj
) for σj ∈ {0,±1}, where

m is the dimension of b. Observe that the size of a number of this type is bounded by apolynomial funtion of the size of vetor b (assuming that b has rational omponents). Thus



36 Chapter 2. Extended formulations of dual network setsfrom now on, when onsidering the size of a list of frational parts, we will only take intoaount its length (i.e. ardinality) k.We remark that the latter onsideration implies the following immediate onsequene ofTheorem 2.10:Corollary 2.12 If a mixed-integer set of the type MIX2TU (with rational right-hand side)admits a omplete list of frational parts F whose length k is polynomial in the size of itsdesription (given by the system Ax ≥ b), the extended formulation (2.36)�(2.42) of the or-responding set conv
(
MIXDN

) is ompat: it uses O(nk) variables and O((n+ |N e|)k) on-straints. Therefore the problem of optimizing a linear funtion over sets of the type MIX2TUwith this property an be solved in polynomial time.2.4.2 A di�erent approah?As observed above, a list inluding all values of the form f
(∑m

j=1 σjbj
) for σj ∈ {0,±1} isalways omplete. Unfortunately suh a list has (in general) an exponential number of elements.We will see in Chapter 3 that in fat there exist mixed-integer sets with dual network onstraintmatrix that do not admit a omplete list of ompat size.In order to obtain a ompat extended formulation of a set MIX2TU even if there is noomplete list for the set having ompat size, one ould try to modify the approah desribedin the previous setions by modeling the variables of the problem in a di�eren way, e.g.

xi = µi +
∑m

ℓ=1 f(bℓ)δ
i
ℓ, i ∈ N, (2.45)

µi integer, δi
ℓ ∈ {0,±1}, i ∈ N, 1 ≤ ℓ ≤ m. (2.46)By the above observation, every minimal fae of conv

(
MIX2TU

) ontains a point x thatsatis�es the above onditions for some µi, δi
ℓ. Note that for eah i ∈ N , only m+ 1 additionalvariables are used.Unfortunately tightening the inequalities de�ning MIX2TU under the above onditionsseems to be hard. To demonstrate this, assume that some variable x is de�ned by the ondi-tions

x = µ+ 0.9δ1 + 0.5δ2 + 0.3δ3, (2.47)
µ integer, δ1, δ2, δ3 ∈ {0,±1}. (2.48)Suppose that one of the onstraints desribingMIX2TU is inequality x ≥ 0. It an be heked(we did so by using PORTA [9℄) that a linear inequality desription of the set of points (x, µ, δ)satisfying (2.47)�(2.48) and x ≥ 0 is given by the following onstraints:

µ+ 0δ1 + 0δ2 + δ3 ≥ 0,

µ+ 0δ1 + 0δ2 + δ3 ≥ 0,

2µ+ 2δ1 + 0δ2 + δ3 ≥ 0,

4µ+ 3δ1 + 2δ2 + δ3 ≥ 0,

−1 ≤ δ1, δ2, δ3 ≤ 1.



2.5. Spei� lists of frational parts 37When onsidering the systems originating from similar examples, we ould not see anypartiular struture that ould lead us to haraterize the onvex hull of the integral points.This is not surprising: for instane, modeling x ≥ 0 under onditions (2.47)�(2.48) amountsto �nding the onvex hull of the following integer knapsak set:
10µ+ 9δ1 + 5δ2 + 3δ3 ≥ 0,

µ integer, δ1, δ2, δ3 ∈ {0,±1}.It is well-known that problems of this type are hard. Furthermore, if two or more onstraints�instead of a single inequality� are onsidered, tightening eah inequality separately doesnot give (in general) the onvex hull of the mixed-integer set. This suggests that it is unlikelyto �nd a straightforward modi�ation of our approah that uses the modeling onditions(2.45)�(2.46).Note that onditions δi
ℓ ∈ {0,±1} in (2.46) ould be replaed with onditions δi

ℓ ∈ Z. Inthis ase the strengthening of a single inequality is easy: after transforming all oe�ientsinto oprime integers by multiplying the inequality by a suitable number (provided that alloe�ients are rational), it is su�ient to round up the right-hand side. However, when thereare two or more onstraints, tightening eah inequality separately does not give (in general)the onvex hull of the mixed-integer set.Finding a ompat extended formulation of the onvex hull of a set MIX2TU that doesnot admit a �short� list of frational parts is an open problem.2.5 Spei� lists of frational partsWe disuss here a simple variant of the results presented in Setions 2.3�2.4. Suh a variantallows us to redue the size of the extended formulation given by Theorem 2.10 and will beuseful in Chapter 5, where for some speial sets we ompute expliitly the projetion of theextended formulation onto the original spae of variables.2.5.1 A more ompat extended formulationIn Setion 2.3 we onsidered a system of inequalities of the form (2.2)�(2.4) and a list F offrational parts, and we gave an extended formulation of the polyhedron whih is the onvexhull of the set of points x satisfying (2.2)�(2.4) along with the additional ondition that
f(xi) ∈ F for all i ∈ N .Now assume that instead of a single list F , we are given a (possibly) di�erent list offrational part Fi for eah i ∈ N . We assume Fi =

{
f i
1, . . . , f

i
ki

}, with f i
1 > · · · > f i

ki
, and set

Ki := {1, . . . , ki}. We de�ne XF as the set of points x satisfying the linear system (2.2)�(2.4)along with the additional ondition that f(xi) ∈ Fi for all i ∈ N . That is, XF is the setof points x ∈ R
n suh that there exist µi, δi

ℓ, for i ∈ N and ℓ ∈ Ki, satisfying the following



38 Chapter 2. Extended formulations of dual network setsonstraints:
xi = µi +

∑ki

ℓ=1 f
i
ℓδ

i
ℓ, i ∈ N, (2.49)

∑ki

ℓ=1 δ
i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ Ki, (2.50)
xi − xj ≥ lij , (i, j) ∈ N e, (2.51)

xi ≥ li, i ∈ N l, (2.52)
xi ≤ ui, i ∈ Nu, (2.53)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ Ki. (2.54)Similarly to Setion 2.3, XF is the projetion of the mixed-integer set (2.49)�(2.54) onto the

x-spae.An extended formulation of conv
(
XF

) an be found as in Setion 2.3, with just some slighthanges. We summarize the onstrution of the extended formulation below; the details andthe proofs are perfetly analogous to those of Setion 2.3.First of all, we de�ne a unimodular transformation whih is idential to transforma-tion (2.11), exept that now K has to be replaed with Ki:
µi

0 := µi, µi
ℓ := µi +

ℓ∑

j=1

δi
j for i ∈ N and ℓ ∈ Ki. (2.55)Similarly, after setting f i

0 := 1 and f i
ki+1 := 0 for all i ∈ N , onstraints (2.49)�(2.50) transforminto onstraints that are almost idential to (2.12)�(2.13):

xi =
∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ,

µi
ki
− µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, ℓ ∈ Ki.For i ∈ N l, inequality xi ≥ li an be modeled as µi
ℓi(li)

≥ ⌊li⌋+1, where ℓi(li) is the highestindex ℓ ∈ {0, . . . , ki} suh that fℓ ≥ f(li). For i ∈ Nu, inequality xi ≤ ui an be modeled as
µi

ℓ′i(ui)
≤ ⌊ui⌋, where ℓ′i(ui) is the highest index ℓ ∈ {0, . . . , ki} suh that fℓ > f(ui).Finally, to model inequality xi − xj ≥ lij for (i, j) ∈ N e, we de�ne kij to be the highestindex ℓ ∈ {0, . . . , kj} suh that f j

ℓ + f(lij) ≥ 1. Given an index t ∈ Kj , de�ne t′ij to be thehighest index ℓ ∈ {0, . . . , ki} suh that f i
ℓ ≥ f

(
f j

t + f(lij)
). Now a result almost idential toLemma 2.7 (just replae k with ki in (2.17)) an be proven exatly as in Setion 2.3.With a proof that is idential to that of Theorem 2.8 one an prove that an extendedformulation of conv

(
XF
) is given by the following linear system:
xi =

∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ, i ∈ N, (2.56)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ Ki, (2.57)
µi

ℓi(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.58)

µi
ℓ′i(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.59)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.60)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ kj. (2.61)



2.5. Spei� lists of frational parts 39We now extend the de�nition of omplete list given in Setion 2.4. For i ∈ N , a list
Fi =

{
f i
1, . . . , f

i
k

} of frational parts is omplete for X with respet to variable xi if thefollowing property is satis�ed:Every minimal fae F of conv(X) ontains a point x̄ suh that
f(x̄i) ∈ Fi for eah i ∈ N , and f(x̄i) = 0 for eah i ∈ I.When conv(X) is a pointed polyhedron, the above de�nition reads as follows:If x̄ is a vertex of conv(X), then f(x̄i) ∈ Fi for eah i ∈ N .Let MIXDN := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set withdual network onstraint matrix A. If for eah i ∈ N we are given a list of frational parts
Fi =

{
f i
1, . . . , f

i
ki

} whih is omplete for MIXDN with respet to variable xi, one an repeatthe proess of Setion 2.4 and prove the following result (as usual, f i
1 > · · · > f i

ki
):Theorem 2.13 The following linear system is an extended formulation of the polyhedron

conv
(
MIXDN

):
xi =

∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ, i ∈ N, (2.62)

µi
ki
− µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ Ki, (2.63)
µi

ki
− µi

k−1 = 1, i ∈ I, (2.64)
µi

ℓi(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.65)

µi
ℓ′i(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.66)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.67)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ kj . (2.68)The extension to a set of the type MIX2TU an be done as in Setion 2.4.Corollary 2.14 Given a mixed-integer set of the type MIX2TU (with rational right-handside), let F1, . . . ,Fn be lists of frational parts whih are omplete forMIX2TU with respet tovariables x1, . . . , xn respetively. De�ne k̄ := max1≤i≤n |Fi|. Then the extended formulation(2.62)�(2.68) of the orresponding set MIXDN uses O
(
nk̄
) variables and O

(
(n+ |N e|)k̄

)onstraints.Let us ompare Corollaries 2.12 and 2.14. Let F be a list of frational parts whih isomplete for MIX2TU and whose length is minimum. Similarly, let F1, . . . ,Fn be lists offrational parts whih are omplete for MIX2TU with respet to variables x1, . . . , xn respe-tively and whose lengths are minimum. It is lear that F = F1 ∪ · · · ∪ Fn, thus in this ase
k̄ ≤ k ≤ nk̄. This implies that formulation (2.62)�(2.68) an be more ompat than formula-tion (2.36)�(2.42). However inequalities k̄ ≤ k ≤ nk̄ show that a mixed-integer set MIX2TUadmits a ompat extended formulation of type (2.36)�(2.42) if and only if it admits a ompatextended formulation of type (2.62)�(2.68). Therefore, when aiming at showing the existeneof a ompat extended formulation of a set of the type MIX2TU , one an onsider withoutloss of generality a single list F of frational parts as in Setion 2.4.



40 Chapter 2. Extended formulations of dual network sets2.5.2 Inequalities involving integer variablesTo onlude this setion, we show more expliitly the form of inequalities (2.65)�(2.68) when
i and/or j belong to I. This will be useful in Chapter 5.If i ∈ I (i.e. xi is an integer variable), we an safely hoose Fi := {0}: suh a list isertainly omplete for MIXDN with respet to variable xi. So we now assume that Fi = {0}for all i ∈ I. We also observe that when xi is an integer variable, we do not need to introduevariables µi

ℓ, as µi
0 = xi and µi

1 = xi + 1. In other words variables xi for i ∈ I an be kept inthe formulation without introduing any additional variables to model them.Given an index i ∈ I ∩N l, inequality xi ≥ li an be trivially tightened to xi ≥ ⌈li⌉. It isinteresting to observe that this is equivalent to inequality (2.65), as we now prove.Note that
ℓi(li) =

{

0 if li /∈ Z,

1 if li ∈ Z.In the former ase inequality (2.65) reads µi
0 ≥ ⌊li⌋ + 1 = ⌈li⌉, as li /∈ Z; in the latter aseinequality (2.65) reads µi

1 ≥ ⌊li⌋ + 1, whih is equivalent to µi
0 ≥ ⌈li⌉, as µi

1 = µi
0 + 1 and

⌊li⌋ = ⌈li⌉. Thus in both ases inequality (2.65) is equivalent to µi
0 ≥ ⌈li⌉, that is, xi ≥ ⌈li⌉.Given an index i ∈ I ∩Nu, inequality xi ≤ ui an be trivially tightened to xi ≤ ⌊ui⌋, thatis, µi

0 ≤ ⌊ui⌋. This is equivalent to (2.66), as ℓ′i(ui) = 0.Now onsider a pair (i, j) ∈ N e with j ∈ I. Sine xj is an integer variable, inequality
xi − xj ≥ lij ould be modeled as done for the inequalities of group (2.52), thus obtaining
µi

ℓi(lij)
− xj ≥ ⌊lij⌋ + 1, or in other words, µi

ℓi(lij ) − µj
0 ≥ ⌊lij⌋ + 1. We now show that in fatthe set of inequalities (2.67)�(2.68) redues to this single inequality.Note that kij = 0. For t = 1, it easily heked that t′ij = ℓi(lij). Thus onstraints (2.67)�(2.68) redue to the single inequality µi

ℓi(lij)
− µj

1 ≥ ⌊lij⌋, that is, µi
ℓi(lij)

− xj ≥ ⌊lij⌋ + 1.If (i, j) ∈ N e with i ∈ I, inequality xi − xj ≥ lij ould be modeled as done for inequalitiesof group (2.53): after writing the inequality as xj −xi ≤ −lij, we obtain µj
ℓj(−lij)

−xi ≤ ⌊−lij⌋.However, in this ase the set of inequalities (2.67)�(2.68) onsists of kj onstraints, thuswhenever kj > 1 (i.e. xj is a ontinuous variable) there are redundant inequalities in (2.67)�(2.68). We only mention that it is possible to swap to role of xi and xj in the tightening of
xi − xj ≥ lij , thus obtaining a set of ki inequalities. In the ase (i, j) ∈ N e with i ∈ I, suh aset of inequalities redue to a single onstraint.When (i, j) ∈ N e and both i, j ∈ I, the set of inequalities (2.67)�(2.68) redues to thesingle (obvious) inequality xi − xj ≥ ⌈lij⌉.The above observations are summarized below:Observation 2.15 If no variable is introdued to model the integer variables, then:(i) If i ∈ I ∩N l, inequality (2.65) reads xi ≥ ⌈li⌉.(ii) If i ∈ I ∩Nu, inequality (2.66) reads xi ≤ ⌊li⌋.



2.5. Spei� lists of frational parts 41(iii) If (i, j) ∈ N e with j ∈ I, the set of inequalities (2.67)�(2.68) redues to the singleinequality µi
ℓi(lij ) − xj ≥ ⌊lij⌋ + 1.(iv) If (i, j) ∈ N e with i ∈ I, the set of inequalities (2.67)�(2.68) an be replaed with thesingle inequality xi − µj

ℓj(−lij)
≥ ⌈lij⌉.(v) If (i, j) ∈ N e with j ∈ I, the set of inequalities (2.67)�(2.68) redues to the singleinequality xi − xj ≥ ⌈lij⌉.The simple observation in (v) implies the following result:Proposition 2.16 Let MIXDN be a mixed-integer set with dual network onstraint matrixand let Bx ≥ d be a linear system whose inequalities are all of the type xi − xj ≥ dij with

i, j ∈ I, where d is an integral vetor. Then
conv

(
MIXDN ∩ {x ∈ R

n : Bx ≥ d}
)

= conv
(
MIXDN

)
∩ {x ∈ R

n : Bx ≥ d}.Proof. Sine all variables appearing with nonzero oe�ient in the inequalities of system
Bx ≥ d are integer variables, Observation 2.15 (v) implies that an extended formulation of
conv

(
MIXDN ∩ {x ∈ R

n : Bx ≥ d}
) onsists of onstraints (2.62)�(2.68) together with theinequalities of the system Bx ≥ d. It an be easily shown (e.g. by using Theorem 1.16) thatthe projetion of suh an extended formulation onto the spae of the x-variables is given bythe projetion of (2.62)�(2.68) along with the inequalities of the system Bx ≥ d. This provesthe result, as the projetion of (2.62)�(2.68) is conv

(
MIXDN

). �A similar result for some spei� mixed-integer sets was proven by Miller and Wolsey [45℄,Van Vyve [65℄ and Conforti, Di Summa and Wolsey [13℄.





Chapter 3On the length of a omplete listAs shown in Chapter 2, any mixed-integer set MIX2TU admits an extended formulation ofthe type (2.36)�(2.42). We also observed that there is a ompat extended formulation of thistype if and only if MIX2TU admits a omplete list of frational parts that is ompat.We show in Setion 3.1 that there exist mixed-integer sets of the type MIX2TU that donot admit a omplete list of frational parts that is ompat. This implies that for suh sets,no extended formulation of the form (2.36)�(2.42) is ompat.On the other hand, we give in Setion 3.2 some su�ient onditions ensuring that amixed-integer set MIX2TU admits a omplete list of polynomial length, thus proving thatunder these onditions the extended formulation of the type (2.36)�(2.42) is polynomial inthe original desription of the set. The list of frational parts is expliitly given through aonstrution based on a graph assoiated with the set.The results of this hapter are joint work with Mihele Conforti, Friedrih Eisenbrand andLaurene A. Wolsey and are also summarized in [11℄.3.1 A non-ompat exampleAs remarked in Setion 2.4, given an arbitrary mixed-integer set MIXTU := {x ∈ R
n :

Ax ≥ b, xi integer for i ∈ I} de�ned by a totally unimodular onstraint matrix A, the list
F onsisting of all frational parts f(∑m

j=1 σjbj
) for σj ∈ {0,±1} is omplete for the set.Therefore this holds in partiular for the sets MIX2TU .It is easy to hoose the omponents of b so that the list F de�ned above ontains anexponential number of elements. However, this does not prove that a set MIX2TU assoiatedwith suh a vetor b does not admit a ompat extended formulation of the form (2.36)�(2.42),as F may ontain super�uous elements, i.e. frational parts that do not appear the vertiesof conv

(
MIX2TU

).We show here that in fat there are sets of the type MIX2TU for whih any omplete listof frational parts is exponentially long. This implies that our extended formulation annotbe ompat for suh sets.The result that we prove is the following: 43



44 Chapter 3. On the length of a omplete listTheorem 3.1 In the set of verties of the polyhedron P de�ned by the inequalities
si + rj ≥

3(j−1)n+i

3n2+1
, 1 ≤ i, j ≤ n, (3.1)

si ≥ 0, rj ≥ 0, 1 ≤ i, j ≤ n, (3.2)the number of distint frational parts taken by variable sn is exponential in n.We remark the Theorem 3.1 implies the following fat:Observation 3.2 Sine the onstraint matrix of inequalities (3.1)�(3.2) is a totally unimod-ular matrix with at most two nonzero entries per row, there exists a mixed-integer set X ofthe type MIX2TU , whih is de�ned on ontinuous variables si, rj , for 1 ≤ i, j ≤ n and integervariables zh for h ∈ I, suh that the polyhedron conv(M) ∩ {(s, r, z) : zh = 0 for h ∈ I} is anonempty fae of conv(X) desribed by inequalities (3.1)�(3.2). Therefore Theorem 3.1 showsthat any extended formulation of conv(X) that expliitly takes into aount a list of all possiblefrational parts of the ontinuous variables will not be ompat in the desription of X.The remainder of this setion is entirely devoted to proving Theorem 3.1.Let bij be as in the theorem, i.e. bij = 3(j−1)n+i/3n2+1 for 1 ≤ i, j ≤ n. The followingobservation is immediate.Observation 3.3 bij < bi′j′ if and only if (j, i) ≺ (j′, i′), where ≺ denotes the lexiographiorder. Thus b11 < b21 < · · · < bn1 < b12 < · · · < bnn.Lemma 3.4 The two properties below hold:(i) Let α ∈ Z
q
+ with αt < αt+1 for 1 ≤ t ≤ q − 1. De�ne

Φ(α) :=

q
∑

t=1

(−1)q−t3αt .Then Φ(α) satis�es the following inequalities:
1

2
3αq < Φ(α) <

3

2
3αq .(ii) Suppose that α is as above and β ∈ Z

q′

+ satis�es βt < βt+1 for 1 ≤ t ≤ q′ − 1. Then
Φ(α) = Φ(β) if and only if α = β.Proof. First of all note that

αq−1
∑

t=0

3t =
3αq − 1

3 − 1
<

1

2
3αq .



3.1. A non-ompat example 45This implies the following hains of inequalities, whih prove (i):
Φ(α) ≥ 3αq −

αq−1
∑

t=0

3t > 3αq −
1

2
3αq =

1

2
3αq ,

Φ(α) ≤ 3αq +

αq−1
∑

t=0

3t < 3αq +
1

2
3αq =

3

2
3αq .To prove (ii), suppose α 6= β. Without loss of generality we assume q ≥ q′. Assume�rst that (αq−q′+1, . . . , αq) = β. Then q > q′ (otherwise α = β) and, after de�ning ᾱ :=

(α1, . . . , αq−q′), we have Φ(α) − Φ(β) = Φ(ᾱ) > 0 by (i). Now assume (αq−q′+1, . . . , αq) 6= β.De�ne h = min{τ : αq−τ 6= βq′−τ} and suppose αq−h > βq′−h (the other ase is similar). If wede�ne the vetors ᾱ := (α1, . . . , αq−h) and β̄ := (β1, . . . , βq′−h), (i) gives
Φ(α) − Φ(β) = Φ(ᾱ) − Φ(β̄) >

1

2
3αq−h −

3

2
3βq′−h ≥ 0,as αq−h > βq′−h. This proves that Φ(α) 6= Φ(β) whenever α 6= β. �We now give a onstrution of an exponential family of verties of P suh that at eah vertexvariable sn takes a distint frational part. Therefore this onstrution proves Theorem 3.1.Let (i1, . . . , im) and (j1, . . . , jm−1) be two inreasing sequenes of indies in {1, . . . , n} with

i1 = 1 and im = n. For 1 ≤ i, j ≤ n, de�ne p(i) := max{t : it ≤ i} and q(j) := max{t : jt ≤ j},with q(j) = 0 if j < j1.Consider the following system of equations:
si1 = 0, (3.3)

sit + rjt = bitjt , 1 ≤ t ≤ m− 1, (3.4)
sit+1 + rjt = bit+1jt , 1 ≤ t ≤ m− 1, (3.5)
siq(j)+1

+ rj = biq(j)+1j , j /∈ {j1, . . . , jm−1}, (3.6)
si + rjp(i)

= bijp(i)
, i /∈ {i1, . . . , im}. (3.7)The unique solution to this system is:

si1 = 0, (3.8)
sit =

t−1∑

ℓ=1

biℓ+1jℓ
−

t−1∑

ℓ=1

biℓjℓ
, 2 ≤ t ≤ m, (3.9)

rjt =

t∑

ℓ=1

biℓjℓ
−

t−1∑

ℓ=1

biℓ+1jℓ
, 1 ≤ t ≤ m− 1, (3.10)

si = bijp(i)
− rjp(i)

, i /∈ {i1, . . . , im}, (3.11)
rj = biq(j)+1j − siq(j)+1

, j /∈ {j1, . . . , jm−1}. (3.12)Lemma 3.5 The vetor de�ned by (3.8)�(3.12) is a vertex of P .



46 Chapter 3. On the length of a omplete listProof. We start by showing that the vetor de�ned above is feasible in P . First, as eahof the variables si, rj takes a value of the form Φ(α)/3n2+1, by Lemma 3.4 (i) we have that
sit >

1
2bitjt−1 > 0 for 2 ≤ t ≤ m, rjt >

1
2bitjt > 0 for 1 ≤ t ≤ m − 1, si >

1
2bijp(i)

> 0 for
i /∈ {i1, . . . , im}, and rj > 1

2biq(j)+1j > 0 for j /∈ {j1, . . . , jm−1}. Therefore the nonnegativityonstraints (3.2) are satis�ed.We now show that inequalities (3.1) are satis�ed as well. Consider the i, j onstraint with
j /∈ {j1, . . . , jm−1}. We distinguish some ases.1. p(i) ≤ q(j). In this ase

si + rj ≥ rj >
1

2
biq(j)+1j ≥

1

2
bip(i)+1j ≥

3

2
bij > bij .2. p(i) > q(j) and i /∈ {i1, . . . , im}. Then

si + rj ≥ si >
1

2
bijp(i)

≥
1

2
bijq(j)+1

≥
3n

2
bij > bij .3. p(i) = q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t = q(j) + 1). In this asethe i, j onstraints is satis�ed at equality by onstrution.4. p(i) > q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t > q(j) + 1). Then

si + rj ≥ si >
1

2
bijt−1 ≥

1

2
bijq(j)+1

≥
3n

2
bij > bij .The argument with i /∈ {i1, . . . , im} is similar.Finally suppose that i = it and j = ju with u /∈ {t − 1, t}. If u > t then si + rj ≥ rj >

1
2biuju ≥ 3

2bitju > bij. If u < t− 1 then si + rj ≥ si >
1
2bitjt−1 ≥ 3

2bitju > bij.This shows that the vetor de�ned by (3.8)�(3.12) is feasible. Sine this vetor is theunique solution to system (3.3)�(3.7), it de�nes a vertex of P . �Now let aij = (j − 1)n+ i, so that bij = 3aij/3n2+1 and take
α := (ai1j1 , ai2j1, ai2j2, ai3j2 , . . . , aimjm−1).As sn = Φ(α)/3n2+1, it follows from Lemma 3.4 (ii) that in any two verties onstruted asabove by di�erent sequenes (i1, . . . , im), (j1, . . . , jm−1) and (i′1, . . . , i

′
m′), (j′1, . . . , j

′
m′−1), thevalues of sn are distint numbers in the interval (0, 1). As the number of suh sequenes isexponential in n, this proves Theorem 3.1.3.2 Su�ient onditions for the ompatness of a omplete listThe previous setion shows that a formulation of the type (2.36)�(2.42) is not guaranteedto be ompat in the original desription of the set. We desribe here some onditions thatensure the existene of a omplete list whih is ompat for a mixed-integer set of the type
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MIX2TU , thus proving that the orresponding extended formulation (2.36)�(2.42) is ompatunder these assumptions.Let X be a mixed-integer set of the typeMIX2TU . Sine X is desribed by a linear system
Ax ≥ b where A is a totally unimodular matrix with at most two nonzero entries per row, theonstraints de�ning X are of the following type:

xi + xj ≥ l++
ij , (i, j) ∈ N++, (3.13)

xi − xj ≥ l+−
ij , (i, j) ∈ N+−, (3.14)

−xi − xj ≥ l−−
ij , (i, j) ∈ N−−, (3.15)

xi ≥ li, i ∈ N l, (3.16)
xi ≤ ui, i ∈ Nu, (3.17)

xi integer, i ∈ I, (3.18)where N++, N+−, N−− ⊆ N × N and N l, Nu, I ⊆ N . The sets N++, N+−, N−− do notontain any pair of the type (i, i) for i ∈ N . Without loss of generality we assume that if
(i, j) ∈ N++ then (j, i) /∈ N++ and if (i, j) ∈ N−− then (j, i) /∈ N−−.We onstrut a graph GX = (V,E) assoiated with the mixed-integer set X. The nodeset of GX is V := L := N \ I and orresponds to the ontinuous variables of X. E ontainsan edge ij for eah inequality of types (3.13)�(3.15) with i, j ∈ L appearing in the linearsystem that de�nes X. The total unimodularity of A implies the following: for �xed i, j, if thesystem Ax ≥ b ontains an inequality of type (3.14), then it does not ontain any inequalityof type (3.13) or (3.15). Therefore, for eah pair of nodes i, j ∈ V , E ontains at most twoparallel edges onneting i and j.We impose a bi-orientation ω on GX : with eah edge e ∈ E (orresponding to an inequality
aixi + ajxj ≥ lij) and eah endnode i of e, we assoiate the value

ω(e, i) :=

{

tail if ai = 1,

head if ai = −1.Thus eah edge of GX might have one head and one tail (if orresponding to an inequal-ity (3.14)), two tails (if orresponding to an inequality (3.13)) or two heads (if orrespondingto an inequality (3.15)).Given a path P = (v0, e1, v1, e1, . . . , vt) in GX , where v0, . . . , vt ∈ V and e1, . . . , et ∈ E,we want to de�ne the ω-length of P , denoted lω(P ). To do this, we �rst de�ne the reverse ofan edge e ∈ E as the edge obtained by turning eah head of e into a tail and eah tail into ahead.We onstrut a path P ′ = (v0, e
′
1, v1, e

′
1, . . . , vt) from P by reversing some of its edges, sothat v0 is a tail of e1, and every node vj for 1 ≤ j < t is a head of one edge of P ′ and a tailof the other. Note that given P , the path P ′ is uniquely determined.Now we de�ne lω(P ) :=

∑t
j=1 σ(P, ej)lej

, where for e ∈ E, le is the right-hand side of theinequality orresponding to edge e and
σ(P, ej) :=

{

−1 if ej has been reversed in P ′,
+1 otherwise.



48 Chapter 3. On the length of a omplete listWe also de�ne a list L as the set of values f(lω(P )) for all paths P in GX .Theorem 3.6 Let X be a mixed-integer set of the type MIX2TU and de�ne the list L asabove. Then X admits a omplete list whose length is O(mh), where m is the number ofinequalities in the desription of X and h := |L|.Proof. We assume that X is nonempty, otherwise the above statement is trivial. This proofis a re�nement of that of Lemma 2.11. Let F be a minimal fae of conv(X) and x̂ be a pointin F ∩X. We hoose J and onstrut a nonsingular system of linear equations
A′x = b′, xi = x̂i for i ∈ I, xi = 0 for i ∈ J (3.19)as desribed in the proof of Lemma 2.11. Reall that J ∩ I = ∅.Let x̄ be the unique solution to system (3.19). Equations xi = x̂i for i ∈ I an be used toeliminate variables xi for i ∈ I from system (3.19). After suh elimination, system (3.19) hasthe following form:

xi + xj = l++
ij , (i, j) ∈ N++

x̄ , (3.20)
xi − xj = l+−

ij , (i, j) ∈ N+−
x̄ , (3.21)

−xi − xj = l−−
ij , (i, j) ∈ N−−

x̄ , (3.22)
xi = di, i ∈ Nx̄, (3.23)where N++

x̄ ⊆ N++, N+−
x̄ ⊆ N+−, N−−

x̄ ⊆ N−− and the three sets N++
x̄ , N+−

x̄ , N−−
x̄ onlyontain pairs of indies (i, j) with both i, j ∈ L. It is easily heked that Nx̄ ⊆ L. For eah

i ∈ Nx̄, the value di satis�es one of the following onditions:(a) either di ∈ {li, ui},(b) or di = 0 and i ∈ J ,() or f(di) ∈
{
f(l++

ij ), f(l+−
ij ), f(−l−−

ij )
} for some j ∈ I ∪ J .Observe that if we onstrut the bi-oriented graph orresponding to the above system, weobtain a subgraph of the graph GX assoiated with the original set X.Reall that system (3.20)�(3.23) onsists of |L| linearly independent equations. It is well-known (and easy to see) that the edges of GX orresponding to inequalities of type (3.20)�(3.22)de�ne a forest Fx̄ in GX . Let Cx̄ = (V (Cx̄), E(Cx̄)) be a onneted omponent of suh a forest.Sine |V (Cx̄)| = |E(Cx̄)| + 1, Cx̄ ontains a unique node r whose value is determined by oneof equations (3.23). Then (a)�() imply that the frational part of x̄r an only take O(m)possible values, where m is the number of inequalities in the desription of X.If v is a node of Cx̄ distint from r, then the value of x̄v is determined by the value of x̄rand the inequalities (3.20)�(3.22) orresponding to the edges in the path Pvr in Cx̄ having vas �rst node and r as last node: if e is the edge in Pvr inident with r and P ′

vr is onstrutedfrom Pvr as desribed above, we have
x̄v =

{

lω(Pvr) + x̄r if r is a head of e,
lω(Pvr) − x̄r otherwise. (3.24)



3.2. Su�ient onditions for the ompatness of a omplete list 49Sine the list L has h elements, this shows that the frational part of eah variable xv at avertex an take at most O(mh) values. �The following easy observation will be used in the next hapter.Observation 3.7 If conv(X) is a pointed polyhedron, the set J of the above proof is empty.In this ase, given i ∈ Nx̄, the value di satis�es one of the following onditions:(a) either di ∈ {li, ui},(b) or f(di) ∈
{
f(l++

ij ), f(l+−
ij ), f(−l−−

ij )
} for some j ∈ I.We now show how Theorem 3.6 an be applied in some speial ases.Corollary 3.8 Assume that a mixed-integer set X of the type MIX2TU (with rational right-hand side) satis�es at least one of the following onditions:(i) The number of paths in GX is bounded by a polynomial funtion of the size of the de-sription of X;(ii) The number of elements in the sets {f(l++

ij ) : (i, j) ∈ N++
}, {f(l+−

ij ) : (i, j) ∈ N+−
}and {f(l−−

ij ) : (i, j) ∈ N−−
} is bounded by a onstant.(iii) GX is a bipartite graph with vertex lasses U, V and the inequalities de�ning X whihontain two ontinuous variables xu, xv (u ∈ U, v ∈ V ) have the form xu + xv ≥ bv − bufor some �xed vetor b with indies in U ∪ V .Then X admits a omplete list of frational parts that is ompat.Proof. If ondition (i) holds, the length of the list L is bounded by a polynomial funtion ofthe size of the desription of X. Then Theorem 3.6 implies that there is a omplete list for Xwhih is ompat.Now suppose that ondition (ii) holds and assume that {f1, . . . , ft} is the set of all elementsof type f(l++

ij ), f(l+−
ij ) and f(l−−

ij ). Eah value f(lω(Pvr)) an be expressed as
f(lω(Pvr)) = f

(
∑t

ℓ=1 αℓfℓ

)

, (3.25)where αℓ is an integer for 1 ≤ ℓ ≤ t. Sine GX has |L| nodes, the maximum length of a path in
GX is |L|−1. This implies |αℓ| ≤ |L|−1 for 1 ≤ ℓ ≤ t. Then the length of the list L is at most
(2|L| − 1)t. Thus by Theorem 3.6 there is a omplete list for X of size O

(
m|L|t

)
= O

(
mnt

),as t is a onstant by assumption.Finally assume that ondition (iii) holds. In this ase it is easy to verify that for v ∈ U ∪V ,
lω(Pvr) = br − bv (3.26)and thus X admits a omplete list whih is ompat. �We remark that if the size of eah onneted omponents of GX is bounded by a onstant,then X satis�es ondition (i) of the above orollary.Finally it is interesting to note that if one of the onditions of Corollary 3.8 is satis�ed, theknowledge of the struture of GX allows one to expliitly ompute a omplete list of frationalparts whih is ompat (see Chapter 4 for some examples).





Chapter 4Examples of formulations of dualnetwork setsIn this hapter we show that several mixed-integer sets that have been studied in the literaturean be transformed into sets of the type MIX2TU and thus admit an extended formulation ofthe type introdued in Chapter 2. For many of these sets, one of the onditions of Corollary 3.8is satis�ed and thus a omplete list of frational parts whih is ompat an be expliitly given.Therefore the extended formulation is ompat for suh sets.We will see that most of the mixed-integer sets onsidered in this hapter have appliationin real-word problems, suh as prodution planning. Our results provide a uni�ed frameworkfor the extended formulations of these sets found in the last years.Before presenting the examples, we need to explain preisely the meaning of the wordtransformed used above. This is done in Setion 4.1.The results of this hapter are joint work with Mihele Conforti, Friedrih Eisenbrand andLaurene A. Wolsey and are also summarized in [11℄.4.1 Mixed-integer linear mappingsGiven a polyhedron P ⊆ R
n and an invertible linear transformation of the spae R

n, withassoiated matrix A (thus A is an n×n nonsingular matrix), it is well-known that the polyhedra
P and P ′ := {Ax : x ∈ P} are equivalent. This means that the polyhedral struture (faes,faets, verties, et.) of P and P ′ are idential under the hange of oordinates x 7→ Ax.Now assume that we are interested in the onvex hull of the integral points in P . In otherwords, we want to study the pure integer set de�ned by the inequalities that desribe P (plusthe integrality onditions). If we apply an arbitrary invertible linear transformation, we ouldloose information about the integral points of P : more spei�ally, there is no guarantee that
conv(P ′∩Z

n) is the transformed of conv(P ∩Z
n). Thus studying the original pure integer setor the transformed set is not the same at all.However, if the matrix A assoiated with the linear transformation is a unimodular matrix,i.e. A has integer entries and det(A) = ±1, then the transformation is a bijetion on Z

n (see51



52 Chapter 4. Examples of formulations of dual network setse.g. [38℄). Thus in this ase there is a one-to-one orrespondene between the integral pointsin P and those in P ′.When dealing with mixed-integer sets, say with ontinuous variables yi and integer vari-ables zi, it is natural to wonder whih invertible linear transformations preserve the integralityof the z-variables. The following result fully answers this question.Theorem 4.1 Consider the linear transformation de�ned by (y′
z′

)

:= A

(

y

z

), where (y, z) ∈

R
m+n, (y′, z′) ∈ R

m′+n′, m+n = m′ +n′ and A is an (m+n)× (m′ +n′) nonsingular matrix.The following are equivalent:(i) For eah (y, z) ∈ R
m+n, z is integral if and only if z′ is integral.(ii) m = m′, n = n′ and A =

[

A1 A2

O U

], where A1 is an m×m nonsingular matrix, A2 isan m× n matrix and U is an n× n unimodular matrix.Proof. We �rst prove that (i) implies (ii). Suppose A =

[

A1 A2

A3 A4

], where A1 ∈ R
m′×m,

A2 ∈ R
m′×n, A3 ∈ R

n′×m and A4 ∈ R
n′×n. If A3 6= O, one of the entries of A3 is a nonzeronumber a. Without loss of generality we assume that this entry is in the �rst row and �rstolumn of A3. Then the vetor A(e1/2a

0

), where e1 denotes the m-vetor with 1 in the �rstentry and 0 elsewhere, ontains a omponent equal to 1/2 in the entry orresponding to z′1,ontraditing (i). Thus A3 = O.If B =

[

B1 B2

B3 B4

] is the inverse of A (where B1 ∈ R
m×m′ , B2 ∈ R

m×n′ , B3 ∈ R
n×m′ and

B4 ∈ R
n×n′), a similar argument shows that B3 = O.Thus we obtain z′ = A4z and z = B4z

′ for all z ∈ R
n. We now prove that this implies

n = n′. Equation z = B4A4z for all z ∈ R
n yields B4A4 = In (where In denotes the n × nidentity matrix), thus rk(A4) ≥ n. Sine A4 is n′ × n, this implies n′ ≥ n. Similarly, startingfrom z′ = A4B4z

′ for all z′, one obtains n ≥ n′. Thus n = n′ and onsequently m = m′. (i)then implies that A4 is unimodular.To prove that (ii) implies (i), note that if (ii) holds then the transformation and its inverseare
{

y′ := A1y +A2z

z′ := Uy
and {

y := A−1
1

(
y′ −A2U

−1z′
)

z := U−1z′
.Sine U is a unimodular matrix, these two transformations preserve the integrality of z and

z′. �We all a transformation of the type desribed in Theorem 4.1 a mixed-integer linearmapping. Theorem 4.1 shows that if the desription of a mixed-integer set is given (as usual)



4.2. The mixing set and its variants 53as the set of mixed-integer points belonging to a polyhedron P , then, after applying a mixed-integer linear mapping, we an equivalently study the mixed-integer set de�ned by P ′ (thetransformed of P ).Taking the above theorem for n = 0 or m = 0 shows that in the linear ase (no integervariables) the mixed-integer linear mappings are preisely the invertible linear transformations,while in the pure integer ase we �nd the unimodular transformations. Thus in the extremeases Theorem 4.1 mathes the known results.Consider an arbitrary mixed-integer set X and let F be a omplete list of frational partsfor X having ompat size. In general, if we apply a linear mapping of the kind desribedin Theorem 4.1, the transformed mixed-integer set X ′ may not have a omplete list whih isompat. For instane, hoose
X := {x ∈ R

n : 0 ≤ xi ≤ 2−i for i ∈ N}(so here I = ∅; similar examples with I 6= ∅ an be easily derived from this instane). Thelist F := {0; 2−i : i ∈ N} is omplete for X and its size is linear in the size of the desriptionof X. The mixed-integer linear mapping
x′1 := x2 + · · · + xn, x

′
i := xi for i ∈ N \ {1}transforms X into

X ′ :=
{
x′ ∈ R

n : 0 ≤ x′1 − x′2 − · · · − x′n ≤ 2−1, 0 ≤ x′i ≤ 2−i for i ∈ N \ {1}
}
.Now, for eah subset S ⊆ N \ {1} the vetor de�ned by

x′i :=







2−i if i ∈ S,

0 if i ∈ (N \ {1}) \ S,
∑

j∈S 2−j if i = 1is a vertex of X ′. Sine for eah S the value of the sum ∑

j∈S 2−j is a di�erent number inthe interval [0, 1), any omplete list for X ′ ontains a number of frational parts whih isexponential in the size of the desription of X.However, for the mixed-integer sets that we study below (exept those onsidered in Se-tions 4.3 and 4.5), we will apply mixed-integer linear mappings whih give rise to mixed-integersets of the type MIX2TU satisfying at least one of the onditions of Corollary 3.8. Thus inthese ases the existene of a omplete list whih is ompat is guaranteed. Furthermore, forthese sets suh a list is expliitly given.4.2 The mixing set and its variantsGünlük and Pohet [31℄ introdued a mixed-integer set that is now referred to as mixing set(the authors do not give a name to suh a set in [31℄):
s+ zi ≥ bi, 1 ≤ i ≤ n, (4.1)
s ≥ 0, (4.2)

zi integer, 1 ≤ i ≤ n, (4.3)



54 Chapter 4. Examples of formulations of dual network setswhere bi ∈ R for 1 ≤ i ≤ n. The mixing set was introdued as an abstration arising from somemixed-integer sets that have appliation in pratial problems, suh as prodution planning[55℄. More spei�ally, the mixing set provides a relaxation for a number of lot-sizing problems(see e.g. [21, 45, 55, 63℄).Despite the simple struture of onstraints (4.1)�(4.3), the onvex hull of the mixing setis desribed by an exponential number of faet-de�ning inequalities. The name of the setoriginates from the fat that Günlük and Pohet [31℄ used this set to demonstrate the strengthof a tehnique that they alled mixing proedure: given a mixed-integer set, suh a proedureonsists in mixing the original inequalities that desribe the set to obtain a new valid inequality.In fat the mixing proedure allowed the authors to ompute the linear inequality desriptionof the onvex hull of the mixing set (4.1)�(4.3).Several variants of the mixing set (4.1)�(4.3) have been introdued. Some of them areonsidered in this setion, others are disussed in Chapter 7. As we explain below, all thesevariants are important in pratial problems. For the sake of onveniene, the variants ofthe mixing set studied in this setion are treated starting with the most ompliated one andending with the mixing set itself.4.2.1 The ontinuous mixing set with �owsThe ontinuous mixing set with �ows, studied in [12℄, is de�ned as follows:
s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (4.4)

yi ≤ zi, 1 ≤ i ≤ n, (4.5)
s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.6)

zi integer, 1 ≤ i ≤ n, (4.7)where bi ∈ R for 1 ≤ i ≤ n.Before proving that the ontinuous mixing set with �ows an be transformed into a set ofthe type MIX2TU that admits a omplete list of frational parts whose length is polynomial,we demonstrate the pratial usefulness of this set by showing two links with lot-sizing.The �rst link is to the single-item onstant-apaity lot-sizing problem with bakloggingover n periods, whih an be formulated (inluding redundant equations) as:
sj−1 +

∑i
l=j xl + ri =

∑i
l=j dl + si + rj−1, 1 ≤ j ≤ i ≤ n,

xl ≤ Cwl, 1 ≤ l ≤ n,

si ≥ 0, ri ≥ 0, xl ≥ 0, wl ∈ {0, 1}, 1 ≤ i ≤ n, 0 ≤ l ≤ n.Here dl is the demand in period l, sl and rl are the stok and baklog at the end of period
l, wl takes value 1 if there is a set-up in period l allowing prodution to take plae, xl isthe prodution in period l and C is the apaity (i.e. the maximum prodution allowed). Tosee that this set has a relaxation as the intersetion of n ontinuous mixing sets with �ows,take C = 1 without loss of generality, �x j, set s := sj−1, yi :=

∑i
l=j xl, zi :=

∑i
l=j wl and
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bi :=

∑i
l=j dl, giving a �rst relaxation:

s+ ri + yi ≥ bi, j ≤ i ≤ n, (4.8)
0 ≤ yl − yl−1 ≤ zl − zl−1 ≤ 1, j ≤ l ≤ n (4.9)

s ≥ 0, ri ≥ 0, yl ≥ 0, j ≤ i ≤ n, j − 1 ≤ l ≤ n, (4.10)
zl integer, j − 1 ≤ l ≤ n. (4.11)Now summing (4.9) over j ≤ l ≤ i (for eah �xed i = j, . . . , n) and dropping the upper boundon zi,1 one obtains preisely a set of the type (4.4)�(4.7).The ontinuous mixing set with �ows (4.4)�(4.7) also provides an exat model for the two-stage stohasti lot-sizing problem with onstant apaities and baklogging. The problem isas follows. At time 0 one must hoose to produe a quantity s at a per unit ost of h. Thenin period 1, there are n possible outomes. For eah 1 ≤ i ≤ n, the probability of event i is

φi, the demand is bi and the unit prodution ost is pi, with prodution in bathes of size upto C; there are also a �xed ost of qi per bath and a possible bound mi on the number ofbathes. As an alternative to prodution there is a linear baklog (reovery) ost ei. Finallythe goal is to satisfy the demands in all possible outomes and minimize the total expetedost. The resulting problem is
min hs+

∑n
i=1 φi(piyi + qizi + eiri)subjet to s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (4.12)
yi ≤ Czi, zi ≤ mi, 1 ≤ i ≤ n, (4.13)
s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.14)

zi integer, 1 ≤ i ≤ n. (4.15)When mi = 1 for all 1 ≤ i ≤ n, this is a standard lot-sizing problem, and in general, as-suming C = 1 without loss of generality, (4.12)�(4.15) is the ontinuous mixing set with�ows (4.4)�(4.7) plus inequalities zi ≤ mi for 1 ≤ i ≤ n, whih an be treated as shown byProposition 2.16.We now prove the existene of a ompat extended formulation for the ontinuous mixingset with �ows (4.4)�(4.7) (provided that b is a rational vetor).Note that the mixed-integer linear mapping
s′ := s; σi := s+ ri, y

′
i := yi, z

′
i := zi for 1 ≤ i ≤ n (4.16)transforms (4.4)�(4.7) into the following mixed-integer set:

σi + y′i ≥ bi, 1 ≤ i ≤ n, (4.17)
y′i ≤ z′i, 1 ≤ i ≤ n, (4.18)

s′ ≥ 0, σi − s′ ≥ 0, y′i ≥ 0, 1 ≤ i ≤ n, (4.19)
z′i integer, 1 ≤ i ≤ n. (4.20)1The only reason for dropping the upper bound on zi is to obtain a set of the type (4.4)�(4.7). If the upperbound is kept, an extended formulation for the resulting set an be obtained immediately from that of the set(4.4)�(4.7) by applying Proposition 2.16.



56 Chapter 4. Examples of formulations of dual network setsSine the onstraint matrix of inequalities (4.17)�(4.19) is a totally unimodular matrixwith at most two nonzero entries per row, (4.17)�(4.20) is a mixed-integer set of the type
MIX2TU .If we let X denote the mixed-integer set (4.17)�(4.20), then the graph GX (as de�ned inSetion 3.2) is a tree, with leaves orresponding to variables y′i for 1 ≤ i ≤ n. Therefore GXsatis�es ondition (i) of Corollary 3.8 and X admits a omplete list of ompat size. Belowwe expliitly give suh a list.Lemma 4.2 The list of frational parts F := {0; f(bi) : 1 ≤ i ≤ n; f(bi − bj) : 1 ≤ i, j ≤ n}is omplete for the mixed-integer set (4.17)�(4.20).Proof. We use the notation of the proof of Theorem 3.6. Note that conv(X) is a pointedpolyhedron (as all variables are bounded from below), thus Observation 3.7 applies. Givena vertex x̄ = (s̄′, σ̄, ȳ′, z̄′) of conv(X) and a onneted omponent Cx̄ of Fx̄, Observation 3.7shows that node r orresponds to a variable that assumes an integer value. Then by equa-tion (3.24) we only need to ompute the values f(lω(P )) for all paths P in GX . It is easy tohek that the list F := {0; f(bi) : 1 ≤ i ≤ n; f(bi − bj) : 1 ≤ i, j ≤ n} inludes all thesevalues. �Therefore the result of Setion 2.4 provides a ompat extended formulation of the onvexhull of the set (4.17)�(4.20). Applying the inverse of linear transformation (4.16) gives aompat extended formulation of the ontinuous mixing set with �ows. Sine |F| = O

(
n2
),Corollary 2.12 shows that suh an extended formulation uses O(n3

) variables and onstraints.The formulation an be made more ompat if one uses the approah desribed in Se-tion 2.5.1. Spei�ally, the following result holds:Lemma 4.3 (i) The list of frational parts Fs′ := {0; f(bj) : 1 ≤ j ≤ n} is omplete forthe mixed-integer set (4.17)�(4.20) with respet to variable s′.(ii) For eah 1 ≤ i ≤ n, the list of frational parts Fσi
:= {0; f(bj) : 1 ≤ j ≤ n} is ompletefor the mixed-integer set (4.17)�(4.20) with respet to variable σi.(iii) For eah 1 ≤ i ≤ n, the list of frational parts Fy′

i
:= {0; f(bi − bj) : 1 ≤ j ≤ n} isomplete for the mixed-integer set (4.17)�(4.20) with respet to variable y′i.Proof. The proof is just a re�nement of the proof of Lemma 4.2: for instane, if v is the nodein GX orresponding to variable y′i for some 1 ≤ i ≤ n, the list Fy′

i
given above ontains allvalues of the type f(lω(Pvr)), where r is a node in GX and P is a path in GX with r as lastnode. �Sine all the lists given in the above lemma ontain O(n) elements, Corollary 2.14 impliesthe following result:Proposition 4.4 The ontinuous mixing set with �ows (4.4)�(4.7) admits an extended for-mulation with O

(
n2
) variables and onstraints.



4.2. The mixing set and its variants 57Conforti, Di Summa and Wolsey [12℄ gave two less ompat extended formulations of (4.4)�(4.7): one, using an approah quite similar to that desribed here, involves O
(
n2
) variablesand O

(
n3
) onstraints; the other, whih is based on the approah of Conforti and Wolsey [16℄desribed in Setion 1.5.4, uses O(n3

) variables and O
(
n4
) onstraints. Suh results are alsopresented in Setion 8.3.The linear inequality desription of the onvex hull of the ontinuous mixing set with �owsin the original spae is not known.4.2.2 The mixing set with �owsThe mixing set with �ows is de�ned as follows:

s+ yi ≥ bi, 1 ≤ i ≤ n, (4.21)
yi ≤ zi, 1 ≤ i ≤ n, (4.22)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.23)
zi integer, 1 ≤ i ≤ n, (4.24)where bi ∈ R for 1 ≤ i ≤ n.This mixed-integer set is obtained from the ontinuous mixing set with �ows (4.4)�(4.7)by setting ri = 0 for all 1 ≤ i ≤ n. We showed in Setion 4.2.1 that the ontinuous mixing setwith �ows (4.4)�(4.7) provides relaxations for two kinds of lot-sizing problems with baklogging.Sine in those formulations variables ri represented the baklogged amount, it follows that themixing set with �ows (4.21)�(4.24) provides a relaxation for the single-item onstant-apaitylot-sizing problems (without baklogging) and an exat formulation for the two-stage stohastilot-sizing problem with onstant apaities (see also [13℄).Sine the onvex hull of (4.21)�(4.24) is the fae of the onvex hull of (4.4)�(4.7) de�nedby the equations ri = 0 for 1 ≤ i ≤ n, an extended formulation for the mixing set with�ows (4.21)�(4.24) is obtained by inluding equations ri = 0 for 1 ≤ i ≤ n in any extendedformulation of the ontinuous mixing set with �ows (4.4)�(4.7). Then Proposition 4.4 impliesthe following result:Proposition 4.5 The mixing set with �ows (4.21)�(4.24) admits an extended formulationwith O

(
n2
) variables and onstraints.In Setion 5.3 we onstrut the extended formulation and then projet it onto the originalspae, thus obtaining a linear inequality desription of the onvex hull of the set in its spaeof de�nition.A di�erent extended formulation, whih also uses O

(
n2
) variables and onstraints, wasgiven by Conforti, Di Summa and Wolsey [13℄. Furthermore they gave a linear inequalitydesription of the onvex hull of the set in its original (s, y, z)-spae without using projetions.Suh results are also presented in Setion 8.2.In [13℄ a omplete haraterization of the extreme points and extreme rays of the onvexhull of this set was also given. This was used to derive a simple algorithm for optimizing arational linear funtion over the mixing set with �ows (4.21)�(4.24) (with rational right-handside).



58 Chapter 4. Examples of formulations of dual network sets4.2.3 The ontinuous mixing setThe ontinuous mixing set, introdued by Miller and Wolsey [45℄, is the mixed-integer setde�ned as follows:
s+ ri + zj ≥ bi, 1 ≤ i ≤ n, (4.25)
s ≥ 0, ri ≥ 0, 1 ≤ i ≤ n, (4.26)
zi integer, 1 ≤ i ≤ n, (4.27)where bi ∈ R for 1 ≤ i ≤ n.It is immediate to see that system (4.25)�(4.27) is a relaxation of the feasible regionof the ontinuous mixing set with �ows (4.4)�(4.7). Therefore the ontinuous mixing set(4.25)�(4.27) itself is a relaxation of both the single-item onstant-apaity lot-sizing problemwith baklogging and the two-stage stohasti lot-sizing problem with onstant apaities andbaklogging. Other possible appliations of the ontinuous mixing set (e.g. in hemistry) aredesribed in [64℄.Sine the onvex hull of (4.25)�(4.27) is the fae of the onvex hull of (4.4)�(4.7) de�nedby the equations yi = zi for 1 ≤ i ≤ n, an extended formulation for the ontinuous mixingset (4.25)�(4.27) is obtained by inluding equations yi = zi for 1 ≤ i ≤ n in any extendedformulation of the ontinuous mixing set with �ows (4.4)�(4.7). Then Proposition 4.4 impliesthe following result:Proposition 4.6 The ontinuous mixing set (4.21)�(4.24) admits an extended formulationwith O

(
n2
) variables and onstraints.Miller and Wolsey [45℄ gave a di�erent ompat extended formulation whih also uses

O
(
n2
) variables and onstraints, and so did Van Vyve [65℄. The formulation by Van Vyve alsoworks when an additional system of the type Bz ≥ d, where B is a dual network matrix and

d is an integral vetor, is inluded in the original desription of the set. In a di�erent paper,Van Vyve [64℄ gave a more ompat extended formulation involving only O(n) variables and
O
(
n2
) onstraints. He also gave a linear inequality desription of the onvex hull of the setin its original spae, as well as an O

(
n3
) algorithm for the separation problem in the originalspae.4.2.4 The mixing setReall that the mixing set is de�ned by onstraints (4.1)�(4.3). Clearly this set is a relaxationof eah of the sets onsidered in Setions 4.2.1�4.2.3, thus it provides relaxations for lot-sizingproblems. In fat the mixing set appears as a substruture in many prodution planningproblems [21, 45, 55, 63℄.Sine the onvex hull of the mixing set (4.1)�(4.3) is the fae of the onvex hull of (4.25)�(4.27) de�ned by the equations ri = 0 for 1 ≤ i ≤ n, an extended formulation for the mixingset is obtained by inluding equations ri = 0 for 1 ≤ i ≤ n in any extended formulationof the ontinuous mixing set (4.25)�(4.27). This observation, together with Proposition 4.6,



4.3. The intersetion set 59shows that the mixing set (4.1)�(4.3) admits an extended formulation with O
(
n2
) variablesand onstraints. However, a better result an be ahieved, as the mixing set admits a shorteromplete list of frational parts.Lemma 4.7 The list of frational parts Fs := {0; f(bi) : 1 ≤ i ≤ n} is omplete for themixing set (4.1)�(4.3) with respet to variable s.Proof. Let (s̄, z̄) be a vertex of the onvex hull of (4.1)�(4.3). Sine z̄ is an integral vetor, if

f(s̄) were not in the list F de�ned above then both points (s̄± ε, z̄) would satisfy (4.1)�(4.3)for some ε 6= 0. However, this ontradits the assumption that (s̄, z̄) is a vertex. �Note that the mixing set (4.1)�(4.3) is a set of the type MIX2TU and the above listontains O(n) elements. If one uses the approah desribed in Setion 2.5 to deal with integervariables, the following result is easily obtained:Proposition 4.8 The mixing set (4.1)�(4.3) admits an extended formulation with O(n) vari-ables and onstraints.Suh a formulation, whih is essentially the same as that proposed by Miller and Wolseyin [45℄, is given in Setion 5.2 in a more general ontext. Miller and Wolsey [45℄ also provedthat if one intersets the mixing set with a system of inequalities Bz ≥ d, where B is a dualnetwork matrix and d is an integral vetor, an extended formulation of the resulting set isobtained by just inluding the system Bz ≥ d in the extended formulation of the mixing set.Note that this result also follows from our study (see Proposition 2.16).The onvex hull of the mixing set in its original spae, whih was �rst desribed by Günlükand Pohet [31℄, is obtained in Setion 5.2 as a onsequene of the haraterization of theonvex hull of any set of the type MIX2TU having a single ontinuous variable. Suh aharaterization is found by projeting the extended formulation onto the original spae ofvariables.4.3 The intersetion setThe following mixed-integer set was studied in [12℄ under the name of intersetion set:
si + rj + zj ≥ bij , 1 ≤ i, j ≤ n, (4.28)

si ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (4.29)
zi integer, 1 ≤ i ≤ n, (4.30)where bij ∈ R for 1 ≤ i, j ≤ n. Note that this set is the intersetion of n ontinuous mixing sets(4.25)�(4.27), eah having its own si variable but all sharing the same (r, z) variables. Conforti,Di Summa and Wolsey [12℄ analyzed this set as an instrument to study the ontinuous mixingset with �ows de�ned in Setion 4.2.1.By applying the mixed-integer linear mapping

s′i := si, ρi := ri + zi, z
′
i := zi for 1 ≤ i ≤ n,



60 Chapter 4. Examples of formulations of dual network setsthe set (4.28)�(4.30) is transformed into the following mixed-integer set:
s′i + ρj ≥ bij, 1 ≤ i, j ≤ n, (4.31)

si ≥ 0, ρi − z′i ≥ 0, z′i ≥ 0, 1 ≤ i ≤ n, (4.32)
z′i integer, 1 ≤ i ≤ n. (4.33)The above mixed-integer set is of the type MIX2TU . If we denote it by X, the graph GX(as de�ned in Setion 3.2) is the omplete bipartite graph with n nodes in eah lass of thebipartition, where all edges have two tails.Lemma 4.9 Given two sequenes of indies i1, . . . , im and j1, . . . , jm in {1, . . . , n}, whereeah sequene onsists of pairwise distint elements, de�ne

ϕ(i1, . . . , im; j1, . . . , jm−1) :=

m−1∑

t=1

(bitjt − bitjt+1),

ψ(i1, . . . , im; j1, . . . , jm) :=

m−1∑

t=1

(bitjt − bitjt+1) + bimjm .Then the list of frational parts F onsisting of all values of the types
f
(
ϕ(i1, . . . , im; j1, . . . , jm−1)

)
, f

(
ψ(i1, . . . , im; j1, . . . , jm)

)is omplete for the mixed-integer set (4.31)�(4.33).Proof. We use again the notation of the proof of Theorem 2.10. Given a vertex x̄ = (s̄′, ρ̄, z̄′) of
conv(X) and a onneted omponent Cx̄ of Fx̄, node r orresponds to a variable that assumesan integer value (this follows from Observation 3.7, as conv(X) is a pointed polyhedron). Thenby equation (3.24) we only need to ompute the values f(lω(P )) for all paths P in GX . It iseasy to hek that the list F de�ned above inludes all these values. �The number of distint frational parts ontained in the list F given above depends onthe values bij for 1 ≤ i, j ≤ n. Note that the fae of conv(X) de�ned by equations z′j = 0 for
1 ≤ j ≤ n is a polyhedron of the same form as (3.1)�(3.2). This, together with Observation 3.2,shows that there exists a hoie of the values bij for 1 ≤ i, j ≤ n suh that any omplete listfor the set (4.31)�(4.33) ontains an exponential number of distint frational parts.4.3.1 The di�erene setConforti, Di Summa and Wolsey [12℄ payed partiular attention to instanes of the intersetionset (4.28)�(4.30) with bij = di−dj for some �xed vetor d ∈ R

n. The motivation for the studyof this type of set, alled di�erene set in [12℄, relied again on the fat that the di�erene setan be useful in the study of the ontinuous mixing set with �ows (see also Setion 8.3)It is readily heked that if bij = di−dj for some �xed vetor d ∈ R
n, then the orrespondingtransformed set X de�ned by (4.31)�(4.33) satis�es ondition (iii) of Corollary 2.12, thus inthis ase the existene of a omplete list of polynomial length is guaranteed.



4.4. Lot-sizing 61Lemma 4.10 If bij = di − dj for some �xed vetor d ∈ R
n, the list of frational parts

F := {0; f(di) : 1 ≤ i ≤ n; f(di − dj) : 1 ≤ i, j ≤ n} is omplete for (4.31)�(4.33).Proof. Diretly from equations (3.24) and (3.26). �Sine the above list ontains O
(
n2
) elements, Corollary 2.12 implies that the di�ereneset admits an extended formulation with O

(
n3
) variables and O

(
n4
) onstraints. However, abetter result an be obtained if one uses the approah desribed in Setion 2.5. Spei�ally,observe �rst that the following improvement of Lemma 4.10 holds:Lemma 4.11 If bij = di − dj for some �xed vetor d ∈ R

n, then for eah index 1 ≤ i ≤ nthe list of frational parts Fi := {0; f(dj) : 1 ≤ j ≤ n; f(di − dj) : 1 ≤ j ≤ n} is omplete for(4.31)�(4.33) with respet to eah of variables s′i, ρi.Proof. Again diretly from equations (3.24) and (3.26). �The following results is then implied:Proposition 4.12 The di�erene set admits an extended formulation that uses O
(
n2
) vari-ables and O

(
n3
) onstraints.Proof. From Lemma 4.11 and Corollary 2.14. �Two kinds of extended formulations of the di�erene set were given in [12℄ (and also herein Setion 8.3): one is essentially the same as that desribed here, while the other, whih isbased on the tehnique by Conforti and Wolsey [16℄ desribed in Setion 1.5.4, involves O(n4

)variables and onstraints.4.4 Lot-sizingVan Vyve [65℄ studied a mixed-integer set of the following form:
si + rj + C

∑j
t=i zt ≥ dj − di, 1 ≤ i < j ≤ n, (4.34)

si ≥ 0, ri ≥ 0, 0 ≤ zi ≤ mi, 1 ≤ i ≤ n, (4.35)
zi integer, 1 ≤ i ≤ n. (4.36)He showed that optimizing a linear funtion over the above set is equivalent to solving a ertainlot-sizing problem, provided that the osts satisfy the Wagner-Whitin onditions realledin Setion 1.5.5. In suh lot-sizing problem the apaity is a onstant C and bakloggingis allowed. There is also a bound mj on the number of bathes that an be produed inperiod j. The value dj is the umulative demand up to period j. Van Vyve [65℄ providedan extended formulation for the onvex hull of (4.34)�(4.36) whih uses O(n2

) variables and
O
(
n3
) onstraints.



62 Chapter 4. Examples of formulations of dual network setsAssuming C = 1 without loss of generality, the mixed-integer linear mapping
wi :=

i∑

t=1

zt, σi := si − wi−1, ρi := ri + wi for 1 ≤ i ≤ n, (4.37)where w0 := 0, maps (4.34)�(4.36) into the following mixed-integer set:
σi + ρj ≥ dj − di, 1 ≤ i < j ≤ n, (4.38)
σi +wi−1 ≥ 0, 1 ≤ i ≤ n, (4.39)

ρi − wi ≥ 0, 0 ≤ wi −wi−1 ≤ mi, 1 ≤ i ≤ n, (4.40)
wi integer, 1 ≤ i ≤ n. (4.41)The above is a set of the type MIX2TU . If we denote it by X, the graph GX , as de�nedin Setion 3.2, is a bipartite graph where all edges have two tails.Lemma 4.13 The list F := {0; f(di) : 1 ≤ i ≤ n; f(di − dj) : 1 ≤ i, j ≤ n} is omplete for(4.38)�(4.41).Proof. After noting that Observation 3.7 an be applied (as conv(X) is a pointed polyhedron)and ondition (iii) of Corollary 2.12 holds, the result follows diretly from equations (3.24)and (3.26). �The above lemma, together with the result of Setion 2.4, yields a ompat extendedformulation of (4.34)�(4.36) with O
(
n3
) onstraints and O

(
n4
) variables. However, a propertysimilar to Lemma 4.11 holds and thus the result an be improved:Proposition 4.14 The set (4.34)�(4.36) admits an extended formulation that uses O

(
n2
)onstraints and O

(
n3
) variables.Proof. Just observe that for eah index 1 ≤ i ≤ n, the list of frational part Fi := {0; f(dj) :

1 ≤ j ≤ n; f(di − dj) : 1 ≤ j ≤ n} is omplete for X with respet to eah of variables σi, ρi(this follows from equations (3.24) and (3.26)). The result now follows from Corollary 2.14.
�Suh an extended formulation is essentially the same as that given by Van Vyve [65℄.4.5 Bipartite over inequalitiesGiven a bipartite graph G = (V1, V2;E), let (I, L) be a partition of V1 ∪ V2 with I 6= ∅. Weonsider here the following mixed-integer set:

xi + xj ≥ bij , ij ∈ E, (4.42)
xi ≥ 0, i ∈ V1 ∪ V2, (4.43)

xi integer, i ∈ I, (4.44)where bij ∈ R for ij ∈ E.The above is obviously a set of the type MIX2TU . The example of Setion 3.1 shows thatthis set does not admit in general a omplete list of polynomial length. However, suh a listexists in the following two speial ases.



4.5. Bipartite over inequalities 634.5.1 The intersetion of mixing setsThe �rst ase is the set (4.42)�(4.44) with I = V1 and L = V2 (i.e. the integer variablesorrespond to the nodes of one side of the bipartition of G). Note that in this ase theset (4.42)�(4.44) is the intersetion of |V2| mixing sets (see Setion 4.2), eah one having itsown ontinuous variable but all sharing the same integer variables. (Here we also requirenonnegativity of the integer variables.)This set was studied by Miller and Wolsey in [45℄, where a ompat extended formulationwas given. Their result an be easily reobtained by using our approah, as we now show.Lemma 4.15 If I = V1 and L = V2, then for eah j ∈ V2 the list of frational parts Fj :=

{0; f(bij) : i ∈ V1} is omplete for the set (4.42)�(4.44) with respet to variable xj.Proof. Let X denote the mixed-integer set de�ned by onditions (4.42)�(4.44). The graph GX(see Setion 3.2) has no edges. Sine conv(X) is a pointed polyhedron, it follows immediatelyby Observation 3.7 that the list given above is omplete for the set with respet to variable
xj. �Proposition 4.16 If I = V1 and L = V2, the set (4.42)�(4.44) admits an extended formula-tion with O(|V1||V2|) variables and onstraints.Proof. Just ount the variables and the onstraints of the extended formulation (2.62)�(2.68)orresponding to the set (4.42)�(4.44) and the list given above (the general bound providedby Corollary (2.14) is weaker than O(|V1||V2|)). �Miller and Wolsey [45℄ gave a formulation of this set in its original spae of variables.They showed that suh a formulation is obtained by just interseting the linear inequalitydesriptions of the |V2| mixing sets that form (4.42)�(4.44).4.5.2 Constant number of frational partsThe seond ase we onsider is the set (4.42)�(4.44) with the additional ondition that forsome integer onstant K, the value Kbij is an integer for all ij ∈ E; in other words, f(bij) ∈

{0, 1/K, . . . , 1−1/K} for all ij ∈ E. Note that this set satis�es ondition (ii) of Corollary 3.8.As stated in Corollary 3.8, every set of the typeMIX2TU suh that the number of distintfrational parts taken by the right-hand sides is bounded by a onstant admits a ompatextended formulation. Thus one might wonder why we pay partiular attention to the sets(4.42)�(4.44) with the above property. The reason for this is the fat that the speial ase
K = 2 was studied reently by Conforti, Gerards and Zambelli [15℄. They �rst gave a ompatextended formulation (of the same type as that desribed in Chapter 2) and then omputedthe linear inequality desription of the set in the original spae by projeting the extendedformulation.





Chapter 5Projetions onto the original spae ofvariablesReall that given an extended formulation of a mixed-integer set, Theorem 1.17 an be usedin priniple to ompute the projetion of the extended formulation onto the original spaeof variables, thus obtaining a linear inequality desription of the onvex hull of the set in itsspae of de�nition.In this hapter we onsider the problem of arrying out expliitly the projetion of anextended formulation of a mixed-integer set with dual network onstraint matrix. Sine om-puting the projetion onto the x-spae of a general polyhedron of the type (2.36)�(2.42) or(2.62)�(2.68) seems to be an extremely hard task, we only onsider a few speial ases forwhih we an expliitly �nd an inequality desription in the original spae.Exept for equations (2.62), whih de�ne the original variables, the onstraint matrix of aformulation of the type (2.62)�(2.68) is a dual network matrix. Thus, when using Theorem 1.17to ompute the projetion, one essentially has to solve a family of irulation problems on anetwork depending on ontinuous parameters. In fat, some �ow tehniques are used in thishapter to ompute the projetions. This is disussed in Setion 5.1.In Setion 5.2 we onsider a general mixed-integer set of the type MIXDN (or MIX2TU )with a single ontinuous variable. We onstrut an extended formulation of the form (2.62)�(2.68) for suh a set and then projet it onto the original spae of variables. This will providea linear inequality desription of the set in its spae of de�nition. The �opposite� ase, i.e. asingle integer variable, is treated in Chapter 6.In Setion 5.3 we reonsider the mixing set with �ows (see Setion 4.2.2), whih is of thetype MIX2TU and therefore admits an extended formulation (2.62)�(2.68). We expliitlygive suh a formulation and then projet it onto the original spae. As we will see, while theprojetion is omputed quite easily for the family of sets onsidered in Setion 5.2, muh moree�ort is required for the mixing set with �ows studied in Setion 5.3.A further example of expliit omputation of the projetion of an extended formulationwhih is essentially of the type (2.36)�(2.42) was arried out reently by Conforti, Gerardsand Zambelli in [15℄, where the set desribed in Setion 4.5.2 with K = 2 was studied.65



66 Chapter 5. Projetions onto the original spae of variables5.1 Cirulation problemsA linear system of the type (2.36)�(2.42) or (2.62)�(2.68) has the following form:
Ix = Bµ, (5.1)
Mµ ≥ d, (5.2)where I is the identity matrix of suitable dimension, M is a dual network matrix and µ is thevetor of all additional variables. By Theorem 1.17, the projetion of the above polyhedrononto the spae of the x-variables is desribed by inequalities wx − ud ≥ 0 for all row vetors

(w, u) that are extreme rays1 of the following one:
−wB + uM = 0, (5.3)
w free, u ≥ 0. (5.4)Sine M is a dual network matrix, for eah �xed vetor w the above onditions de�nethe feasible region of a irulation (or b-�ow) problem.2 Therefore omputing the projetionof an extended formulation of a dual network set amounts to solving a family of irulationproblems parameterized on w. The basi results about problems of this type that are used inthe remainder of the hapter are now realled.Let N = (V,A) be a network with vertex set V and ar set A. For v ∈ V , we denote by

δ+(v) (resp. δ−(v)) the set of ars entering (resp. leaving) node v.Suppose we are assigned real numbers bv for v ∈ V . We denote byN (b) the networkN withthe orresponding irulation requirements bv assigned to its nodes. A (feasible) irulationin N (b) is a vetor x with indies in A that satis�es the following onstraints:
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv, v ∈ V, (5.5)
xa ≥ 0, a ∈ A. (5.6)Equations (5.5) require that at eah node v ∈ V the balane between entering and exiting�ow is exatly the irulation requirement bv. As inequalities (5.6) suggest, we allow anyamount of �ow on the ars, provided that suh a �ow goes in the �orret diretion�. In amore general version of the irulation problem, a lower and an upper bound are assigned tothe �ow on eah ar. However, for our purpose, we always take 0 as lower bound and +∞ asupper bound.Remark that the onstraint matrix of the system of equations (5.5) has exatly one +1and one −1 per olumn, while the onstraint matrix of (5.3) (i.e. the transpose of M) may1Sine w is unbounded in (5.3)�(5.4), it is not obvious that suh a one does have extreme rays (i.e. ispointed). Note however that the struture of system (2.62)�(2.68) shows that eah olumn of B has at mostone nonzero entry and eah row of B has at least one nonzero entry. This observation an be used to showthat (5.3)�(5.4) is a pointed one.2Though many authors all irulation problems only the b-�ow problems where b = 0, we give here thesame meaning to the two terms.



5.1. Cirulation problems 67also ontain olumns with only one nonzero entry. This aspet is disussed at the end of thesetion.Summing all equations (5.5) gives
0 =

∑

v∈V

bv. (5.7)Therefore this is a neessary ondition for the existene of a feasible irulation in N (b).Conditions (5.5)�(5.6) de�ne a polyhedron. In the next setions we will be interested in�nding the extreme points and extreme rays of suh a polyhedron. The following well-knownharaterization will be useful:Theorem 5.1 The following hold:(i) the extreme points of (5.5)�(5.6) orrespond to the ayli irulations in N (b);(ii) the extreme rays of (5.5)�(5.6) are the harateristi vetors of direted yles in N .In the above theorem �ayli� means �not ontaining any undireted yle�. We will alsoneed the following result:Theorem 5.2 Let x̄ be a feasible irulation in N (b). Let F be a forest ontained in thesupport of x̄ and let ∆ ∈ R
V be a vetor satisfying the following two onditions:(i) the support of ∆ is ontained in the node set of F ;(ii) for eah onneted omponent C = (V (C), A(C)) of F , ∑v∈V (C) ∆v = 0.If ε > 0 is small enough, then there exists a unique irulation x̃ in N (b + ε∆) suh that x̄and x̃ oinide on all ars not belonging to F .Proof. Note that it is su�ient to prove that the statement holds when F is onneted (i.e. itis a tree). For �xed ε > 0, onsider the following linear system:
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = ε∆v, v ∈ V (F ), (5.8)
xe = 0, e /∈ A(F ). (5.9)De�ne m := |V (F )|. Sine F is a tree, it is well-known that the onstraint matrix ofequations (5.8), restrited to variables xe for e ∈ A(F ), is an m× (m − 1) matrix with rank

m− 1. Summing up all equations (5.8) and using (5.9) gives equation 0 =
∑

v∈V (F ) ∆v. Sinethis ondition is satis�ed by assumption, one of equations (5.8) is redundant. After removingthis redundant equation, (5.8)�(5.9) beomes a nonsingular system. Let ξ(ε) be its uniquesolution and de�ne x(ε) := x̄+ ξ(ε). Note that x(ε) satis�es equations (5.5) for all v ∈ V and
xe(ε) = x̄e for all e /∈ A(F ). Sine x(ε) is a ontinuous funtion of ε and x(0) = x̄, then for
ε > 0 su�iently small x(ε) also satis�es onditions (5.6). �



68 Chapter 5. Projetions onto the original spae of variablesSine some rows of M may have exatly one nonzero entry, we need to onsider a moregeneral version of a network, where some ars may have only one endpoint in the network. If
H (resp. T ) denotes the set of ars having only their head (resp. tail) in the network, summingall equations (5.5) now gives (after hanging all the signs)

∑

a∈T

xa −
∑

a∈H

xa = −
∑

v∈V

bv. (5.10)Suh an equation an be viewed as a onstraint of type (5.5) orresponding to a dummy node
d /∈ V , with assoiated balane bd := −

∑

v∈V bv. Suh a dummy node d is the head ofall ars in T and tail of all ars in H. Thus adding this node yields a network ontainingboth endpoints of eah of its ars. Furthermore, equation (5.7) is now satis�ed and thereforeTheorem 5.1 an be applied to this new network.Remark that the insertion of the dummy node does not hange the feasible region (5.5)�(5.6), as equation (5.10) is impliit in that system.5.2 Dual network sets with a single ontinuous variableWe study here mixed-integer sets with dual network onstraint matrix and a single ontinuousvariable. For suh sets, we expliitly give an extended formulation of the type presented inChapter 2 and then projet it onto the original spae of variables. This will give us a linearinequality desription of the set in its spae of de�nition. The results of this setion are jointwork with Mihele Conforti and Laurene A. Wolsey.We �rst explain why the projetion an be arried out easily when there is a single ontin-uous variable. As remarked in Setion 5.1, an extended formulation of a dual network set hasthe form (5.1)�(5.2) and omputing the projetion amounts to deteting the extreme rays ofthe one de�ned by (5.3)�(5.4). As observed in Setion 2.5.2, it is not neessary to introdueany additional variables to model the integer variables of the set. It follows that when thereis a single ontinuous variable in the original dual network set, system (5.1) atually onsistsof a single equation, thus the vetor w in (5.3)�(5.4) has only one omponent. Then, givenan extreme ray (w̄, ū) of (5.3)�(5.4), one an assume (after normalization) that w̄ ∈ {0,±1}.Sine one the value of w̄ is �xed we obtain a irulation problem on a network, we only haveto study three di�erent irulation problems. It will be then su�ient to apply Theorem 5.1in the three ases.Every mixed-integer set with dual network onstraint matrix and a single ontinuous vari-able an be written as follows:
s− zi ≥ li, i ∈ I l, (5.11)
s− zi ≤ ui, i ∈ Iu, (5.12)
l0 ≤ s ≤ u0, (5.13)
zi integer, 1 ≤ i ≤ n, (5.14)
Bz ≥ d, (5.15)



5.2. Dual network sets with a single ontinuous variable 69where I l, Iu ⊆ {1, . . . , n} and B is a dual network matrix. Note that to treat the most generalase, eah of the two inequalities in (5.13) may be omitted.It is onvenient to introdue a dummy variable z0 whose value is always zero. This allowsus to write the above onstraints in a more homogeneous form:
s− zi ≥ li, i ∈ J l, (5.16)
s− zi ≤ ui, i ∈ Ju, (5.17)
zi integer, 0 ≤ i ≤ n, (5.18)
Bz ≥ d, (5.19)
z0 = 0, (5.20)where

J l :=

{

I l ∪ {0} if inequality s ≥ l0 appears in (5.13),
I l otherwiseand

Ju :=

{

Iu ∪ {0} if inequality s ≤ u0 appears in (5.13),
Iu otherwise.Sine z1, . . . , zn are integer variables, we an assume without loss of generality that allomponents of d are integer (otherwise round them up). By Proposition 2.16, we only need toompute the onvex hull of the set (5.16)�(5.18): inequalities (5.19)�(5.20) will be then addedto the formulation of that onvex hull.5.2.1 The extended formulationLet f1, . . . , fk be the k distint elements in {f(li) : i ∈ J l

}
∪
{
f(ui) : i ∈ Ju

}
∪ {0}, with

f1 > · · · > fk = 0, and de�ne f0 := 1 and fk+1 := 0. For eah index i ∈ J l, we denote by
p(i) the unique index in {1, . . . , k} suh that fp(i) = f(li). Similarly, for eah index i ∈ Ju, wedenote by q(i) the unique index in {1, . . . , k} suh that fq(i) = f(ui).Lemma 5.3 The list of frational parts Fs := {f1, . . . , fk} is omplete for the set (5.16)�(5.18)with respet to variable s.Proof. Let (s̄, z̄) be a vertex of the onvex hull of (5.16)�(5.18). Sine z̄ is an integral vetor, if
f(s̄) were not in the list F de�ned above then both points (s̄±ε, z̄) would satisfy (5.16)�(5.18)for some ε 6= 0. However, this ontradits the assumption that (s̄, z̄) is a vertex. �Note that unless f(li) = 0 or f(ui) = 0 for some index i, it is not neessary to inlude thevalue 0 in Fs. However, in the following we �nd useful to have fk = 0.



70 Chapter 5. Projetions onto the original spae of variablesBy Theorem 2.13 and using Observation 2.15 to model inequalities (5.16)�(5.17), an ex-tended formulation of the set (5.16)�(5.18) is given by the following linear system:
s =

k∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.21)
µk − µ0 = 1, (5.22)

µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k, (5.23)
µp(i) − zi ≥ ⌊li⌋ + 1, i ∈ J l, (5.24)

µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.25)Instead of immediately projeting the above system, it is useful to write it in a slightlydi�erent form. To do this, we �rst need to introdue some new notation.Given a real number α, f ′(α) will denote the frational part of α, exept that f ′(α) = 1 if
α is an integer. That is,

f ′(α) :=

{

f(α) = α− ⌊α⌋ if α /∈ Z,

1 if α ∈ Z.
(5.26)Also, for eah index i ∈ J l, we denote by p′(i) the unique index in {0, . . . , k − 1} suh that

fp′(i) = f ′(li). Note that
p′(i) =

{

p(i) if li /∈ Z,

0 if li ∈ Z.In other words p′(i) = p(i) if 0 ≤ p(i) ≤ k − 1, while p′(i) = 0 if p(i) = k. We also set
p′(n+ 1) := k.Using equation (5.22), one an readily verify that for all indies i ∈ J l, inequality µp(i)−zi ≥

⌊li⌋+1 is equivalent to inequality µp′(i)−zi ≥ ⌈li⌉. System (5.21)�(5.25) an then be rewrittenas follows:
s =

k∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.27)
µk − µ0 = 1, (5.28)

µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k, (5.29)
µp′(i) − zi ≥ ⌈li⌉, i ∈ J l, (5.30)

µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.31)Equation (5.28) an be used to eliminate variable µk from the above system. Note thatthe oe�ient of µk in equation (5.27) is equal to zero, as fk = fk+1 = 0. Furthermore, noneof inequalities (5.30)�(5.31) ontains variable µk in its support, as p′(i) < k for i ∈ J l and
q(i) ≤ k for i ∈ Ju. System (5.27)�(5.31) is then equivalent to the following (we assign dual



5.2. Dual network sets with a single ontinuous variable 71variables to the onstraints as indiated on the left):
w : s =

k−1∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.32)
uℓ : µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k − 1, (5.33)
u0 : µ0 − µk−1 ≥ −1, (5.34)
vl
i : µp′(i) − zi ≥ ⌈li⌉, i ∈ J l, (5.35)

vu
i : µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.36)Note that exept for the �rst equation, the onstraint matrix of the above system is still adual network matrix.5.2.2 The projetionBy Theorem 1.17, a linear inequality desription of the onvex hull of (5.16)�(5.18) in itsoriginal spae is given by inequalities

w̄s−
∑

i∈J l

v̄l
i (zi + ⌈li⌉) +

∑

i∈Ju

v̄u
i (zi + ⌊ui⌋) + ū0 ≥ 0 (5.37)for all vetors (w̄, ū, v̄l, v̄u) that are extreme rays of the following polyhedral one (beside eahonstraint, the orresponding primal variable is indiated):

µℓ : uℓ − uℓ+1 +
∑

i∈J l:p′(i)=ℓ

vl
i +

∑

i∈Ju:q(i)=ℓ+1

vu
i = (fℓ − fℓ+1)w, 0 ≤ ℓ ≤ k − 2, (5.38)

µk−1 : uk−1 − u0 +
∑

i∈J l:p′(i)=k−1

vl
i +

∑

i∈Ju:q(i)=k

vu
i = (fk−1 − fk)w, (5.39)

w free, u ≥ 0, vl ≥ 0, vu ≥ 0. (5.40)In the following we study the extreme rays of the polyhedral one de�ned by inequalities(5.38)�(5.40).Reall that the onstraint matrix of inequalities (5.33)�(5.36) is a dual network matrix.This implies that for eah �xed w ∈ R, system (5.38)�(5.40) de�nes the feasible region of airulation problem on a network N . The value of w determines the requirement of the nodesof the network, but the struture of the network (nodes and ars) is independent of w. Thisstruture is now desribed.For eah 0 ≤ ℓ ≤ k − 1, the orresponding equation (5.38) or (5.39), whih is assoiatedwith the primal variable µℓ, orresponds to a node of N whih we also all µℓ. The ars of
N inherit the name of the orresponding variables of system (5.38)�(5.40). The struture ofnetwork N is depited in Figure 5.1, where w > 0 is assumed. Note that a dummy node d hasbeen added to the network as desribed in Setion 5.1: node d is the tail of ars vl

i for i ∈ J land the head of ars vu
i for i ∈ Ju. For eah i ∈ J l, the head of ar vl

i is node µp′(i). For eah
i ∈ Ju, the tail of ar vu

i is node µq(i)−1. We also remark that the thik arrows in the �guredo not represent ars of the network, but irulation requirements.
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µ0

u1

(f0 − f1)w

vl
2

µ1

u2

(f1 − f2)w
vl
3

vu
1

d µ2

u3

(f2 − f3)w
vl
0

µ3

u4

(f3 − f4)w
vu
0

vu
3

µ4

u0

(f4 − f5)w

vl
1

Figure 5.1: The network orresponding to a possible instane of problem (5.38)�(5.40). Here
n = 3 and k = 4. Also J l = {0, 1, 2, 3}, Ju = {0, 1, 3}, p′(0) = 2, p′(1) = 4, p′(2) = 0,
p′(3) = 1, q(0) = 4, q(1) = 2 and q(3) = 4.



5.2. Dual network sets with a single ontinuous variable 73The ase w̄ = 0Let (w̄, ū, v̄) be an extreme ray of one (5.38)�(5.40) with w̄ = 0. Then (ū, v̄) is an extremeray of the polyhedral one obtained by setting w = 0 in (5.38)�(5.40). Theorem 5.1 showsthat (ū, v̄) de�nes a direted yle in network N . In the following we use (ū, v̄) to denote boththe vetor and the orresponding yle.The struture of N immediately shows that every direted yle in N onsists of an ar
vl
i for some i ∈ J l, a (possibly zero-length) path formed by ars of type uℓ, and an ar vu

j forsome j ∈ Ju. More spei�ally, if f ′(li) > f(uj) then ar u0 is not ontained in the support ofthe yle and the orresponding inequality (5.37) is zj −zi ≥ ⌈li⌉−⌊uj⌋. If f ′(li) ≤ f(uj) thenar u0 is part of the yle and the orresponding inequality (5.37) is zj − zi ≥ ⌈li⌉ − ⌊uj⌋ − 1.It is easy to hek that in both ases the inequality is
zj − zi ≥ ⌈li − uj⌉. (5.41)The ase w̄ > 0Let (w̄, ū, v̄) be an extreme ray of one (5.38)�(5.40) with w̄ > 0. Without loss of generalitywe an assume w̄ = 1. In this ase (ū, v̄) is an extreme point of the polyhedron obtained bysetting w = 1 in (5.38)�(5.40). By Theorem 5.1, this implies that (ū, v̄) de�nes an ayliirulation in the orresponding network N .Note that v̄u

i = 0 for all i ∈ Ju, as otherwise the irulation (ū, v̄) would neessarily ontaina yle (of the type desribed in the analysis of the ase w̄ = 0) and (ū, v̄) would not be anextreme point.We learly have v̄l
i > 0 for at least an index i ∈ J l, as otherwise the irulation requirementswould not be satis�ed. Let i1, . . . , ir be the indies in J l suh that v̄l

it
> 0 for 1 ≤ t ≤ r. Notethat there do not exist two distint indies t, t′, with 1 ≤ t, t′ ≤ r, suh that p′(it) = p′(it′), asotherwise the ars vl

it
, vl

it′
would form a yle ontained in the support of irulation (ū, v̄). Sowe an assume without loss of generality that p′(i1) < · · · < p′(ir) (in other words, f ′(bi1) >

· · · > f ′(biq)). We also de�ne ir+1 := n+ 1 (thus p′(ir+1) = k).The struture of the network easily implies that the nonzero entries of v̄l are (see theexample in Figure 5.2 (a))
v̄l
it

=

p′(it+1)−1
∑

ℓ=p′(it)

(fℓ − fℓ+1) = fp′(it) − fp′(it+1) for 1 ≤ t ≤ r − 1,

v̄l
ir

=
k−1∑

ℓ=p′(ir)

(fℓ − fℓ+1) +

p′(i1)−1
∑

ℓ=0

(fℓ − fℓ+1) = fp′(ir) +
(
1 − fp′(i1)

)
,while ū0 = 1 − fp′(i1). The orresponding inequality (5.37) is then

s−
r∑

t=1

(
fp′(it) − fp′(it+1)

)
(zit + ⌈lit⌉) −

(
1 − fp′(i1)

)
(zir + ⌈lir⌉ − 1) ≥ 0,
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µ0 f0 − f1

µ1 f1 − f2

d µ2 f2 − f3

µ3 f3 − f4

µ4 f4 − f5(a) Case w̄ = 1.

µ0 f0 − f1

µ1 f1 − f2

d µ2 f2 − f3

µ3 f3 − f4

µ4 f4 − f5(b) Case w̄ = −1.Figure 5.2: Ayli irulations in network N .whih an be equivalently be written as
s−

r∑

t=1

(
f ′(lit) − f ′(lit+1)

)
(zit + ⌈lit⌉) −

(
1 − f ′(li1)

)
(zir + ⌈lir⌉ − 1) ≥ 0, (5.42)where f ′(lir+1) := 0.The ase w̄ < 0Let (w̄, ū, v̄) be an extreme ray of one (5.38)�(5.40) with w̄ < 0. Without loss of generalitywe an assume w̄ = −1. In this ase (ū, v̄) is an extreme point of the polyhedron obtained bysetting w = −1 in (5.38)�(5.40). By Theorem 5.1, this implies that (ū, v̄) de�nes an ayliirulation in the orresponding network N . Suh a network has the same struture as thatdepited in Figure 5.1, exept that the thik arrows should be reversed (i.e. there are suppliesinstead of demand on the nodes).Similarly to the ase w̄ > 0, one proves that v̄u

i = 0 for all i ∈ J l and v̄u
i > 0 for at least anindex i ∈ Ju. Let i1, . . . , ir be the indies in Ju suh that v̄u

it
> 0 for 1 ≤ t ≤ r. Note that theredo not exist two distint indies t, t′, with 1 ≤ t, t′ ≤ r, suh that q(it) = q(it′), as otherwisethe ars vu

it
, vu

it′
would form a yle ontained in the support of irulation (ū, v̄). So we anassume without loss of generality q(i1) > · · · > q(ir) (in other words, f(bi1) < · · · < f(bir)).The struture of the network easily implies that the nonzero entries of v̄u are (see the



5.2. Dual network sets with a single ontinuous variable 75example in Figure 5.2 (b))
v̄u
it

=

q(it)−1
∑

ℓ=q(it+1)

(fℓ − fℓ+1) = fq(it+1) − fq(it) for 1 ≤ t ≤ r − 1,

v̄u
ir =

q(ir)−1
∑

ℓ=0

(fℓ − fℓ+1) +

k−1∑

ℓ=q(i1)

(fℓ − fℓ+1) =
(
1 − fq(ir)

)
+ fq(i1),while ū0 = fq(i1). The orresponding inequality (5.37) is then

s+

r∑

t=1

(
fq(it+1) − fq(it)

)
(zit + ⌊uit⌋) + fq(i1) (zir + ⌊uir⌋ + 1) ≥ 0,where q(ir+1) := 0. The above inequality an be equivalently written as

s+

r∑

t=1

(
f(uit+1) − f(uit)

)
(zit + ⌊uit⌋) + f(ui1) (zir + ⌊uir⌋ + 1) ≥ 0, (5.43)where f(uir+1) := 1.We have proven the following result:Theorem 5.4 The onvex hull of (5.11)�(5.15), a general mixed-integer set with dual networkonstraint matrix and a single ontinuous variable, is given by the following linear inequalities(where eah ourrene of z0 should be replaed by 0):

• (5.41) for all i ∈ J l and j ∈ Ju;
• (5.42) for all sequenes of indies i1, . . . , ir in J l suh that f ′(bi1) > · · · > f ′(bir);
• (5.43) for all sequenes of indies i1, . . . , ir in Ju suh that f(bi1) < · · · < f(bir);
• the inequalities of the system Bz ≥ d.5.2.3 The mixing setWe reall the de�nition of the mixing set given in Setion 4.2:

s+ zi ≥ bi, 1 ≤ i ≤ n, (5.44)
s ≥ 0, (5.45)

zi integer, 1 ≤ i ≤ n, (5.46)where bi ∈ R for 1 ≤ i ≤ n. The importane of this set in the ontext of lot-sizing was disussedin Setion 4.2. The onvex hull of the above set was given by Günlük and Pohet [31℄. Herewe obtain the onvex hull as an appliation of Theorem 5.4.



76 Chapter 5. Projetions onto the original spae of variablesProposition 5.5 The onvex hull of the mixing set (5.44)�(5.46) is desribed by s ≥ 0 alongwith the linear inequalities
s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0, (5.47)

s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) +

(
1 − f ′(bi1)

)
(zir − ⌈bir⌉ + 1) ≥ 0 (5.48)for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) > · · · > f ′(biq), where

f ′(bir+1) := 0.Proof. The set (5.44)�(5.46) an be transformed into a mixed-integer set with dual networkonstraint matrix by applying the following mixed-integer linear mapping:
s′ := s, z′i := −zi for 1 ≤ i ≤ n. (5.49)The transformed set is

s′ − z′i ≥ bi, 1 ≤ i ≤ n, (5.50)
s′ ≥ 0, (5.51)

z′i integer, 1 ≤ i ≤ n. (5.52)The set (5.50)�(5.52) is of the type (5.11)�(5.15), with J l = {0, . . . , n} and Ju = ∅.By Theorem 5.4, a linear inequality desription of the onvex hull of this set is given byinequalities (5.42) for all sequenes of indies i1, . . . , ir in {0, . . . , n} suh that f ′(bi1) > · · · >

f ′(bir) (where eah ourrene of z0 should be replaed by 0).Assume �rst that the sequene i1, . . . , ir does not ontain index 0. After applying theinverse of (5.49), the orresponding inequality (5.42) is preisely inequality (5.48).Now assume that the sequene i1, . . . , ir ontains index 0. Sine the lower bound l0 is 0 forthe mixing set, f ′(0) = 1 and thus i1 = 0. If r = 1 then the orresponding inequality (5.42)is s′ − z0 ≥ 0, i.e. s ≥ 0. If r > 1 then after applying the inverse of (5.49) and setting z0 = 0,inequality (5.42) beomes
s+

r∑

t=2

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0.Renumbering the indies gives inequality (5.47). �Inequalities (5.47)�(5.48) are alled mixing inequalities, as they an be obtained from theoriginal inequalities (5.44) through a mixing proedure (see [31℄). An O(n log n) separationalgorithm for the mixing inequalities is known [53℄.When r = 1, the mixing inequality (5.47) is the simple MIR-inequality by Nemhauser andWolsey [49℄ (see also Theorem 1.11), while the mixing inequality (5.48) oinides with theoriginal inequality s+ zi1 ≥ bi1 .



5.3. The mixing set with �ows 77Miller and Wolsey [45℄ showed that if a system Bz ≥ d, where B is a dual network matrixand d is an integral vetor, is added to onstraints (5.44)�(5.46), a linear inequality desriptionof the resulting set in its original spae is obtained by just inluding the system Bz ≥ d in thedesription of the mixing set given by the above proposition. This result is also implied byTheorem 5.4 or Proposition 2.16 (in fat the proof of Proposition 2.16 uses the same tehniqueas that adopted by Miller and Wolsey).5.3 The mixing set with �owsWe reall the de�nition of the mixing set with �ows given in Setion 4.2.2:
s+ yi ≥ bi, 1 ≤ i ≤ n, (5.53)
yi ≤ zi, 1 ≤ i ≤ n, (5.54)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (5.55)
zi integer, 1 ≤ i ≤ n, (5.56)where bi ∈ R for 1 ≤ i ≤ n. Sine all variables are nonnegative (as zi ≥ yi ≥ 0 for 1 ≤ i ≤ n),we an assume without loss of generality that bi ≥ 0 for 1 ≤ i ≤ n. We disussed inSetion 4.2.2 the relevane of this set in the ontext of lot-sizing.As shown in Setion 4.2.2, this set admits an extended formulation with O

(
n2
) variablesand onstraints (see Proposition 4.5). In this setion, after transforming the above set intoa mixed-integer set with dual network onstraint matrix, we expliitly give the extendedformulation and then projet it onto the original spae of variables.The omputation of this projetion will be more di�ult and tehnial than that arriedout in Setion 5.2.5.3.1 The extended formulationTo transform (5.53)�(5.56) into a dual network set, we apply the following mixed-integer linearmapping:

y′0 := s; y′i := −yi, z
′
i := −zi for 1 ≤ i ≤ n.The transformed set is then

y′0 − y′i ≥ bi, 1 ≤ i ≤ n, (5.57)
y′i − z′i ≥ 0, 1 ≤ i ≤ n, (5.58)

y′0 ≥ 0, y′i ≤ 0, 1 ≤ i ≤ n, (5.59)
z′i integer, 1 ≤ i ≤ n. (5.60)Let f0

1 , . . . , f
0
k be the k distint elements in {0, f(b1), . . . , f(bn)}, with f0

1 > · · · > f0
k = 0.For eah index 1 ≤ i ≤ n, let f i

1, . . . , f
i
k be the k elements in {f (f0

1 − bi
)
, . . . , f

(
f0

k − bi
)},with f i

1 > · · · > f i
k . (Note that f i

1, . . . , f
i
k are pairwise distint beause so are f0

1 , . . . , f
0
k .) Weset f i

0 := 1 and f i
k+1 := 0 for 0 ≤ i ≤ n.



78 Chapter 5. Projetions onto the original spae of variablesLemma 5.6 For eah index 0 ≤ i ≤ n, the list of frational parts Fi :=
{
f i
1, . . . , f

i
k

} isomplete for (5.57)�(5.60) with respet to variable y′i.Proof. We use the notation of the proof of Theorem 3.6. If we let X denote the mixed-integerset (5.57)�(5.60), the graph GX is a star with enter node orresponding to variable y′0. For
1 ≤ i ≤ n, there is an ar leaving the enter node and entering the node orresponding tovariable y′i. Given a vertex x̄ = (ȳ′, z̄′) of conv(X) and a onneted omponent Cx̄ of Fx̄,node r orrespond to a variable that takes an integer value (this follows from Observation 3.7).The result is then a onsequene of equation (3.24). �Similarly to Setion 5.2, for eah index 1 ≤ i ≤ n we de�ne p(i) to be the unique index in
{1, . . . , k} suh that f0

p(i) = f(bi). One an hek that for eah index 1 ≤ i ≤ n,
f i

ℓ =







f0
p(i)+ℓ

− f0
p(i) + 1 if 0 ≤ ℓ ≤ k − p(i),

f0
p(i)+ℓ−k

− f0
p(i) if k − p(i) + 1 ≤ ℓ ≤ k.

(5.61)By Theorem 2.13 and using Observation 2.15 to model inequalities (5.58), an extendedformulation for (5.57)�(5.60) is given by the following linear system:
y′i =

k∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n, (5.62)
µi

k − µi
0 = 1, 0 ≤ i ≤ n, (5.63)

µi
ℓ − µi

ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k, (5.64)
µ0

p(i)+ℓ − µi
ℓ ≥ ⌊bi⌋ + 1, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ k − p(i), (5.65)

µ0
p(i)+ℓ−k − µi

ℓ ≥ ⌊bi⌋, 1 ≤ i ≤ n, k − p(i) + 1 ≤ ℓ ≤ k, (5.66)
µi

k − z′i ≥ 1, 1 ≤ i ≤ n, (5.67)
µ0

k ≥ 1, (5.68)
µi

k−1 ≤ 0, 1 ≤ i ≤ n. (5.69)Before omputing the projetion onto the original spae of variables, we write the abovesystem in a more onvenient form.Similarly to Setion 5.2, for eah index 1 ≤ i ≤ n we denote by p′(i) the unique index in
{0, . . . , k−1} suh that f0

p′(i) = f ′(bi), where notation f ′ is de�ned in (5.26). We set p′(0) := 0and p′(n+ 1) := k.Using equations (5.63), one an hek that inequalities (5.65)�(5.66) are equivalent to theinequalities
µ0

p(i)+ℓ − µi
ℓ ≥ ⌊bi⌋ + 1, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p(i) − 1,

µ0
p(i)+ℓ−k − µi

ℓ ≥ ⌊bi⌋, 1 ≤ i ≤ n, k − p(i) ≤ ℓ ≤ k − 1.



5.3. The mixing set with �ows 79It is not di�ult to see that the above inequalities are in turn equivalent to the following (thease bi /∈ Z is trivial as p(i) = p′(i), the ase bi ∈ Z is less trivial but easy �just reall that
p(i) = k and p′(i) = 0):

µ0
p′(i)+ℓ − µi

ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1,

µ0
p′(i)+ℓ−k − µi

ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1.If for an integer α we write [α] to denote the remainder of the division of α by k, system(5.62)�(5.69) is then equivalent to the following:
y′i =

k∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n, (5.70)
µi

k − µi
0 = 1, 0 ≤ i ≤ n, (5.71)

µi
ℓ − µi

ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k, (5.72)
µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1, (5.73)

µ0
[p′(i)+ℓ] − µi

ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1, (5.74)
µi

k − z′i ≥ 1, 1 ≤ i ≤ n, (5.75)
µ0

k ≥ 1, (5.76)
µi

k−1 ≤ 0, 1 ≤ i ≤ n. (5.77)Equations (5.71) an be used to eliminate variables µi
k for 0 ≤ i ≤ n. Note that for

0 ≤ i ≤ n, the oe�ient of µi
k in equation (5.70) is equal to zero, as f i

k = f i
k+1 = 0.Furthermore, none of inequalities (5.73)�(5.74) ontains variable µi

k in its support.System (5.70)�(5.77) is then equivalent to the following one (we assign dual variables tothe onstraints as indiated on the left):
wi : y′i =

k−1∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n,

ui
ℓ : µi

ℓ − µi
ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k − 1,

ui
0 : µi

0 − µi
k−1 ≥ −1, 0 ≤ i ≤ n,

ξi
ℓ : µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1,

ξi
ℓ : µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1,

vi : µi
0 − z′i ≥ 0, 1 ≤ i ≤ n,

v0 : µ0
0 ≥ 0,

ϑi : −µi
k−1 ≥ 0, 1 ≤ i ≤ n.Note that exept for the equations on the �rst line, the onstraint matrix of the above systemis still a dual network matrix.



80 Chapter 5. Projetions onto the original spae of variables5.3.2 The projetionBy Theorem 1.17, a linear inequality desription of the onvex hull of (5.57)�(5.60) in itsoriginal spae is given by inequalities
n∑

i=0

w̄iy′i −
n∑

i=1

v̄iz′i ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−p′(i)−1
∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ +

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ(⌈bi⌉ − 1)



 (5.78)for all vetors (w̄, ū, ξ̄, v̄, ϑ̄) that are rays of the following one (beside eah onstraint theorresponding primal variable is indiated):
µ0

0 : u0
0 − u0

1 +
∑n

i=1 ξ
i
[−p′(i)] + v0 =

(
f0
0 − f0

1

)
w0, (5.79)

µ0
ℓ : u0

ℓ − u0
ℓ+1 +

∑n
i=1 ξ

i
[ℓ−p′(i)] =

(
f0

ℓ − f0
ℓ+1

)
w0, 1 ≤ ℓ ≤ k − 2, (5.80)

µ0
k−1 : u0

k−1 − u0
0 +

∑n
i=1 ξ

i
k−1−p′(i) =

(
f0

k−1 − f0
k

)
w0, (5.81)

µi
0 : ui

0 − ui
1 − ξi

0 + vi =
(
f i
0 − f i

1

)
wi, 1 ≤ i ≤ n, (5.82)

µi
ℓ : ui

ℓ − ui
ℓ+1 − ξi

ℓ =
(
f i

ℓ − f i
ℓ+1

)
wi, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ k − 2, (5.83)

µi
k−1 : ui

k−1 − ui
0 − ξi

k−1 − ϑi =
(
f i

k−1 − f i
k

)
wi, 1 ≤ i ≤ n, (5.84)

wi free; ui
0, . . . , u

i
k−1 ≥ 0, vi ≥ 0, 0 ≤ i ≤ n, (5.85)

ξi
0, . . . , ξ

i
k−1 ≥ 0, ϑi ≥ 0, 1 ≤ i ≤ n. (5.86)In the original variables, inequality (5.78) reads

w̄0s−
n∑

i=1

w̄iyi +
n∑

i=1

v̄izi ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−p′(i)−1
∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ +

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ(⌈bi⌉ − 1)



 ,or equivalently
w̄0s−

n∑

i=1

w̄iyi +
n∑

i=1

v̄izi ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−1∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ −

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ



 . (5.87)Let C denote the polyhedral one de�ned by inequalities (5.79)�(5.86). In the following westudy the rays of C generating inequalities (5.87) that are non-redundant in the desription ofthe onvex hull of (5.53)�(5.56). This will reveal simpler than haraterizing the extreme raysof C (as we did in Setion 5.2), and will also allow us to ignore a large number of redundantinequalities (5.87) arising from the extreme rays of C.Note that summing up all equations (5.79)�(5.81) gives
− w0 + v0 +

n∑

i=1

k−1∑

ℓ=0

ξi
ℓ = 0, (5.88)whih implies w0 ≥ 0, as all other variables appearing in the above equation are nonnegative.Let (w̄, ū, ξ̄, v̄, ϑ̄) be a ray of one C. If w̄i = 0 for all 0 ≤ i ≤ n, the above equation showsthat ξ̄i

ℓ = 0 for all 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, and the orresponding inequality (5.87) is
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∑n

i=1 v̄
izi ≥ −

∑n
i=0 ū

i
0. Among the inequalities of this form, the only non-redundant onesare zi ≥ 0 for 1 ≤ i ≤ n, whih are learly super�uous in the desription of the onvex hull of(5.53)�(5.56). Thus from now on we assume that w̄ 6= 0 (and w̄0 ≥ 0).The networkFor eah �xed vetor w̄ 6= 0, let C(w̄) be the polyhedron obtained from C by setting wi = w̄ifor 0 ≤ i ≤ n. That is,

C(w̄) := {(u, ξ, v, ϑ) : (w̄, u, ξ, v, ϑ) ∈ C}.Note that C(w̄) is the feasible region of a irulation problem on a network N whih is inde-pendent of w̄. Similarly to Setion 5.2, we use the primal variables µi
ℓ to denote the nodes of

N and the dual variables ui
ℓ, ξ

i
ℓ, v

i, ϑi to denote the ars. The struture of N is now desribed.For 0 ≤ i ≤ n, let Si be the subnetwork of N indued by nodes µi
0, . . . , µ

i
k−1 (ars havinga node µi

ℓ and the dummy node d as endpoints belong to Si). We all S0, . . . , Sn the setorsof N . Note that every ar whose endnodes lie on two distint setors of N has its head in S0and its tail in Si for some 1 ≤ i ≤ n.Figure 5.3 represents the struture of a setor Si for some 1 ≤ i ≤ n and setor S0, as wellas the onnetions between Si and S0. Note that the nodes of eah setor are aligned on avertial line. The k positions on suh a line are alled levels: the highest position orrespondto level 0, the lowest one to level k − 1. For eah 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, node µi
ℓ isloated at level [p′(i) + ℓ]. There are at least two good reasons for suh a hoie.The �rst good reason for loating node µi

ℓ at level [p′(i) + ℓ] is that this simpli�es therepresentation of the network, as all ars ξi
ℓ are horizontal.To illustrate the seond reason, let N (w̄) denote network N with the irulation require-ments orresponding to w̄. It is readily heked that for 0 ≤ i ≤ n, the total requirement ofall nodes in setor Si in N (w̄) is w̄i. For 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, the requirement ofnode µi

ℓ in N (w̄) is (f i
ℓ − f i

ℓ+1

)
w̄i. Using equation (5.61) and realling that [p(i)] = [p′(i)] for

0 ≤ i ≤ n, one an hek that
(
f i

ℓ − f i
ℓ+1

)
w̄i =

(

f0
[p(i)+ℓ] − f0

[p(i)+ℓ]+1

)

w̄i =
(

f0
[p′(i)+ℓ] − f0

[p′(i)+ℓ]+1

)

w̄i (5.89)for all indies 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1. Sine node µi
ℓ is loated at level [p′(i) + ℓ], thisshows that nodes of distint setors loated at the same level are assoiated with the samefration of the total requirement of their setors.It is lear that a vetor (w̄, ū, ξ̄, v̄, ϑ̄) belongs to C if and only if (ū, ξ̄, v̄, ϑ̄) orresponds toa feasible irulation in N (w̄). Similarly to Setion 5.2, we use (ū, ξ̄, v̄, ϑ̄) to denote both thevetor and the orresponding irulation.We say that a yle in N , possibly ontaining the dummy node d, is a heavy yle if theorresponding inequality (5.87) is anything but 0 ≥ 0.The following observations will be used several times in the remainder of the setion:
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0 µ0

0

u0
1

v0

1 µ0
1

ui
k−1

µi
k−1

ui
0

ξi
k−1

ϑi

p′(i) µi
0

ui
1

ξi
0vi

µ0
p′(i)

µi
1

ξi
1

u0
k−1

k − 1 µ0
k−1

u0
0

︸ ︷︷ ︸

Si

︸ ︷︷ ︸

S0Figure 5.3: The struture of a setor Si for 1 ≤ i ≤ n and setor S0, and the onnetionsbetween them. Levels are indiated on the left. Cirulation requirements are not represented.



5.3. The mixing set with �ows 83Lemma 5.7 For w̄ 6= 0, let (w̄, ū, ξ̄, v̄, ϑ̄) be a vetor in C generating an inequality (5.87) thatis non-redundant in the linear inequality desription of the onvex hull of (5.53)�(5.56). Thefollowing hold:(i) The support of (ū, ξ̄, v̄, ϑ̄) ontains no heavy yle in N .(ii) Fix 1 ≤ i ≤ n and assume that the support of (ū, ξ̄, v̄, ϑ̄) ontains a forest F in N whihspans all nodes in setors S0 and Si. Also suppose that eah onneted omponent of Fis(a) either a tree ontaining the dummy node d,(b) or a single ar ξi
ℓ for some 0 ≤ ℓ ≤ k − 1.Then w̄0 = −w̄i and w̄j = 0 for all j /∈ {0, i}.(iii) Fix 1 ≤ i ≤ n and assume that the support of (ū, ξ̄, v̄, ϑ̄) ontains a tree T in N whihspans all nodes in setor Si as well as the dummy node d. Then the inequality (5.87)orresponding to vetor (w̄, ū, ξ̄, v̄, ϑ̄) is implied by inequalities yi ≥ 0, yi ≤ zi and zj ≥ 0for 1 ≤ j ≤ n.Proof. (i) Assume that (ū, ξ̄, v̄, ϑ̄) ontains a heavy yle C in its support. For ε > 0 smallenough, let (û, ξ̂, v̂, ϑ̂) be the feasible irulation in N (w̄) obtained from (ū, ξ̄, v̄, ϑ̄) by inreas-ing by ε the variables orresponding to the ars of C. Similarly, let (ǔ, ξ̌, v̌, ϑ̌) be the feasibleirulation in N (w̄) obtained from (

ū, ξ̄, v̄, ϑ̄
) by dereasing by ε the variables orrespondingto the ars of C. Clearly (w̄, ū, ξ̄, v̄, ϑ̄) = 1

2

(
w̄, û, ξ̂, v̂, ϑ̂

)
+ 1

2

(
w̄, ǔ, ξ̌, v̌, ϑ̌

). Sine the inequal-ity (5.87) orresponding to (w̄, ū, ξ̄, v̄, ϑ̄) is non-redundant in the desription of the onvex hullof (5.53)�(5.56), it follows that suh inequality is idential (up to multipliation by a positivenumber) to those orresponding to (w̄, û, ξ̂, v̂, ϑ̂) and (w̄, ǔ, ξ̌, v̌, ϑ̌). However this ontraditsthe fat that C is a heavy yle in N (w̄).(ii) Assume that there is a forest F as above (note that F has at most one onnetedomponent of type (a)). Let ε > 0 be a su�iently small number. De�ne
ŵ0 := w̄0 + ε, ŵi := w̄i − ε, ŵj := w̄j for j /∈ {0, i}.It an be heked that in eah onneted omponent of F the total requirement of the nodesis unhanged. Then by Theorem 5.2 there exists a unique irulation (û, ξ̂, v̂, ϑ̂) in N (ŵ) thatoinides with (ū, ξ̄, v̄, ϑ̄) on all ars not belonging to F . Similarly, if one de�nes
w̌0 := w̄0 − ε, w̌i := w̄i + ε, w̌j := w̄j for j /∈ {0, i},there exists a unique irulation (ǔ, ξ̌, v̌, ϑ̌) in N (w̌) that oinides with (ū, ξ̄, v̄, ϑ̄) on all arsnot belonging to F .It is easy to see that (w̄, ū, ξ̄, v̄, ϑ̄) = 1

2

(
ŵ, û, ξ̂, v̂, ϑ̂

)
+ 1

2

(
w̌, ǔ, ξ̌, v̌, ϑ̌

). As in (i), this impliesthat these three vetors generate the same inequality (5.87) (up to multipliation by a positivenumber). The oe�ients of variables s and yi in the inequality (5.87) orresponding to vetor
(
ŵ, û, ξ̂, v̂, ϑ̂

) are w̄0 + ε and −w̄i − ε respetively. On the other hand, if α > 0 is the real



84 Chapter 5. Projetions onto the original spae of variablesnumber suh that (w̄, ū, ξ̄, v̄, ϑ̄) = α
(
ŵ, û, ξ̂, v̂, ϑ̂

), then suh oe�ients are also equal to αw̄0and −αw̄i respetively. However, this is possible only if w̄0 = −w̄i.Similarly, for j /∈ {0, i} the oe�ient of variable yj in the inequality (5.87) orrespondingto vetor (ŵ, û, ξ̂, v̂, ϑ̂) is −w̄j on the one hand and −αw̄j on the other hand. This is possibleonly if w̄j = 0.The proof of (iii) begins as that of (ii), exept that now one has to de�ne
ŵi := w̄i − ε, ŵj := w̄j for j 6= i, w̌i := w̄i + ε, w̌j := w̄j for j 6= i.As in (ii) one de�nes irulations (û, ξ̂, v̂, ϑ̂) in N (ŵ) and (ǔ, ξ̌, v̌, ϑ̌) in N (w̌) that oinidewith (ū, ξ̄, v̄, ϑ̄) on all ars not belonging to T . The same argument as that used above showsthat w̄j = 0 for all j 6= i. Note in partiular that ondition w̄0 = 0 and equation (5.88) implythat ξ̄j

ℓ = 0 for 1 ≤ j ≤ n and 0 ≤ ℓ ≤ k − 1. Then the inequality (5.87) orresponding tovetor (w̄, ū, ξ̄, v̄, ϑ̄) is
− w̄iyi +

n∑

j=1

v̄jzj ≥ −
n∑

j=0

ūj
0. (5.90)If w̄i ≤ 0 then the above inequality is implied by inequalities yi ≥ 0 and zj ≥ 0 for 1 ≤ j ≤ n.So we assume w̄i > 0, say w̄i = 1 without loss of generality. In this ase summing up equations(5.82)�(5.84) and using ξ̄i

ℓ = 0 for 0 ≤ ℓ ≤ k − 1 shows that v̄i ≥ 1. Then inequality (5.90) isimplied by inequalities yi ≤ zi and zj ≥ 0 for 1 ≤ j ≤ n. �Assume that there is an index 1 ≤ i ≤ n suh that w̄i > 0, say w̄i = 1 without loss ofgenerality. Sine vi is the only ar entering setor Si, then all ars vi, ui
1, . . . , u

i
k−1 belong tothe support of irulation (ū, ξ̄, v̄, ϑ̄). By Lemma 5.7 (iii) we an then ignore this ase.Therefore from now on we assume that w̄i ≤ 0 for all 1 ≤ i ≤ n (and reall that we havealready shown that w̄0 ≥ 0). Note that w̄0 is the total demand of the nodes in setor S0, andfor 1 ≤ i ≤ n, −w̄i is the total supply of the nodes in setor Si.Standard irulationsFor a irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) and an index 1 ≤ j ≤ k − 1, we de�ne βj

(
ū, ξ̄, v̄, ϑ̄

) asthe total balane of �ow of the set of nodes {µ0
ℓ : j ≤ ℓ ≤ k − 1

}, where the �ow arried byars u0
0 and u0

j is ignored. After realling that for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k− 1 the ar leavingsetor Si end entering node µ0
ℓ is ar ξi

[ℓ−p′(i)], we an write
βj

(
ū, ξ̄, v̄, ϑ̄

)
:=

k−1∑

ℓ=j

(
n∑

i=1

ξ̄i
[ℓ−p′(i)] − (fℓ − fℓ+1)w̄

0

)

. (5.91)Lemma 5.8 Any irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) generating an inequality (5.87) that is non-redundant in the linear inequality desription of the onvex hull of (5.53)�(5.56) satis�es
ū0

0 = max

{

0, max
1≤j≤k−1

βj

(
ū, ξ̄, v̄, ϑ̄

)
}

. (5.92)
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(
ū, ξ̄, v̄, ϑ̄

) is the total balane of �ow of the set of nodes {µ0
ℓ : j ≤ ℓ ≤ k − 1

},where the �ow arried by ars u0
0 and u0

j is ignored, then learly ū0
0 = ū0

j +βj

(
ū, ξ̄, v̄, ϑ̄

) for all
1 ≤ j ≤ k − 1. Sine ū0

j ≥ 0 for all 1 ≤ j ≤ k − 1, we see that ū0
0 ≥ max1≤j≤k−1 βj

(
ū, ξ̄, v̄, ϑ̄

).Assume that ū0
0 > max1≤j≤k−1 βj

(
ū, ξ̄, v̄, ϑ̄

). Then learly ū0
j > 0 for all 1 ≤ j ≤ k − 1.Then, if also ū0

0 > 0, the support of (ū, ξ̄, v̄, ϑ̄) ontains the heavy yle u0
1, . . . , u

0
k−1, u

0
0. Theonlusion now follows from Lemma 5.7 (i). �We say that two irulations in N (w̄) are equivalent if they give rise to the same inequal-ity (5.87). Similarly we say that irulation (ū, ξ̄, v̄, ϑ̄) dominates irulation (û, ξ̂, v̂, ϑ̂) if theinequality (5.87) orresponding to (ū, ξ̄, v̄, ϑ̄) dominates that orresponding to (û, ξ̂, v̂, ϑ̂).Lemma 5.9 Any irulation in N (w̄) is equivalent to a irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) sat-isfying the following onditions for all 1 ≤ i ≤ n:(i) If ūi

ℓ > 0 for some 0 ≤ ℓ ≤ k − 1, then ξ̄i
ℓ = 0.(ii) If ūi

ℓ > 0 for some 0 ≤ ℓ ≤ k − 1, then ūi
l > 0 for all ℓ ≤ l ≤ k − 1.(iii) If ξ̄i

ℓ = 0 for some 0 ≤ ℓ ≤ k − 1, then ξ̄i
l = 0 for all ℓ ≤ l ≤ k − 1.Proof. Let (ū, ξ̄, v̄, ϑ̄) be a irulation in N (w̄) that violates ondition (i) and let ℓ be themaximum index in {0, . . . , k − 1} suh that ūi
ℓ > 0 and ξ̄i

ℓ > 0. De�ne ρ := min{ūi
ℓ, ξ̄

i
ℓ}. Notethat ars ui

ℓ, ξ
i
ℓ, ξ

i
[ℓ−1], u

0
[p′(i)+ℓ] are as in Figure 5.4 (a) or (b), depending on the value of ℓ.If we derease the �ow on ars ui

ℓ, ξ
i
ℓ by a quantity equal to ρ and inrease the �ow on ars

ξi
[ℓ−1], u

0
[p′(i)+ℓ] by the same amount, the resulting feasible irulation gives rise to the sameinequality (5.87) as before. Furthermore, at least one of the ars ui

ℓ, ξ
i
ℓ now arries a �ow ofvalue 0. By iterating this proedure, we eventually �nd an equivalent irulation satisfyingondition (i).Now assume that ondition (ii) is violated. Then there exists an index 0 ≤ ℓ ≤ k − 2suh that ūi

ℓ > 0 and ūi
ℓ+1 = 0. Note that ar ξi

ℓ neessarily arries a positive �ow, thatis, ondition (i) is not satis�ed. Thus any irulation satisfying ondition (i) also satis�esondition (ii).Finally we show that (i) implies (iii). Assume that ondition (iii) is violated. Then thereexists an index 0 ≤ ℓ ≤ k − 2 suh that ξ̄i
ℓ = 0 and ξ̄i

ℓ+1 > 0. By (i), ūi
ℓ+1 = 0, thusequation (5.83) for the indies i, ℓ + 1 (or equation (5.84) if ℓ = k − 2) implies w̄i < 0. Nowequation (5.83) for the indies i, ℓ gives ξ̄i

ℓ > 0, whih ontradits our assumption. �Let (ū, ξ̄, v̄, ϑ̄) be a irulation in N (w̄) satisfying onditions (i)�(iii) of Lemma 5.7 andassume ūi
1 > 0 for some index 1 ≤ i ≤ n. Condition (ii) then implies that all ars ui

1, . . . , u
i
k−1belong to the support of (ū, ξ̄, v̄, ϑ̄). Furthermore, by ondition (i), ξ̄i

ℓ = 0 for 1 ≤ ℓ ≤ k − 1,thus neessarily ϑ̄i > 0 (as all nodes in setor Si have a nonnegative supply). Then ars
ui

1, . . . , u
i
k−1, ϑ

i form a tree in N satisfying the onditions of Lemma 5.7 (iii). Then this asean be ignored and we an assume ūi
1 = 0 for 1 ≤ i ≤ n, whih also implies ūi

0 = 0 for
1 ≤ i ≤ n (again by ondition (ii) of Lemma 5.7).
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ui

ℓ

ξi
[ℓ−1]

......
u0

[p′(i)+ℓ]

......
ξi
ℓ...... ......

(a) Case ℓ 6= [−p′(i)].

ξi
ℓ...... ......

ui
ℓ

ξi
[ℓ−1]

u0
0

(b) Case ℓ = [−p′(i)].Figure 5.4: Illustration of the proof of Lemma 5.9, depending on the value of ℓ.We say that a irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) is a standard irulation if the followingonditions hold for (ū, ξ̄, v̄, ϑ̄):
• equation (5.92);
• onditions (i)�(iii) of Lemma 5.9;
• ūi

0 = 0 for 1 ≤ i ≤ n.Figure 5.5 demonstrates the above de�nition.The above disussion shows that every irulation that generates an inequality (5.87) whihis non-redundant in the desription of the onvex hull of (5.53)�(5.56) is equivalent to astandard irulation. Thus from now on we only study the standard irulations in N (w̄).It is easily heked that any irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) satis�es onditions
v̄i − w̄i − ϑ̄i ≥ 0 for 1 ≤ i ≤ n, n∑

i=1

(v̄i − w̄i − ϑ̄i) − w̄0 ≤ 0 (5.93)(this an be dedued diretly from onditions (5.79)�(5.86) or from the struture of the net-work.) Furthermore, given values of (v̄, ϑ̄) satisfying the above inequalities, it is always possi-ble to omplete (v̄, ϑ̄) to a feasible irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄).Let (ū, ξ̄, v̄, ϑ̄) be a standard irulation in N (w̄). We laim that the knowledge of
v̄1, . . . , v̄n and ϑ̄1, . . . , ϑ̄n is su�ient to ompletely determine (ū, ξ̄, v̄, ϑ̄). To see this, ob-serve the following: the values ξ̄i

ℓ, ū
i
ℓ for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1 are determined byonditions (i)�(iii) of Lemma 5.9 together with onditions ūi

0 = 0 for 1 ≤ i ≤ n; the value of
ū0

0 is given by equation (5.92); the value of v̄0 an be obtained from equation (5.79).This means that a standard irulation in N (w̄) is ompletely determined by nonnegativevalues of v̄1, . . . , v̄n and ϑ̄1, . . . , ϑ̄n satisfying onditions (5.93). Then when onsidering a
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µ0
0

v0

ϑi

µi
0

vi

ϑj

µj
0

vj

Figure 5.5: A standard irulation. Only nodes and ars of setor S0 (in the middle) andtwo other setors Si (on the left) and Sj (on the right) are depited. Dotted lines indiatepossible ars. Cirulation requirements are not represented (reall that nodes in Si and Sjhave a nonnegative supply, nodes in S0 have a nonnegative demand).



88 Chapter 5. Projetions onto the original spae of variablesstandard irulation (ū, ξ̄, v̄, ϑ̄), we will use the short notation βj

(
v̄, ϑ̄
) instead of βj

(
ū, ξ̄, v̄, ϑ̄

),as this is not ambiguous. Similarly, in any further de�nition of notation relative to standardirulations we will only write the dependene on v, ϑ.De�ne J(w̄) as the set of indies in {1, . . . , n} suh that w̄i < 0.Let (ū, ξ̄, v̄, ϑ̄) be a standard irulation in N (w̄). For i ∈ J(w̄), we de�ne
λi

(
v̄, ϑ̄
)

:= max
{

ℓ : ξ̄i
[ℓ−p′(i)] > 0

}

. (5.94)To explain the above de�nition in words, reall that ar ξi
[ℓ−p′(i)] is loated at level ℓ. Then

λi

(
v̄, ϑ̄
) is the maximum (i.e. the lowest) level of an ar that onnets Si and S0 and arriesa positive amount of �ow.Note that the above maximum is well de�ned, beause for a standard irulation and anindex i ∈ J(w̄) one has ξ̄i

0 = vi − (f i
0 − f i

1)w̄
i > 0, as w̄i < 0.It is also onvenient to use notation

ri
(
v̄, ϑ̄
)

:=
[
λi

(
v̄, ϑ̄
)
− p′(i)

]
,so that

ri
(
v̄, ϑ̄
)

= max
{
ℓ : ξ̄i

ℓ > 0
}
.Our analysis has now to be divided into two ases: we �rst assume J(w̄) 6= ∅ and then

J(w̄) = ∅.The ase J(w̄) 6= ∅To study the ase J(w̄) 6= ∅, another de�nition is needed. Given a standard irulation
(
ū, ξ̄, v̄, ϑ̄

) in N (w̄) and two indies i, j ∈ J(w̄), we write Si ≻ Sj with respet to irulation
(
ū, ξ̄, v̄, ϑ̄

) (or just Si ≻ Sj if there is no ambiguity) to indiate that the following onditionis satis�ed: For eah index ℓ 6= p′(j), if ξ̄j
[ℓ−p′(j)] > 0 then ξ̄i

[ℓ−p′(i)] > 0.In order to make the above ondition less odd, we remark that for eah 0 ≤ ℓ ≤ k − 1, ars
ξi
[ℓ−p′(i)] and ξj

[ℓ−p′(j)] are loated at the same level. An example is depited in Figure 5.6.By using the fat that the irulation is standard, one an see that if ϑ̄i = 0 then ξ̄i
ℓ > 0for 0 ≤ ℓ ≤ k − 1 and thus Si ≻ Sj . Also, if ϑj = vj − w̄j then ξ̄j

ℓ = 0 for 0 ≤ ℓ ≤ k − 1 andthus Si ≻ Sj .De�ne h as an index in J(w̄) suh that bh = maxj∈J(w̄) bj . The following result is ruial.Unfortunately, its proof is rather long, tedious and tehnial and is for patient readers only.Lemma 5.10 Any standard irulation in N (w̄) is dominated by a standard irulation in
N (w̄) satisfying Sh ≻ Sj for all j ∈ J(w̄).
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µ0

0

v0

ϑi

µi
0

vi ϑj

µj
0

vjFigure 5.6: A standard irulation satisfying the ondition Si ≻ Sj . Only nodes and arsof setor S0 (in the middle) and two other setors Si (on the left) and Sj (on the right) aredepited. Dotted lines indiate possible ars. Cirulation requirements are not represented.Proof. Let m (v̄, ϑ̄) be the number of indies j ∈ J(w̄) suh that Sh 6≻ Sj. We show thatif m (v̄, ϑ̄) > 0, it is possible to onstrut a irulation (û, ξ̂, v̂, ϑ̂) dominating (ū, ξ̄, v̄, ϑ̄)suh that m(v̂, ϑ̂) < m
(
v̄, ϑ̄
). Thus, by repeating this onstrution, one eventually �nds airulation dominating (ū, ξ̄, v̄, ϑ̄) suh that Sh ≻ Sj for all j ∈ J(w̄).Pik any j ∈ J(w̄) suh that Sh 6≻ Sj and de�ne ρmax := min

{
ϑ̄h, v̄j − w̄j − ϑ̄j

}. Forevery value 0 ≤ ρ ≤ ρmax we de�ne a standard irulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) in N (w̄) bysetting
ϑh(ρ) := ϑ̄h − ρ, ϑj(ρ) := ϑ̄j + ρ, ϑi(ρ) := ϑ̄i for i /∈ {h, j}, vi(ρ) := v̄i for 1 ≤ i ≤ n. (5.95)Condition 0 ≤ ρ ≤ ρmax ensures that inequalities (5.93) are satis�ed by the above values andthus the standard irulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) is well de�ned.In order to give the reader a better understanding of this proof, we �nd useful to point outhow the standard irulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) depends on ρ. Note that as ρ inreases,the subset of ars ξh

ℓ (for 0 ≤ ℓ ≤ k − 1) that belongs to the support of the irulation eitherenlarges or does not hange at all. In other words, rh(v(ρ), ϑ(ρ)) is a non-dereasing funtionof ρ. Symmetrially, rj(v(ρ), ϑ(ρ)) is a non-inreasing funtion of ρ.Conditions (5.95) easily imply that
k−1∑

ℓ=0

(
ξh
ℓ (ρ) − ξ̄h

ℓ

)
= ρ = −

k−1∑

ℓ=0

(
ξj
ℓ (ρ) − ξ̄j

ℓ

)
. (5.96)



90 Chapter 5. Projetions onto the original spae of variablesIn words, the �ow on ars ξh
0 , . . . , ξ

h
k−1 (resp. ξj

0, . . . , ξ
j
k−1) has been inreased by ρ (resp. −ρ).For 1 ≤ i ≤ n, de�ne αi(ρ) as the total variation of �ow on the ars ξi

ℓ that are loated ata level that is at least p′(i). That is,
αi(ρ) :=

k−1∑

ℓ=p′(i)

(

ξi
[ℓ−p′(i)](ρ) − ξ̄i

[ℓ−p′(i)]

)

=

k−1−p′(i)
∑

ℓ=0

(
ξi
ℓ(ρ) − ξ̄i

ℓ

)
, (5.97)Clearly 0 ≤ αh(ρ) ≤ ρ, −ρ ≤ αj(ρ) ≤ 0 and αi(ρ) = 0 for i /∈ {h, j}.Using the fat that (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) is a standard irulation for all 0 ≤ ρ ≤ ρmax,one an verify the following:(i) There exists a value 0 ≤ ρh ≤ ρmax suh that

αh(ρ) =

{

ρ if 0 ≤ ρ ≤ ρh,

ρh if ρh ≤ ρ ≤ ρmax.
(5.98)Furthermore ρ ≤ ρh if and only if λh(v(ρ), ϑ(ρ)) ≥ p′(h).(ii) There exists a value 0 ≤ ρj ≤ ρmax suh that

αj(ρ) =

{

0 if 0 ≤ ρ ≤ ρj,

ρj − ρ if ρj ≤ ρ ≤ ρmax.
(5.99)Furthermore ρ ≥ ρj if and only if λj(v(ρ), ϑ(ρ)) ≥ p′(j).Reall that ρmax = min

{
ϑ̄h, v̄j − w̄j − ϑ̄j

}. Note that if ρmax = ϑ̄h then ϑh(ρmax) = 0,and if ρmax = v̄j − w̄j − ϑ̄j then ϑj(ρmax) = v̄j − w̄j . As observed before this lemma, in bothases this implies Sh ≻ Sj with respet to irulation (u(ρmax), ξ(ρmax), v(ρmax), ϑ(ρmax)). Wean then safely de�ne a number ρ̂ suh that:(a) 0 ≤ ρ̂ ≤ ρmax;(b) Sh ≻ Sj with respet to irulation (u(ρ̂), ξ(ρ̂), v(ρ̂), ϑ(ρ̂));() under the above onditions, the number
∣
∣
{
ℓ : ξh

ℓ (ρ̂) > 0
}∣
∣+
∣
∣
{
ℓ : ξj

ℓ (ρ̂) = 0
}∣
∣ (5.100)is minimum.3We now set (û, ξ̂, v̂, ϑ̂) := (u(ρ̂), ξ(ρ̂), v(ρ̂), ϑ(ρ̂)) and αi(ρ̂) := α̂i for 1 ≤ i ≤ n. We alsoshorten the notation by de�ning λ̂i := λh

(
v̂, ϑ̂
) for 1 ≤ i ≤ n.The following observation will be useful: the de�nition of ρ̂ implies that

λ̂j ≥ λ̂h, (5.101)3Sine both terms in (5.100) are nondereasing funtions of ρ, one might think that ondition () ould bereplaed with the easier request that ρ̂ is minimum. However this would produe some tehnial ompliations,as the existene of suh a minimum is not guaranteed.



5.3. The mixing set with �ows 91as otherwise ondition () above would be violated (just derease ρ̂ by a suitable value).In the following we show that (û, ξ̂, v̂, ϑ̂) gives rise to an inequality (5.87) that dominatesthat orresponding to (ū, ξ̄, v̄, ϑ̄). First of all, note that the left-hand side of inequality (5.87)is the same in both ases, thus we only need to show that the right-hand side orrespondingto (û, ξ̂, v̂, ϑ̂) is greater than or equal to that orresponding to (ū, ξ̄, v̄, ϑ̄).Let ∆ be the di�erene between the right-hand side of inequality (5.87) orresponding to
(
û, ξ̂, v̂, ϑ̂

) and that orresponding to (ū, ξ̄, v̄, ϑ̄). As observed above, we have to prove that
∆ ≥ 0. If one writes down patiently the expression for ∆ given by (5.87), realling that ūi

0 = 0for 1 ≤ i ≤ n (as the irulation is standard) and α̂i = 0 for i /∈ {h, j}, and then uses (5.96)for ρ = ρ̂ together with the seond expression for α̂h and α̂j in (5.97), one �nds
∆ = −û0

0 + ū0
0 + ρ̂ ⌈bh⌉ + α̂h − ρ̂ ⌈bj⌉ + α̂j . (5.102)We now distinguish two ases.Case 1: p′(h) ≤ p′(j) (in other words, f ′(bh) ≥ f ′(bj)).Assume that α̂h < ρ̂ and α̂j < 0. Then (5.98) and (5.99) show that ρ̂ > max{ρh, ρj}. Onean verify that by setting ρ̃ := max{ρh, ρj}, onditions (a)�(b) above are satis�ed and theorresponding number (5.100) is smaller than that orresponding to ρ̂. This means that ρ̂does not satis�es ondition (), a ontradition. Therefore α̂j = 0 whenever α̂h < ρ̂, whihalso implies that α̂h + α̂j ≥ 0 (as 0 ≤ α̂h ≤ ρ̂ and −ρ ≤ α̂j ≤ 0).If û0

0 = 0 then equation (5.102) shows that ∆ ≥ 0, as ū0
0 ≥ 0, bh ≥ bj and α̂h + α̂j ≥ 0.So we now assume û0

0 > 0. By equation (5.92), there is an index 1 ≤ l ≤ k − 1 suh that
û0

0 = βl

(
v̂, ϑ̂
). Again by (5.92), ū0

0 ≥ βl

(
v̄, ϑ̄
). Equation (5.102) then gives

∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂(⌈bh⌉ − ⌈bj⌉) + α̂h + α̂j.Sine bh ≥ bj and ρ̂ ≥ 0, the above inequality implies
∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ α̂h + α̂j . (5.103)Using (5.91), one �nds
− βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

= −
k−1∑

ℓ=l

(

ξ̂h
[ℓ−p′(h)] − ξ̄h

[ℓ−p′(h)]

)

−
k−1∑

ℓ=l

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

. (5.104)By (5.96) for ρ = ρ̂ and the fat that ξ̂h
ℓ ≥ ξ̄h

ℓ for all ℓ, the value of the �rst summation in theabove equation does not exeed ρ̂. Similarly, sine ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓ, the value of the seondsummation is at most 0.We onsider two possibilities:1.1 Assume �rst that α̂h = ρ̂, or in other words ρ̂ ≤ ρh, or in other words λ̂h ≥ p′(h). Notethat ξ̂h
[ℓ−p′(h)] = ξ̄h

[ℓ−p′(h)] for all ℓ > λ̂h, and ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓ. By equation (5.104), thisimplies that if l > λ̂h then −βl

(
v̂, ϑ̂
)
+ βl

(
v̄, ϑ̄
)
≥ 0. Together with (5.103) and inequality

α̂h + α̂j ≥ 0 proven above, this shows that ∆ ≥ 0 if l > λ̂h.



92 Chapter 5. Projetions onto the original spae of variablesSo we assume l ≤ λ̂h. Sine λ̂j ≥ λ̂h by (5.101), we have l ≤ λ̂j . Sine ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓand ξ̂j
[ℓ−p′(j)] = ξ̄j

[ℓ−p′(j)] for p′(j) ≤ ℓ ≤ λ̂j , the seond summation in (5.104) is (we alsouse the �rst expression for α̂j in (5.97))
k−1∑

ℓ=l

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

≤
k−1∑

ℓ=λ̂j

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

= α̂j . (5.105)Sine the value of the �rst summation in (5.104) is at most ρ̂ = α̂h, we then have−βl

(
v̂, ϑ̂
)
+

βl

(
v̄, ϑ̄
)
≥ −α̂h − α̂j , whih together with (5.103) shows that ∆ ≥ 0.1.2 Now assume α̂h < ρ̂, or in other words λ̂h < p′(h). As remarked above, α̂j = 0 in thisase. Also note that ξ̂h

[ℓ−p′(h)] = ξ̄h
[ℓ−p′(h)] for λ̂h < ℓ < p′(h). Then if l > λ̂h then the valueof the �rst summation in (5.104) is at most α̂h. Sine the value of the seond summationin (5.104) is at 0, we then have −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −α̂h = −α̂h − α̂j . This, togetherwith (5.103), shows that ∆ ≥ 0.So we assume l ≤ λ̂h. Sine λ̂j ≥ λ̂h by (5.101), we have l ≤ λ̂j . Note that ξ̂j

[ℓ−p′(j)] =

ξ̄j

[ℓ−p′(j)] for 0 ≤ ℓ < λ̂j , thus the value of the seond summation in (5.104) is exatly −ρ̂.Sine the value of the �rst summation in (5.104) is at most ρ̂, we then have −βl

(
v̂, ϑ̂
)

+

βl

(
v̄, ϑ̄
)
≥ −ρ̂+ ρ̂ = 0, thus ∆ ≥ 0 by (5.103), as α̂h + α̂j ≥ 0.Case 2: p′(h) > p′(j) (in other words, f ′(bh) < f ′(bj)).Note that sine bh ≥ bj and f ′(bh) < f ′(bj), then ⌈bh⌉ ≥ ⌈bj⌉ + 1. If û0

0 = 0 then equa-tion (5.102) shows that ∆ ≥ 0, as ū0
0 ≥ 0, ⌈bh⌉ ≥ ⌈bj⌉ + 1 and α̂h + α̂j ≥ −ρ̂. So we nowassume û0

0 > 0. By equation (5.92), there is an index 1 ≤ l ≤ k − 1 suh that û0
0 = βl

(
v̂, ϑ̂
).Again by (5.92), ū0

0 ≥ βl

(
v̄, ϑ̄
). Equation (5.102) then gives

∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂(⌈bh⌉ − ⌈bj⌉) + α̂h + α̂j .Sine bh ≥ bj and ρ̂ ≥ 0, the above inequality implies
∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂+ α̂h + α̂j . (5.106)Note that equation (5.104) still holds.We onsider two possibilities.2.1 Assume �rst that α̂h = ρ̂. Sine −βl

(
v̂, ϑ̂
)
+βl

(
v̄, ϑ̄
)
≥ −ρ̂ by (5.104) and sine α̂h + α̂j =

ρ̂+ α̂j ≥ 0, we obtain ∆ ≥ 0.2.2 Now suppose that α̂h < ρ̂. As in Case 1.2, if l > λ̂h then the value of the �rst summationin (5.104) is at most α̂h. This implies that ∆ ≥ 0, as −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −α̂h and

ρ̂+ α̂j ≥ 0.So we assume l ≤ λ̂h, whih together with λ̂j ≥ λ̂h implies l ≤ λ̂j . As in the seond partof Case 1.1, the value of the seond summation in (5.104) is at most α̂j. Then ∆ ≥ 0, as
−βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −ρ− α̂j and α̂h ≥ 0.



5.3. The mixing set with �ows 93We have proven that in all ases the inequality (5.87) orresponding to (û, ξ̂, v̂, ϑ̂) domi-nates that orresponding to (ū, ξ̄, v̄, ϑ̄). To onlude we have to show that m(v̂, ϑ̂) < m
(
v̄, ϑ̄
).This follows from the following two observations: �rst, for any i, if Sh ≻ Si with respet to

(
ū, ξ̄, v̄, ϑ̄

) then Sh ≻ Si with respet to (û, ξ̂, v̂, ϑ̂) as well; seond, Sh 6≻ Sj with respet to
(
ū, ξ̄, v̄, ϑ̄

) but Sh ≻ Sj with respet to (û, ξ̂, v̂, ϑ̂). �From now on we only onsider standard irulations in N (w̄) satisfying Sh ≻ Sj for all
j ∈ J(w̄).For the next lemmas it is useful to introdue some simple notation. Given two indies
0 ≤ ℓ, ℓ′ ≤ k− 1, we de�ne 〈ℓ, ℓ′〉 as the set of indies ranging from ℓ to ℓ′ in �irular� fashion.That is,

〈ℓ, ℓ′〉 :=







{ℓ, . . . , ℓ′} if 0 ≤ ℓ ≤ ℓ′ ≤ k − 1,

{ℓ, . . . , k − 1} ∪ {0, . . . , ℓ′} if 0 ≤ ℓ′ < ℓ ≤ k − 1,

∅ if ℓ = k or ℓ′ = k.(The third ase in the above de�nition is given for tehnial reasons.)Given indies 0 ≤ i ≤ n and 0 ≤ ℓ, ℓ′ ≤ k − 1, let P i(ℓ, ℓ′) be the set of ars in the uniquedireted path in Si onneting nodes µi
ℓ and µi

ℓ′ . That is,
P i(ℓ, ℓ′) :=

{{
ui

l : l ∈ 〈ℓ+ 1, ℓ′〉
} if ℓ 6= ℓ′,

∅ if ℓ = ℓ′.In the following we will be onsidering a �xed standard irulation (ū, ξ̄, v̄, ϑ̄) in N (w̄)suh that Sh ≻ Sj for all j ∈ J(w̄). Thus we an safely drop the dependene on (v̄, ϑ̄) innotation λi

(
v̄, ϑ̄
) and just write λi. Similarly we write ri for ri(v̄, ϑ̄).Lemma 5.11 If a standard irulation in N (w̄) satis�es Sh ≻ Sj for all j ∈ J(w̄), then

w̄0 = −w̄h and w̄j = 0 for all j /∈ {0, h}.Proof. It is su�ient to show that the support of (ū, ξ̄, v̄, ϑ̄) ontains a forest F as inLemma 5.7 (ii), with i := h. The onstrution of F is divided into several steps, whihare illustrated in Figure 5.7. Note that the piture represents only the forest F : other nodesand ars have not been drawn.Step 1. Sine (ū, ξ̄, v̄, ϑ̄) is a standard irulation, its support ontains ars ξh
ℓ for 0 ≤ ℓ ≤ rh,whih we inlude in F (solid ars in Figure 5.7). Suh ars span nodes µh

ℓ for 0 ≤ ℓ ≤ rh and
µ0

ℓ for ℓ ∈ 〈p′(h), λh〉. Thus, if λh = p′(h)− 1 (or in other words, rh = k− 1), the onstrutionof F is omplete. We then assume λh 6= p′(h) − 1 and go to the next step.Step 2. The support of (ū, ξ̄, v̄, ϑ̄) also ontains ars ui
ℓ for ℓ ∈ 〈rh + 2, k − 1〉 and ar ϑh,whih we add to F (dashed ars in Figure 5.7). Now all nodes in Sh are spanned by F . Itremains to over nodes µ0

ℓ for ℓ ∈
〈
[λh + 1], [p′(h) − 1]

〉. If ū0
[λh+1] > 0 we go to Step 3,otherwise we skip to Step 4.Step 3. (To be exeuted if and only if ū0

[λh+1] > 0.) Note that in this ase we an assumewithout loss of generality that ūh
[rh+1] > 0: if not, we an derease by a small ε > 0 the �ow
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ξh
rh

µ0
λh
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ℓ1 µi1
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vi1

µ0
k−1Figure 5.7: Illustration of the steps of the proof of Lemma 5.11. Solid ars orrespond toStep 1, dashed ars to Step 2, double ars to Step 3 and dotted ars to Step 4.



5.3. The mixing set with �ows 95on ars ξh
rh
, u0

[λh+1] and inrease by the same amount the �ow on ars uh
[rh+1], ξ

h
[rh+1], thusobtaining an equivalent irulation.4 Choose the index ℓ1 ∈

〈
[λh + 1], p′(h)

〉 suh that thepath P 0(λh, [ℓ1 − 1]) is ontained in the support of (ū, ξ̄, v̄, ϑ̄) and has maximum length. Weadd the ars of suh path to F (double ars in Figure 5.7). If ℓ1 = p′(h), the onstrution of
F is omplete. Otherwise we go to the next step.Step 4. If ū0

[λh+1] > 0, ℓ1 has already been de�ned in the previous step. If ū0
[λh+1] = 0, set

ℓ1 := [λh + 1]. In both ases, it remains to over nodes µ0
ℓ for ℓ ∈

〈
ℓ1, [p

′(h) − 1]
〉. Sine

Sh ≻ Sj for all j ∈ J(w̄) and sine ξ̄h
ℓ1

= 0, node µ0
ℓ1

reeive a positive amount of �ow from(a) either ar v0 (learly this is possible only if ℓ1 = 0),(b) or an ar ξi1
0 suh that p′(i1) = ℓ1.In the former ase we add ar v0 to F , in the latter ase we add ξi1

0 . Note that if (b) holdsthen ar vi1 arries a positive �ow as well, and we also add vi1 to F . Now let ℓ2 be the indexin 〈ℓ1, p
′(h)〉 suh that the path P 0(ℓ1, [ℓ2 − 1]) is ontained in the support of (ū, ξ̄, v̄, ϑ̄) andhas maximum length. We add the ars of suh path to F . If ℓ2 = p′(h), the onstrution of

F is omplete. Otherwise we repeat this step with ℓ2 in plae of ℓ1, and so forth. (The arsadded in this step are the dotted ars in Figure 5.7.)At the end of the above proess, a forest F as in Lemma 5.7 (ii) is deteted in the supportof (ū, ξ̄, v̄, ϑ̄). �Note that for i /∈ {0, h}, ondition w̄i = 0 and the fat that the (ū, ξ̄, v̄, ϑ̄) is a standardirulation imply that ξ̄i
ℓ = 0 for all 1 ≤ ℓ ≤ k − 1, ūi

ℓ = 0 for all 0 ≤ ℓ ≤ k − 1 and ϑ̄i = 0.Therefore the network an now be simpli�ed by removing all suh ars: the resulting reduednetwork onsists of the following ars:
• the ars of setors Sh and S0;
• the ars onneting setors Sh and S0, i.e. ars ξh

0 , . . . , ξ
h
k−1;

• the ars vi, ξi
0 for all 1 ≤ i ≤ n.Also, using (5.89) and the fat that w̄0 = −w̄h, one sees that for eah index 0 ≤ ℓ ≤ k thedemand of node µ0
ℓ is exatly equal to the supply of the node of setor Si plaed at level ℓ,i.e. node µh

[ℓ−p′(h)]. The struture of a possible redued network is depited in Figure 5.8.Therefore we an restrit to the redued network our searh for irulations generatingnon-redundant inequalities. Before showing expliitly suh irulations we make a few �nalobservations.Lemma 5.12 Assume w̄0 = 1, w̄h = −1 and w̄i = 0 for i /∈ {0, h}. Every standard irulation
(
ū, ξ̄, v̄, ϑ̄

) in N (w̄) generating an inequality (5.87) that is non-redundant in the desriptionof the onvex hull of (5.53)�(5.56) satis�es the following onditions:4This irulation is non-standard, but the remainder of the proof still works.
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µ0
0

v0

ϑh

µi
0

ξi
0 vi

µh
0

vh

︸ ︷︷ ︸

ξi
0, µ

i
0, v

i for i /∈ {0, h}Figure 5.8: The redued network when w̄0 = 1, w̄h = −1 and w̄i = 0 for i /∈ {0, h}. Thikarrows represent irulation requirements. The supply of eah node in Sh is equal to thedemand of the node of S0 loated at the same level. Note that the nodes µi
0 aligned on thesame vertial line on the right atually belong to distint setors Si for i ∈ {0, h}. This piturerepresents the speial ase in whih the values p′(i) for 1 ≤ i ≤ n are all distint.



5.3. The mixing set with �ows 97(i) ξ̄h
0 = v̄h + fh

0 − fh
1 and ξ̄h

ℓ = fh
ℓ − fh

ℓ+1 for 1 ≤ ℓ ≤ rh;(ii) ūh
[rh+1] = 0;(iii) v̄i = ξ̄i

0 for all i /∈ {0, h};(iv) v̄i = 0 for all indies i suh that p′(i) ∈ 〈p′(h), λh〉;(v) ū0
ℓ = 0 for all ℓ ∈ 〈p′(h), [λh + 1]

〉.Proof. We prove the above statements in the ase rh > 0. If rh = 0 the idea is the same butsome notation used below is meaningless.Sine (ū, ξ̄, v̄, ϑ̄) is a standard irulation, ūh
ℓ = 0 for 0 ≤ ℓ ≤ rh. This immediately impliesthat ξ̄h

0 = v̄h + fh
0 − fh

1 and ξ̄h
ℓ = fh

ℓ − fh
ℓ+1 for 1 ≤ ℓ ≤ rh − 1, whih partly proves (i).Sine ūh

rh
= 0 and the supply of node µh

rh
is fh

rh
−fh

rh+1, we have ūh
[rh+1] + ξ̄

h
rh

= fh
rh
−fh

rh+1.Also note that for 1 ≤ ℓ ≤ rh − 1 the �ow arried by ar ξh
ℓ is equal to the demand of itshead-node, and the �ow arried by ar ξi

0 is at least as large as the demand of its head-node.In other words, nodes µ0
ℓ for p′(h) ≤ ℓ ≤ λh − 1 are saturated by these ars. Furthermorereall that ars ξh

ℓ for ℓ > rh do not arry any amount of �ow (by de�nition of rh). If weassume ξ̄h
rh
< fh

rh
−fh

rh+1 (i.e. ar ξh
rh

does not saturate node µ0
λh
), all these onsiderations anbe used to show the existene of a path Q ontained in the support of irulation (ū, ξ̄, v̄, ϑ̄)that onnets node µ0

λh
with the dummy node d without using ar ϑh. In this ase the ars

ϑh, P h
(
[rh + 1], k − 1

)
, ξh

rh
, Qform a yle ontained in the support of (ū, ξ̄, v̄, ϑ̄). It is easy to see that suh a yle isheavy, ontraditing Lemma 5.11 (i). This ompletes the proof of (i) and also shows (ii), as

ūh
[rh+1] + ξ̄h

rh
= fh

rh
− fh

rh+1.To see that (iii) holds, assume v̄i > ξ̄i
0 for some i /∈ {0, h}. Sine w̄i = 0 and the irulationis standard, then neessarily the support of (ū, ξ̄, v̄, ϑ̄) ontains the path P i(0, k−1). The arsof this path, together with ars vi and ϑi, form a heavy yle, ontraditing Lemma 5.11 (i).If rh = k − 1 then (iv)-(v) an be heked easily, so we now assume 0 < rh < k − 1.To prove (iv), let i be an index suh that v̄i > 0 and p′(i) ∈ 〈p′(h), λh〉. Note that if

i 6= 0 then we also have ξ̄i
0 > 0, as ūi

0 = 0 in a standard irulation. Sine for 0 ≤ ℓ ≤ rhthe �ow arried by ar ξh
ℓ is at least as large as the demand of its head-node (and thus nodes

µ0
ℓ for p′(h) ≤ ℓ ≤ λh are saturated by these ars), we see that all ars in P 0

(
p′(i), [λh + 1]

)belong to the support of (ū, ξ̄, v̄, ϑ̄). We an then derease by a small ε > 0 the �ow onars ξh
[p′(i)−p′(h)], P

0
(
p′(i), [λh + 1]

) and inrease by the same amount the �ow on P h
(
[p′(i) −

p′(h)], [rh +1]
)
, ξh

[rh+1], thus obtaining an equivalent irulation. However, this new irulationontains in its support all ars
vi, ξi

0, ξ
h
[p′(i)−p′(h)], P

h([p′(i) − p′(h)], k − 1), ϑh,where ar ξi
0 must be removed from the above sequene if i = 0. This set of ars forms (orontains, if i = h) a heavy yle, ontraditing Lemma 5.11 (i).



98 Chapter 5. Projetions onto the original spae of variablesTo prove (v), let ℓ ∈ 〈p′(h), [λh+1]
〉 be suh that ū0

ℓ > 0. Similarly to the proof of part (iv),one shows that all ars in P 0
(
p′(h), [λh +1]

) belong to the support of (ū, ξ̄, v̄, ϑ̄). We an thenderease by a small ε > 0 the �ow on ars ξh
0 , P

0
(
p′(h), [λh + 1]

) and inrease by the sameamount the �ow on P h
(
0, [rh + 1]

)
, ξh

[rh+1], thus obtaining an equivalent irulation. However,this new irulation ontains in its support all ars uh
0 , . . . , u

h
k−1, whih form a tree (atuallya path) as in Lemma 5.7 (iii). Thus (ū, ξ̄, v̄, ϑ̄) is equivalent to a irulation generating aredundant inequality, that is, (ū, ξ̄, v̄, ϑ̄) itself generates a redundant inequality. �Sine part (iv) of the above lemma applies to index i = h, the statement in (i) an bewritten this way: ξ̄h

ℓ = fh
ℓ −f

h
ℓ+1 for 0 ≤ ℓ ≤ rh. In other words, for eah 0 ≤ ℓ ≤ rh the supplyof node µh

ℓ is entirely arried to node µ0
[p′(h)+ℓ] by ar ξh

ℓ , and this amount of �ow satis�espreisely the demand of node µ0
[p′(h)+ℓ].Using the fat that vi = ξ̄i

0 and ξ̄i
1 = · · · = ξ̄i

k−1 = 0 for i /∈ {0, h}, inequality (5.87) annow be rewritten as follows:
s+ yh +

n∑

i=1

v̄i(zi − ⌈bi⌉) + ū0
0 ≥

k−1∑

ℓ=0

ξ̄h
ℓ ⌈bh⌉ −

k−1∑

ℓ=k−p′(h)

ξ̄h
ℓ . (5.107)By the above onsiderations, the right-hand side of inequality (5.107) is

k−1∑

ℓ=0

ξ̄h
ℓ ⌈bh⌉ −

k−1∑

ℓ=k−p′(h)

ξ̄h
ℓ =







(
f0

p′(h) − f0
λh+1

)
⌈bh⌉ if p′(h) ≤ λh,

f0
p′(h) ⌈bh⌉ +

(
1 − f0

λh+1

)
(⌈bh⌉ − 1) if p′(h) > λh.

(5.108)Assume v̄i = 0 for all indies 1 ≤ i ≤ n. Lemma 5.12 an be used to show that two asesare possible: either v̄0
0 = 0 and λh = [p′(h) − 1] (i.e. rh = k − 1), or v̄0 = 1 − f ′(bh) and

λh = k − 1. In the former ase, the orresponding inequality (5.107) is
s+ yh ≥ f0

p′(h) ⌈bh⌉ + (1 − f0
p′(h))(⌈bh⌉ − 1), (5.109)while in the latter ase it is

s+ yh ≥ f0
p′(h) ⌈bh⌉.The above inequality an be disarded beause it is dominated by (5.109), as bh ≥ 0. Reallingthat f0

p′(h) = f ′(bh), inequality (5.109) is readily heked to be equivalent to s+ yh ≥ bh.Now we assume that v̄i > 0 for at least one index 1 ≤ i ≤ n. Let i1, . . . , im−1 be the indiesin {1, . . . , n} suh that v̄it > 0 and p′(it) < p′(h) for 1 ≤ t ≤ m−1. (Note that m−1 might beequal to zero.) Set im := h and let im+1, . . . , ir be the indies in {1, . . . , n} suh that v̄it > 0and p′(it) > λh for m+ 1 ≤ t ≤ r. (Note that r might be equal to m). By Lemma 5.12 (iv),there does not exist an index i suh that p′(h) ≤ p′(i) ≤ λh, thus {it : t 6= m} is preisely theset of indies i 6= 0 suh that v̄i > 0. Also note that there do not exist two distint indies t, t′,with t 6= m 6= t′, suh that p′(it) = p′(it′), as otherwise the ars vit , ξit
0 , ξ

it′
0 , vit′ would form aheavy yle ontained in the support of irulation (ū, ξ̄, v̄, ϑ̄). We an then assume withoutloss of generality that p′(i1) < · · · < p′(im−1) < p′(im) = p′(h) < p′(im+1) < · · · < p′(ir). Wealso de�ne ir+1 := n+ 1 (thus p′(ir+1) = k) and f ′(bn+1) := 0.We now distinguish two ases.



5.3. The mixing set with �ows 991. Suppose �rst that v̄0 > 0. We laim that in this ase ū0
0 = 0. This follows immediatelyfrom Lemma 5.12 (v) if λh = k − 1, so assume λh < k − 1. Then if ū0

0 > 0 the sequeneof ars vir , P 0(p′(ir), 0), v
0 would form a heavy yle ontained in the support of theirulation (ū, ξ̄, v̄, ϑ̄).Thus ū0

0 = 0. Also observe that p′(h) ≤ λh, as otherwise Lemma 5.12 (iv) would beviolated by index i = 0. The nonzero entries of v̄ are (see Figure 5.9)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t 6= m,

v̄0 =

p′(i1)−1
∑

ℓ=0

(
f0

ℓ − f0
ℓ+1

)
= 1 − f0

p′(i1).The orresponding inequality (5.107) is then (also using equation (5.108))
s+ yh +

∑

t6=m

(
f0

p′(it)
− f0

p′(it+1)

)
(zit − ⌈bit⌉) ≥

(
f0

p′(h) − f0
λh+1

)
⌈bh⌉.Reall that im = h and observe that p′(im+1) = λh + 1. Then, after realling that

f0
p′(i) = f ′(bi) for all indies 1 ≤ i ≤ n, the above inequality reads
s+ yim +

∑

t6=m

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥

(
f ′(bim) − f ′(bim+1

)
⌈bim⌉. (5.110)2. Now suppose v̄0 = 0. In this ase the two alternatives m < r and m = r need to beonsidered separately.If m < r then p′(h) ≤ λh, as otherwise Lemma 5.12 (iv) would be violated by index

i = ir. The nonzero entries of v̄ are (see Figure 5.10)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t /∈ {m, r},

v̄ir =
k−1∑

ℓ=p′(ir)

(
f0

ℓ − f0
ℓ+1

)
+

p′(i1)−1
∑

ℓ=0

(f0
ℓ − f0

ℓ+1) = f0
p′(ir) +

(
1 − f0

p′(i1)

)
,while ū0

0 = 1 − f0
p′(i1). The orresponding inequality (5.107) is then

s+yh+
∑

t6=m

(
f0

p′(it)
−f0

p′(it+1)

)
(zit−⌈bit⌉)+

(
1−f0

p′(i1)

)
(zir−⌈bir⌉+1) ≥

(
f0

p′(h)−f
0
λh+1

)
⌈bh⌉,whih an be equivalently be written as

s+ yh +
∑

t6=m

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉)

+
(
1 − f ′(bi1)

)
(zir − ⌈bir⌉ + 1) ≥

(
f ′(bim) − f ′(bim+1

)
⌈bim⌉. (5.111)
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vi3Figure 5.9: The ase v̄0 > 0. Here r = 3 and m = 2.
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vi4Figure 5.10: The ase v̄0 = 0 and m < r. Here r = 4 and m = 2.



5.3. The mixing set with �ows 101
µ0

0

µi1
0

vi1

ϑh

µi2
0

vi2

µh
0

Figure 5.11: The ase v̄0 = 0 and m = r. Here m = r = 3.Now assume m = r. We laim that in this ase ū0
0 = 0. This follows immediately fromLemma 5.12 (v) if λh = k− 1, so assume λh < k− 1. Then, sine m = r, we neessarilyhave p′(h) > λh. Lemma 5.12 (v) then implies ū0

0 = 0.The nonzero entries of v̄ are (see Figure 5.11)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t 6= m.The orresponding inequality (5.107) is then

s+ yh +
∑

t6=m

(
f0

p′(it)
− f0

p′(it+1)

)
(zit − ⌈bit⌉) ≥ f0

p′(h) ⌈bh⌉ +
(
1 − f0

λh+1

)
(⌈bh⌉ − 1),whih an be equivalently be written as

s+ yh +
∑

t6=r

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥

f ′(bir) ⌈bir⌉ +
(
1 − f ′(bir+1)

)
(⌈bir⌉ − 1). (5.112)This onludes the analysis of the ase J(w̄) 6= ∅.



102 Chapter 5. Projetions onto the original spae of variablesThe ase J(w̄) = ∅We now onsider the ase J(w̄) = ∅, that is w̄i = 0 for all 1 ≤ i ≤ n. Sine w̄ 6= 0 and w̄0 ≥ 0,we an assume w̄0 = 1 without loss of generality.Note that in this ase ϑ̄i = 0 for 1 ≤ i ≤ n, as otherwise the support of (ū, ξ̄, v̄, ϑ̄) wouldontain the heavy yle vi, ui
1, . . . , u

i
k−1, ϑ

i. The same argument also shows that v̄i = ξ̄i
0 for

1 ≤ i ≤ n. Inequality (5.87) an then be rewritten as
s+

n∑

i=1

v̄i(zi − ⌈bi⌉) + ū0
0 ≥ 0. (5.113)The above onsiderations shows that the only ars that an arry a positive �ow (in airulation that generates a non-redundant inequality) are the ars of setor S0 and ars vi, ξi

0for 1 ≤ i ≤ n. Furthermore, for eah 1 ≤ i ≤ n we an identify ars vi, ξi
0 into a single ar.The network then redues to that onsidered in Setion 5.2 (Figure 5.1), where no ar entersthe dummy node.The ayli irulations in suh a network were shown in Setion 5.2 (here we are learly in-terested in the ase w̄ > 0). It an be easily heked that the orresponding inequalities (5.113)are preisely s ≥ 0 and the mixing inequalities listed in Setion (5.2.3):

s+
r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0, (5.114)

s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) +

(
1 − f ′(bi1)

)(
zir − ⌈bir⌉ − 1

)
≥ 0 (5.115)for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) > · · · > f ′(bir).We have therefore proven the following result:Proposition 5.13 A linear inequality desription of the onvex hull of the mixing set with�ows (5.53)�(5.56) in its original spae is obtaining by adding to the original inequalities thefollowing onstraints:

• (5.110) for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) > · · · > f ′(bir)and all indies 1 ≤ h ≤ n and 1 ≤ m ≤ r;
• (5.111) for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) > · · · > f ′(bir)and all indies 1 ≤ h ≤ n and 1 ≤ m < r;
• (5.112) for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) > · · · > f ′(bir)and all indies 1 ≤ h ≤ n;
• (5.114)�(5.115) for all sequenes of indies i1, . . . , ir in {1, . . . , n} suh that f ′(bi1) >
· · · > f ′(bir).Conforti, Di Summa and Wolsey [13℄ obtained the linear inequality desription of themixing set with �ows in a di�erent form (see also Setion 8.2).



Chapter 6Dual network sets with a single integervariableReall that we denote by MIX2TU any mixed-integer set of the form {x ∈ R
n : Ax ≥

b, xi integer for i ∈ I}, where A is a totally unimodular matrix with at most two nonzeroentries per row and I is a nonempty subset of N := {1, . . . , n}. In this hapter we onsiderproblems of this type with |I| = 1, i.e. with a single integer variable. We give a linear inequalitydesription of the onvex hull of suh sets in the original spae. In ontrast to Chapter 5, theonvex hull is obtained here without onstruting or projeting any extended formulation ofthe set.In Setion 6.1 we state the main result of the hapter, whih provides a linear inequalityformulation (in the original spae) of the onvex hull of an arbitrary dual network set witha single integer variable. By a result of Setion 2.2 this also yields a formulation of a set
MIX2TU with a single integer variable.The theorem stated in Setion 6.1 is proven in Setions 6.2�6.3. More spei�ally, inSetion 6.2 we prove the validity of the inequalities by showing that eah of them is a simpleMIR-inequality. In Setion 6.3 we prove that the inequalities of the theorem are also su�ientto desribe the onvex hull of the set. This is done by following an idea that was applied inthe study of sets de�ned by irular-ones matries [24℄.We onlude in Setion 6.4 by disussing the Chvátal rank of a pure integer set thatonstitutes an equivalent formulation of a set MIX2TU with a single integer variable. Inpartiular, we show that there are very small and simple instanes having Chvátal rank greaterthan one.6.1 The onvex hull in the original spaeLet X = {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set of the type MIX2TUwith |I| = 1. We assume without loss of generality that the integer variable orresponds tothe last olumn of A.By Corollary 2.4, by multiplying by −1 a subset R of olumns of A we an transform Xinto a set with dual network onstraint matrix. Note that given a linear inequality desription103



104 Chapter 6. Dual network sets with a single integer variableof the onvex hull of the transformed set, a desription of the original set is immediatelyobtained by hanging again the sign of the variables with indies in R. Therefore we anassume without loss of generality that our set X is de�ned by a dual network matrix A, i.e Xis a set of the type MIXDN .The linear system Ax ≥ b has then the form
xi − xj ≥ lij, (i, j) ∈ N e, (6.1)

xi ≥ li, i ∈ N l, (6.2)
xi ≤ ui, i ∈ Nu, (6.3)where N e ⊆ N ×N and N l, Nu ⊆ N . The set N e does not ontain any pair of the type (i, i)for i ∈ N . If the set of inequalities (6.2) does not inlude an expliit lower bound ln on xn,we set ln := −∞ (but we do not inlude the bound in the formulation). Similarly if no upperbound on xn is inluded in the above system, we set un := +∞. We also assume that thesystem Ax ≥ b is feasible.De�ne P := conv(X) = conv{x ∈ R

n : Ax ≥ b, xn integer}. In order to give a linearinequality desription of P in the x-spae, we need to assume that ln and un are tight boundsfor xn: that is, we assume that
ln = min{xn : x ∈ P}, un = max{xn : x ∈ P}. (6.4)If this is not the ase, we an use the following easy result:Lemma 6.1 De�ne the values m := min{xn : Ax ≥ b} and M := max{xn : Ax ≥ b}. If

⌈m⌉ ≤ ⌊M⌋,1 then min{xn : x ∈ P} = ⌈m⌉ and max{xn : x ∈ P} = ⌊M⌋.Proof. We assume that both m and M are �nite (the other ases are similar). Let x1, x2 betwo points satisfying system Ax ≥ b, with x1
n = m and x2

n = M . All points in the segment
[
x1, x2

] satisfy Ax ≥ b. Sine ⌈m⌉ ≤ ⌊M⌋ by assumption, the segment [x1, x2
] ontains points

x̄1, x̄2 suh that x̄1
n = ⌈m⌉ and x̄2

n = ⌊M⌋. This proves the result. �If onditions (6.4) are not satis�ed, we an ompute the values m and M de�ned in theabove lemma (this amounts to solving two linear programs). If ⌈m⌉ = ⌊M⌋ + 1 then P = ∅(and we have found the onvex hull of X). Otherwise ⌈m⌉ ≤ ⌊M⌋ and we an rede�ne
ln := ⌈m⌉ and un := ⌊M⌋. By the above lemma, onditions (6.4) are now satis�ed.We now prepare to present our result. Let G = (V,E) be the direted graph with vertexset V := {0, . . . , n − 1} and ar set E de�ned as follows:(a) for eah pair (i, j) ∈ N e, where i, j 6= n, E ontains an ar from node i to node j;(b) for eah pair (i, n) ∈ N e, E ontains an ar from node i to node 0; symmetrially, for eahpair (n, j) ∈ N e, E ontains an ar from node 0 to node j;() for eah index i ∈ N l with i 6= n, E ontains an ar from node i to node 0;1Here ⌊+∞⌋ := +∞ and ⌈−∞⌉ := −∞.



6.1. The onvex hull in the original spae 105(d) for eah index i ∈ Nu with i 6= n, E ontains an ar from node 0 to node i.Note that G may ontain several pairs of parallel or opposite ars.Thus every inequality of the system Ax ≥ b (i.e. system (6.1)�(6.3)) gives rise to an arof G, exept for the inequalities ln ≤ xn ≤ un (if appearing in the system). We give weightsto the ars of G in the following very natural way: ars arising from a pair (i, j) ∈ N e reeiveweight lij , ars of type () reeive weight li and ars of type (d) weight −ui. The weight of anar e ∈ E is denoted be. In other words be is the right-hand side of the inequality of (6.1)�(6.3)(written in the �≥� form) orresponding to ar e.Let C denote a sequene of ars forming an undireted yle in G. Assume that the sequeneof nodes and ars in the yle is (i0, e0, i1, . . . , ik, ek, ik+1), where i0 = ik+1. Let E+(C) bethe set of ars of C that are traversed aordingly to their orientation, i.e. E+(C) := {et :

it is the tail of et}. Symmetrially, let E−(C) := {et : it is the head of et} be the set of arsof C that are traversed in the wrong diretion. Let T+(C) (resp. T−(C)) be the set of indies
t suh that et is in E+(C) (resp. E−(C)). We de�ne

b+(C) :=
∑

e∈E+(C)

be, b−(C) :=
∑

e∈E−(C)

be.We also de�ne d(C) := b+(C) − b−(C). Note that if one reverses the sequene of nodes andars forming C, the values b+(C), b−(C) and d(C) hange sign. Thus, rather than just a yle,
C indiates in whih order the ars of that yle are traversed.We now present the main result of this hapter. As in the previous hapters, for a realnumber α we write f(α) to denote the frational part of α, i.e. f(α) := α− ⌊α⌋.Theorem 6.2 A linear inequality desription of P in its original spae is given by the originalsystem (6.1)�(6.3) plus all linear inequalities of the form

∑

t∈T+(C)

(xit − xit+1) +
(
ε(C) + f(d(C))

)
xn ≥ b−(C) + f(d(C)) ⌊d(C) + 1⌋, (6.5)with the following meaning of notation:

• C = (i0, e0, i1, . . . , ik, ek, ik+1) is an undireted yle in G, with k ≥ 2 and i0 = ik+1 = 0.Ar e0 is an ar of type (b) de�ned above, while ek is not of type (b).
• Any ourrene of x0 stands for a zero.
• The value ε(C) is de�ned by ε(C) :=

{

0 if e0 ∈ E+(C),

−1 otherwise.In Setion 6.2 we prove that inequalities (6.5) are valid for P , while in Setion 6.3 we showthat they su�e to desribe P . We onlude in Setion 6.4 by disussing the Chvátal rank ofan equivalent pure integer formulation of P .



106 Chapter 6. Dual network sets with a single integer variable6.2 Validity of the inequalitiesWe show here that eah of inequalities (6.5) an be obtained as a simple MIR-inequality (seeTheorem 1.11) from an inequality that is implied by the original linear system (6.1)�(6.3).This proves that all inequalities (6.5) are valid for P .Let C be an undireted yle satisfying the onditions desribed in Theorem 6.2. Note that
ek is an ar of either type () or type (d). We now distinguish four possibilities. In all asesbelow, the following easy identity will be used:

∑

t∈T+(C)

(xit − xit+1) +
∑

t∈T−(C)

(xit − xit+1) = 0. (6.6)Case 1: e0 ∈ E+(C) and ek is an ar of type ().First of all note that ek ∈ E+(C), as ek is an ar of type (). We laim that the followinginequalities are all inluded in the original system (6.1)�(6.3):(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T+(C) \ {0, k};(ii) inequality xn − xi1 ≥ ln,i1 ;(iii) inequality xik ≥ lik .The inequalities of group (i) belong to the original system beause for eah t ∈ T+(C) \ {0, k},ar et is neessarily of type (a). The inequality in (ii) is part of the original system as itorresponds to ar e0, whih is of type (b) by assumption. As to the last inequality, reallthat we are assuming that ek is an ar of type ().Summing up all the above inequalities gives (reall that x0 = 0 and 0, k ∈ T+(C))
∑

t∈T+(C)

(xit − xit+1) + xn ≥ b+(C), (6.7)whih we rewrite as
∑

t∈T+(C)

(xit − xit+1) − b−(C) + xn ≥ d(C). (6.8)Similarly, all inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) belong to the originalsystem. Summing them up gives
∑

t∈T−(C)

(xit+1 − xit) ≥ b−(C). (6.9)Then if we set s :=
∑

t∈T−(C)(xit − xit+1) − b−(C), we have s ≥ 0. Using equation (6.6),inequality (6.8) an now be written as s + xn ≥ d(C). Sine s is a nonnegative variable and
xn is an integer variable, the orresponding simple MIR-inequality is valid:

s+ f(d(C))xn ≥ f(d(C)) ⌊d(C) + 1⌋.Substituting bak for s, we obtain inequality (6.5).Case 2: e0 ∈ E+(C) and ek is an ar of type (d).In this ase ek ∈ E−(C), as ek is an ar of type (d). Similarly to the previous ase, one anhek that the following inequalities are all inluded in the original system (6.1)�(6.3):



6.2. Validity of the inequalities 107(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T+(C) \ {0, k};(ii) inequality xn − xi1 ≥ lni1 .Summing up the above inequalities gives (reall that x0 = 0 and 0 ∈ T+(C))
∑

t∈T+(C)

(xit − xit+1) + xn ≥ b+(C),whih we rewrite as
∑

t∈T+(C)

(xit − xit+1) − b−(C) + xn ≥ d(C). (6.10)The following inequalities are also part of the original system:(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) \ {k};(ii) inequality −xik ≥ −uik .If we sum them up and reall that x0 = 0 and k ∈ T−(C), we �nd
∑

t∈T−(C)

(xit+1 − xit) ≥ b−(C).We an now set s :=
∑

t∈T−(C)(xit − xit+1) − b−(C) and proeed as in the previous ase.Case 3: e0 ∈ E−(C) and ek is an ar of type ().As in Case 1, ek ∈ E+(C). Summing up all the inequalities orresponding to ars et with
t ∈ T+(C) and subtrating b−(C) from both sides gives

∑

t∈T+(C)

(xit − xit+1) − b−(C) ≥ d(C). (6.11)The following inequalities are inluded in the original system:(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) \ {k};(ii) inequality xi1 − xn ≥ li1,n.Adding up all these inequalities and subtrating b−(C) from both sides gives
∑

t∈T−(C)

(xit − xit+1) − xn − b−(C) ≥ 0.If we de�ne s to be the left-hand side of the above inequality, by equation (6.6) inequality (6.11)beomes s + xn ≥ d(C). Applying the MIR-inequality and substituting bak for s givesinequality (6.5).Case 4: e0 ∈ E−(C) and ek is an ar of type (d).This ase is very similar to the previous one.This onludes the proof of the validity of inequalities (6.5).



108 Chapter 6. Dual network sets with a single integer variable6.3 Su�ieny of the inequalitiesWe prove here that the original onstraints (6.1)�(6.3) and all inequalities (6.5) are su�ientto desribe P = conv(X). We use an idea appearing in a paper by Eisenbrand, Oriolo, Stau�erand Ventura [24℄. We �nd useful to present here the approah used by the authors ited above,as we need to extend it to the ase of a polyhedron that is not full-dimensional (the polyhedronstudied in [24℄ is full-dimensional, and this property was impliitly used there).6.3.1 Extending a sliing approahThe results presented in this subsetion extend those appearing in [24℄ to the ase of a poly-hedron whih is not full-dimensional. We remark that in this subsetion we do not need anypartiular assumptions on X, exept that X is a mixed-integer set in R
n with a single integervariable xn, and that onditions (6.4) hold.For eah integer number α suh that ln ≤ α ≤ un, we de�ne the polyhedra Pα := {x ∈

X : xn = α} = {x ∈ P : xn = α} and Pα,α+1 := conv
(
Pα ∪ Pα+1

). Clearly
P = conv

(⋃un

α=ln
Pα
)

= conv
(⋃un−1

α=ln
Pα,α+1

)
.Moreover, the following simple result holds.Lemma 6.3 Given x̄ ∈ R

n, x̄ ∈ P if and only if x̄ ∈ Pα,α+1 for α = ⌊x̄n⌋.Proof. The `if' part is obvious. To prove the `only if' part, let x̄ be a point in P . If x̄n is aninteger then x̄ ∈ Pα for α = x̄n. So assume x̄n /∈ Z and de�ne α = ⌊x̄n⌋. By de�nition of P , x̄an be written as onvex ombination of two points x1, x2 ∈ P , where x1
n ≤ α and x2

n ≥ α+ 1.Then the segment [x1, x2
], whih is ontained in P , intersets Pα and Pα+1, thus showingthat x̄ is the onvex ombination of a point in Pα and a point in Pα+1, i.e. x̄ ∈ Pα,α+1. �Note that for eah integer α satisfying ln ≤ α ≤ un, the polyhedron Pα is nonempty (thisfollows from onditions (6.4) and basi onvexity). Then for ln ≤ α < un, the polyhedra

Pα and Pα+1 are nonempty faes of Pα,α+1 (indued by inequalities xn ≥ α and xn ≤ α + 1respetively). De�ne Fα,α+1 as a family of equations and inequalities that onstitute a minimaldesription of Pα,α+1, exept that we do not inlude in Fα,α+1 any inequality de�ning fae
Pα or Pα+1. We assume without loss of generality that all inequalities in Fα,α+1 are of the�≥� kind. We write cx ∼ δ to denote a linear onstraint that an be either inequality cx ≥ δor equation cx = δ.Lemma 6.4 P is the set of points in R

n satisfying inequalities ln ≤ xn ≤ un and all equationsand inequalities in ⋃un−1
α=ln

Fα,α+1.Proof. Let Q be the set of points in R
n satisfying inequalities ln ≤ xn ≤ un and all equationsand inequalities in ⋃un−1

α=ln
Fα,α+1. We prove that Q = P .If x̄ ∈ Q then ln ≤ x̄n ≤ un and x̄ satis�es all equations and inequalities in Fα,α+1 where

α = ⌊x̄n⌋. Sine α ≤ x̄n ≤ α + 1 also holds, we have x̄ ∈ Pα,α+1, hene x̄ ∈ P . This showsthat Q ⊆ P .



6.3. Su�ieny of the inequalities 109To prove the reverse inlusion, we show that for ln ≤ α < un, every equation or inequalityin Fα,α+1 is valid for P . Assume that the ontrary holds, i.e. there exist an integer α suhthat ln ≤ α < un, an equation or inequality cx ∼ δ in Fα,α+1 and a point x̄ ∈ P suh that
cx̄ 6∼ δ. If α ≤ x̄n ≤ α + 1, Lemma 6.3 implies that x̄ ∈ Pα,α+1, thus x̄ satis�es cx ∼ δ, aontradition.So we assume x̄n ≤ α (the ase x̄n ≥ α+ 1 is similar). We now laim that there is a point
xα+1 ∈ Pα+1 suh that cxα+1 = δ. To prove this, we distinguish two ases.1. Assume �rst that cx ∼ δ is an inequality. Then inequality cx ≥ δ de�nes a faet F of

Pα,α+1 and we let k be the dimension of F . Sine Pα,α+1 = conv
(
Pα ∪ Pα+1

), thereexist k+ 1 a�nely independent points in F ∩
(
Pα ∪Pα+1

) that satisfy equation cx = δ.If all these k + 1 points belonged to Pα, then inequality cx ≥ δ would indue fae2 Pα,ontraditing the fat that inequality cx ≥ δ belongs to Fα,α+1. Thus there is a point
xα+1 ∈ Pα+1 suh that cxα+1 = δ.2. The other possibility is that cx ∼ δ is an equation and thus Pα,α+1 ⊆ {x ∈ R

n : cx = δ}.Sine Pα+1 6= ∅, there is a point xα+1 ∈ Pα+1 ⊆ {x ∈ R
n : cx = δ}.Thus in both ases there is a point xα+1 ∈ Pα+1 suh that cxα+1 = δ. Sine cx̄ 6∼ δ, thesegment [x̄, xα+1

], whih is ontained in P , intersets Pα in a point xα suh that cxα 6∼ δ.This is a ontradition, as the equation or inequality cx ∼ δ is valid for Pα. �Therefore, in order to �nd a linear inequality desription of P , we have to �nd all equationsand inequalities in the family Fα,α+1 for ln ≤ α < un.In the following we write A = [M | an], where M is the olumn submatrix onstituted bythe �rst n− 1 olumns of A and an is the n-th olumn of A. Similarly we deompose a point
x ∈ R

n as x = (xM , xn).Lemma 6.5 Fix a point x̄ ∈ R
n with µ(x̄) := f(x̄n) > 0 and an integer ln ≤ α < un. De�ne

bα := b− αan, bα+1 := b− (α+ 1)an. (6.12)Then x̄ ∈ Pα,α+1 if and only if the optimum value of the following linear program is zero:
max −vαMx̄M + (1 − µ(x̄))vαbα + µ(x̄)vα+1bα+1 (6.13)subjet to vαM − vα+1M = 0, (6.14)

vα, vα+1 ≥ 0. (6.15)Proof. The point x̄ belongs to Pα,α+1 if and only if there exist xα ∈ Pα, xα+1 ∈ Pα+1 and
0 ≤ λ ≤ 1 suh that

x̄ = λxα + (1 − λ)xα+1. (6.16)By writing equation (6.16) for the n-th omponent, one �nds µ(x̄) = 1− λ. Then x̄ ∈ Pα,α+1if and only if there exist xα ∈ Pα and xα+1 ∈ Pα+1 suh that
x̄M = (1 − µ(x̄))xα

M + µ(x̄)xα+1
M .2Atually faet in this ase.



110 Chapter 6. Dual network sets with a single integer variableIf we de�ne bα and bα+1 as in (6.12), the polyhedron Pα (resp. Pα+1) is desribed by theonditions xn = α, MxM ≥ bα (resp. xn = α + 1, MxM ≥ bα+1). Thus x̄ ∈ Pα,α+1 if andonly if there exist xα, xα+1 ∈ R
n suh that

x̄M = (1 − µ(x̄))xα
M + µ(x̄)xα+1

M , Mxα
M ≥ bα, Mxα+1

M ≥ bα+1.After de�ning yα := (1 − µ(x̄))xα
M and yα+1 := µ(x̄)xα+1

M , we obtain that x̄ ∈ Pα,α+1 if andonly if the following linear system admits a feasible solution (yα, yα+1) ∈ R
n−1 × R

n−1:
yα + yα+1 = x̄M ,

Myα ≥ (1 − µ(x̄))bα,

Myα+1 ≥ µ(x̄)bα+1.By Farkas' lemma (Theorem 1.7), this happens if and only if all feasible solutions of thefollowing linear program have non-positive ost:
max ux̄M + (1 − µ(x̄))vαbα + µ(x̄)vα+1bα+1subjet to u+ vαM = 0,

u+ vα+1M = 0,

vα, vα+1 ≥ 0.After eliminating variable u and observing that the all-zero solution is feasible, the proof isomplete. �Note that the feasible region (6.14)�(6.15) does not depend on x̄.Now �x ln ≤ α < un, let cx ∼ δ be an equation or inequality in Fα,α+1 and all F thefaet (or improper fae) of Pα,α+1 that is indued by cx ∼ δ. Let x̄ be a point in the relativeinterior of F (note that then 0 < µ(x̄) < 1, as assumed in Lemma 6.5). Sine x̄ ∈ Pα,α+1, theoptimum value of the linear program (6.13)�(6.15) is zero. We all Z(x̄) the set of optimal(i.e. zero-ost) solutions of the linear program (6.13)�(6.15).Lemma 6.6 For eah feasible vetor (vα, vα+1
) in (6.14)�(6.15), the inequality

vαMxM +
(
vαbα − vα+1bα+1

)
xn ≥ vαbα +

(
vαbα − vα+1bα+1

)
α (6.17)is valid for Pα,α+1. Furthermore, the equation or inequality cx ∼ δ is implied by the family ofinequalities (6.17) for (vα, vα+1

)
∈ Z(x̄).Proof. For a point x ∈ Pα, xn = α holds and thus inequality (6.17) redues to vαMxM ≥ vαbα,whih is valid for Pα (as it is a nonnegative ombination of the inequalities of the system

MxM ≥ bα). Similarly, for a point x ∈ Pα+1, xn = α + 1 holds and thus, realling that
vαM = vα+1M by (6.14), inequality (6.17) redues to vα+1MxM ≥ vα+1bα+1, whih is validfor Pα+1.Therefore inequality (6.17) is valid for Pα,α+1. Also, sine (vα, vα+1

) is a zero-ost so-lution of (6.13)�(6.15) and realling that x̄n = α + µ(x̄), it is straightforward to verify thatinequality (6.17) is tight for x̄.



6.3. Su�ieny of the inequalities 111To prove the seond part of the lemma, let x̂ ∈ R
n be any point violating cx ∼ δ. Weshow that there exists a vetor (v̄α, v̄α+1

)
∈ Z(x̄) suh that x̂ violates the orrespondinginequality (6.17).De�ne γ := x̂ − x̄ and x̂(ε) := x̄ + εγ (thus the mapping ε 7→ x̂(ε) for ε ∈ [0, 1] is aparameterization of the segment [x̄, x̂]). Sine all inequalities (6.17) for (vα, vα+1

)
∈ Z(x̄) aretight for x̄, it is su�ient to prove the above laim for the points of the type x̂(ε) with ε > 0small enough.Sine µ(x̄) = f(x̄n) > 0, for ε > 0 su�iently small we have µ(x̄ + εγ) = f(x̄n + εγn) =

f(x̄n) + εγn = µ(x̄) + εγn, thus the objetive funtion (6.13) orresponding to the point
x̂(ε) = x̄+ εγ is

φε

(
vα, vα+1

)
:= −vαM(x̄M + εγM ) + (1 − µ(x̄) − εγn)vαbα + (µ(x̄) + εγn)vα+1bα+1.Note that for ε = 0 we �nd exatly objetive funtion (6.13).Let R be the set of extreme rays of one (6.14)�(6.15) with unit Eulidean norm. Wepartition R into two subsets R+

ε :=
{(
vα, vα+1

)
∈ R : φε

(
vα, vα+1

)
> 0
} and R−

ε := R \ R+
ε .Sine cx̄ ∼ δ whereas cx̂ 6∼ δ, the point x̂(ε) violates onstraint cx ∼ δ for all ε > 0. Then

x̂(ε) /∈ P for all ε > 0. By Lemma 6.5 this implies that R+
ε 6= ∅ for all ε > 0.Note that for a �xed vetor (vα, vα+1

), the mapping ε 7→ φε

(
vα, vα+1

) is linear. Also
φ0

(
vα, vα+1

)
≤ 0 for all (vα, vα+1

)
∈ R. These two observations imply that if 0 < ε < ε′ then

R+
ε ⊆ R+

ε′ and R−
ε ⊇ R−

ε′ . Sine R+
ε 6= ∅ for all ε > 0 and sine R is a �nite set, this showsthat there is a vetor (v̄α, v̄α+1

) suh that φ0

(
v̄α, v̄α+1

)
= 0 and φε

(
v̄α, v̄α+1

)
> 0 for ε > 0.It is readily heked that the inequality (6.17) orresponding to this vetor is violated by x̂(ε)for ε > 0 su�iently small.Thus we have found a vetor (v̄α, v̄α+1

)
∈ Z(x̄) suh that the orresponding inequal-ity (6.17) is violated by x̂(ε) for ε > 0 su�iently small. This onludes the proof of thelemma. �Therefore in order to �nd the inequalities and equations in Fα,α+1 we have to �nd thezero-ost solutions of problem (6.13)�(6.15). Note that we have not used any assumptions onthe struture of the original system. Thus the above onsiderations yield a polynomial timeseparation algorithm for any mixed-integer set with a single integer variable: given x̄, solvethe linear program (6.13)�(6.15) with α = ⌊x̄n⌋; if there is a positive ost solution, then theorresponding inequality (6.17) separates x̄ from P , otherwise x̄ ∈ P (see also [24℄).6.3.2 Finding the inequalitiesWe now onsider our mixed-integer set X with dual network onstraint matrix and a singleinteger variable xn. In the following we investigate the zero-ost solutions of (6.13)�(6.15).First of all, if the linear program (6.13)�(6.15) has a zero-ost solution, then it has azero-ost extreme ray. So we look for the extreme rays of the one de�ned by (6.14)�(6.15).Sine M is a dual network matrix, the onstraint matrix orresponding to system (6.14),i.e. matrix [ M

−M

], is totally unimodular. Then the extreme rays of (6.14)�(6.15) are 0-1vetors.



112 Chapter 6. Dual network sets with a single integer variableNote that M may have some all-zero rows (orresponding to inequalities xn ≥ ln and/or
xn ≤ un). Let us suppose that the t-th row is the all-zero vetor. Then the vetors (et,0)and (0, et) are extreme rays of (6.14)�(6.15). However, the orresponding inequalities (6.17)are salar multiples of xn ≥ α and xn ≤ α + 1. So in the following we only onsider rays of(6.14)�(6.15) with vα

t = vα+1
t = 0.Let H be the direted graph having [ M

−M

] as ar-node inidene matrix. Sine some rowsof M may ontain a single nonzero entry, we inlude a dummy node 0 in the vertex set of
H as explained in Setion 5.1. Thus the vertex set of H is {0, . . . , n − 1}. Note that H andthe graph G de�ned in Setion 6.1 are de�ne on the same vertex set. Furthermore there is aone-to-one orrespondene between ars in G and pairs of opposite ars in H. If an ar e of
G orresponds to the pair of opposite ars e+, e− in H, we say that e is the ar underlying e+and e−. Given any subset of ars of H, the underlying subset of ars of G is de�ned similarly.By Theorem 5.1, the 0-1 extreme rays (vα, vα+1

) of (6.14)�(6.15) orrespond to diretedyles in H. Note however that not all direted yles of H generate valid inequalities for
X, as not all extreme rays of (6.14)�(6.15) are zero-ost solutions of (6.13)�(6.15) for some x̄belonging to the relative interior of a fae de�ned by an inequality or an equation in Fα,α+1.In the following, we detet whih yles need to be really onsidered. The simple lemma belowwill be useful.Lemma 6.7 For ln ≤ α < un, let (vα, vα+1

) be a feasible solution of (6.14)�(6.15) (notneessarily a zero-ost solution). If the orresponding inequality (6.17) belongs to Fα,α+1 andis valid for {x ∈ R
n : Ax ≥ b, α ≤ xn ≤ α+ 1}, then it is implied by the system Ax ≥ b.Proof. Let cx ≥ δ denote inequality (6.17). Assume that cx ≥ δ is in Fα,α+1 and is valid for

{x ∈ R
n : Ax ≥ b, α ≤ xn ≤ α + 1} but not for {x ∈ R

n : Ax ≥ b}. Then there exists apoint x̂ suh that Ax̂ ≥ b, cx̂ < δ and either x̂n < α or x̂n > α + 1. Sine inequality cx ≥ δis in Fα,α+1, there exist two points xα ∈ Pα and xα+1 ∈ Pα+1 suh that cxα = cxα+1 = δ.If x̂n < α (the ase x̂n > α + 1 is similar), the segment [x̂, xα+1
] intersets Pα in a point ysuh that cy < δ. However this is not possible, as all points in the segment [x̂, xα+1

] satisfy
Ax ≥ b. �Remark 6.8 By Lemma 6.7, whenever we �nd an inequality cx ≥ δ of the form (6.17) thatis valid for {x ∈ R

n : Ax ≥ b, α ≤ xn ≤ α+ 1}, we an ignore it, as one of the following twopossibilities holds: either cx ≥ δ is implied by the original onstraints Ax ≥ b, or it does notbelong to Fα,α+1.3For �xed ln ≤ α < un, let (vα, vα+1
) be an extreme ray of (6.14)�(6.15). Reall that thepolyhedron P that we want to haraterize is de�ned by inequalities of the form (6.17), whihwe rewrite here for onveniene:

vαMxM + ρxn ≥ vαbα + ρα, (6.18)3This seond alternative is possible beause Lemma 6.7 does not require (vα, vα+1
) to be a zero-ostsolution.



6.3. Su�ieny of the inequalities 113where we use notation ρ := vαbα − vα+1bα+1. Sine vαM = vα+1M , the above inequality analso be written this way:
vα+1MxM + ρxn ≥ vα+1bα+1 + ρ(α+ 1). (6.19)We will use both versions of the inequality.Let D be the direted yle in H de�ned by ray (vα, vα+1

). If D onsists of a pair ofopposite ars that orrespond to the same ar of C, then vα = vα+1. Using (6.12) andequation vα = vα+1 one immediately obtains ρ = an. Then inequality (6.18) is equivalent to
vα[M | an]x ≥ vαbα + αan, i.e. vαAx ≥ vαb. This shows that inequality (6.18) is implied bythe original system Ax ≥ b.Therefore from now on we assume that D is a direted yle in H onsisting of at leastthree ars. Let C be the underlying undireted yle in G. We denote the sequene of nodesand ars of C as follows: (i0, e0, i1, . . . , ik, ek, ik+1) where k ≥ 2 and i0 = ik+1.The support of vα orresponds to the ars of D for whih the underlying ars of C arein E+(C). Symmetrially, the support of vα+1 orresponds to the ars of D for whih theunderlying ars of C are in E−(C). This implies

vαb = b+(C), vα+1b = b−(C). (6.20)Note that the support of olumn an orresponds to ars of type (b) of G. Then the value
vαan is the di�erene between the number of ars of type (b) in E+(C) entering node 0 andthe number of ars of type (b) in E+(C) leaving node 0. Similarly, the value vα+1an is thedi�erene between the number of ars of type (b) in E−(C) entering node 0 and the numberof ars of type (b) in E−(C) leaving node 0. It then follows that vαan and vα+1an an onlytake values in {0,±1}. Furthermore, using the above interpretation one an hek that thease vαan = 1 = −vα+1an annot hold. For onveniene of notation we de�ne δ := vαan and
ε := vα+1an.Using (6.12), one �nds

vαbα = vαb− δα, vα+1bα+1 = vα+1b− ε(α+ 1), (6.21)
vαA = (vαM, δ) and vα+1A = (vα+1M,ε). This implies that inequalities vαAx ≥ vαb and
vα+1Ax ≥ vα+1b are equivalent respetively to

vαMxM + δxn ≥ vαbα + δα, vα+1MxM + εxn ≥ vα+1bα+1 + ε(α + 1), (6.22)thus the above two inequalities are implied by the original system Ax ≥ b.We now distinguish three ases.1. Assume ρ ≥ δ. If xn ≥ α holds, summing the �rst inequality in (6.22) and (ρ− δ)xn ≥

(ρ−δ)α gives inequality (6.18). This means that suh an inequality is valid for all pointsin {x : Ax ≥ b, xn ≥ α} and by Remark 6.8 we an ignore this ase.



114 Chapter 6. Dual network sets with a single integer variable2. Now assume ρ < ε. If xn ≤ α + 1 holds, summing the seond inequality in (6.22) and
(ρ − ε)xn ≥ (ρ − ε)(α + 1) gives inequality (6.19). This means that suh an inequalityis valid for all points in {x : Ax ≥ b, xn ≤ α+ 1} and this ase an also be ignored.3. Finally assume ε ≤ ρ < δ. This ase is possible only if δ ≥ ε + 1. Sine, as observedabove, the ase δ = 1, ε = −1 annot hold, we neessarily have δ = ε + 1. Then, alsousing (6.21) and (6.20), we have
ρ = vαbα − vα+1bα+1 = vαb− vα+1b− α+ ε = b+(C) − b−(C) − α+ ε = d(C) − α+ ε,whih implies ρ = f(d(C)) + ε and α = ⌊d(C)⌋. We now show that C satis�es theonditions of Theorem 6.2 and inequality (6.18) is preisely inequality (6.5).Sine δ, ε ∈ {0,±1} and δ = ε+ 1, we have either δ = 1 and ε = 0, or δ = 0 and ε = −1.Realling the de�nition of δ and ε, one an verify that in both ases ar e0 is of type (b)while ek is not of type (b). Furthermore if δ = 1 and ε = 0 then e0 ∈ E+(C), while if
δ = 0 and ε = −1 then e0 ∈ E−(C). Thus C satis�es the onditions of Theorem 6.2 and
ε = ε(C).Sine vαbα = vαb − (ε + 1)α = b+(C) − (ε + 1) ⌊d(C)⌋ = b−(C) + d(C) − (ε + 1) ⌊d(C)⌋,one an hek that the right-hand side of inequality (6.18) is
vαbα + ρα = b−(C) + d(C) − (ε+ 1) ⌊d(C)⌋ + (f(d(C)) + ε) ⌊d(C)⌋

= b−(C) + f(d(C)) ⌊d(C) + 1⌋,whih is exatly the right-hand side of inequality (6.5).One an also verify that vαMxM =
∑

t∈T+(C)(xit −xit+1), with the onvention that x0 =

0. Finally the oe�ient of xn in inequality (6.18) is ρ = ε+ f(d(C)) = ε(C) + f(d(C)).Thus inequalities (6.18) and (6.5) oinide.This onludes the proof of Theorem 6.2.6.4 Chvátal rankWe proved in Setion 6.3 that all inequalities (6.5) are simple MIR-inequalities (thus the splitrank of the system (6.1)�(6.3) is one). We investigate here whether inequalities (6.5) anbe obtained through Chvátal-Gomory rounding, when onsidering an equivalent pure integerformulation of P . That is, we disuss the Chvátal rank of suh a formulation (see Setion 1.3.1).From now on we assume that all right-hand sides of the inequalities of the system Ax ≥ b(i.e. inequalities (6.1)�(6.3)) are rational number. Let K be the smallest positive integer suhthat Kbij ∈ Z for all ij ∈ E. Sine the onstraint matrix A of the system (6.1)�(6.3) is totallyunimodular, Lemma 2.11 shows that for every vertex x̄ of P , Kx̄ is an integral vetor. Thisproves that the hange of variables
yi := Kxi for i 6= n, yn := xn (6.23)



6.4. Chvátal rank 115maps P into Q, where Q is the onvex hull of the following pure integer set:
yi − yj ≥ Klij, (i, j) ∈ N e, i, j 6= n, (6.24)

yi −Kyn ≥ Klin, (i, n) ∈ N e, (6.25)
Kyn − yi ≥ Klnj, (n, j) ∈ N e, (6.26)

yi ≥ Kli, i ∈ N l \ {n}, (6.27)
yi ≤ Kui, i ∈ Nu \ {n}, (6.28)

ln ≤ yn ≤ un, (6.29)
yi integer, i ∈ N, (6.30)where the lower (resp. upper) bound in (6.29) appears if and only if n ∈ N l (resp. n ∈ Nu).We prove here that if K ≤ 3 then the Chvátal rank of the polyhedron (6.24)�(6.29) isone, while for every K ≥ 4 it is possible to onstrut very simple instanes with Chvátal rankgreater than one.For the ase K = 2, a similar result was proven by Conforti, Gerards and Zambelli [15℄for the set onsidered in Setion 4.5.2 (with an arbitrary number of integer variables).Lemma 6.9 If K ∈ {2, 3}, the polyhedron de�ned by (6.24)�(6.29) has Chvátal rank one.Proof. We prove that every inequality of the type (6.5) an be obtained by applying theChvátal-Gomory proedure (Theorem 1.10) to the inequalities (6.24)�(6.29).Let C be as in Theorem 6.2. We only onsider the ase ε(C) = 0, the other ase beinganalogous.Reall from Setion 6.2 that inequality (6.7) is valid for the original system Ax ≥ bwhenever ε(C) = 0. In the y-variables, this inequality reads
∑

t∈T+(C)

(yit − yit+1) +Kyn ≥ Kb+(C). (6.31)Also reall that inequality (6.9) is valid for the original system whenever ε(C) = 0. Usingrelation (6.6), this inequality in the y-variables reads
∑

t∈T+(C)

(yit − yit+1) ≥ Kb−(C). (6.32)We now ombine inequalities (6.31) and (6.32) with oe�ients f(d(C)) and 1 − f(d(C))respetively. The resulting inequality is
∑

t∈T+(C)

(yit − yit+1) +Kf(d(C))yn ≥ Kf(d(C))b+(C) +K
(
1 − f(d(C))

)
b−(C).Using d(C) = b+(C) − b−(C), we an rewrite the above inequality as follows:

∑

t∈T+(C)

(yit − yit+1) +Kf(d(C))yn ≥ Kb−(C) +Kf(d(C))d(C). (6.33)



116 Chapter 6. Dual network sets with a single integer variableClearly Kf(d(C)) ∈ {0, . . . ,K − 1}. If Kf(d(C)) = 0, the right-hand side of inequal-ity (6.33) is Kb−(C). Then in this ase inequality (6.33) oinides with (6.5) under the hangeof variables (6.23).If Kf(d(C)) = 1, the right-hand side of inequality (6.33) is Kb−(C) + d(C). Sine the left-hand side of the inequality is an integer while d(C) is frational, we an round the right-handside to Kb−(C) + ⌊d(C) + 1⌋. The resulting inequality oinides with (6.5) under the hangeof variables (6.23).If Kf(d(C)) = 2 (and K = 3), the right-hand side of inequality (6.33) is 3b−(C) + 2d(C).Note that the frational part of this number is 1/3. Sine the left-hand side of the inequalityis an integer, we an round the right-hand side to
3b−(C) + 2d(C) + 2/3 = 3b−(C) + 2(d(C) + 1/3) = 3b−(C) + 2 ⌊d(C) + 1⌋.The resulting inequality oinides with (6.5) under the hange of variables (6.23). �We remark that if K = 4, ase Kf(d(C)) = 2 of the above proof fails, as in this ase theright-hand side of inequality (6.33) is 4b−(C) + 2d(C). Sine this number is now an integer,the rounding is not possible and we obtain an inequality whih is weaker than (6.5).In fat the result of the above lemma is best possible, as shown below.Lemma 6.10 For any K ≥ 4 there exists a polyhedron of the type (6.24)�(6.29) with n = 3having Chvátal rank greater than one.Proof. Consider the following dual network set:

−x1 + x2 ≥ 1/K, (6.34)
−x1 + x3 ≥ 3/K, (6.35)

x2 ≥ 0, (6.36)
x3 integer. (6.37)Applying the hange of variables (6.23), the pure integer reformulation of the type (6.24)�(6.30)is the following:

−y1 + y2 ≥ 1, (6.38)
−y1 +Ky3 ≥ 3, (6.39)

y2 ≥ 0, (6.40)
y1, y2 integer. (6.41)De�ne the graph G as explained in Setion 6.1 and let C be the undireted yle in Gformed by the sequene of ars (0, 1), (2, 1), (2, 0). The orresponding valid inequality (6.5) for(6.34)�(6.37) is −x1 + x2 + 2

K
x3 ≥ 3

K
, whih in the y variables reads
− y1 + y2 + 2y3 ≥ 3. (6.42)We prove that this inequality is not a Chvátal-Gomory utting plane for the polyhedron(6.38)�(6.40).



6.4. Chvátal rank 117Any Chvátal-Gomory inequality for (6.38)�(6.40) is obtained by ombining (6.38)�(6.40)with nonnegative oe�ients and then rounding up the right hand side:
u(−y1 + y2) + v(−y1 +Ky3) + wy2 ≥ ⌈u+ 3v⌉,where u, v,w ≥ 0. Then (6.42) is a Chvátal-Gomory inequality if and only if the optimumvalue of the following linear program is greater than 2:

max u+ 3v (6.43)subjet to −u− v = −1, (6.44)
u+ w = 1, (6.45)
Kv = 2, (6.46)

u, v,w ≥ 0. (6.47)However onditions (6.46) and K ≥ 4 imply v ≤ 1/2. By (6.44) the objetive funtion isthen u+ 3v = 2v + 1 ≤ 2 and thus inequality (6.42) annot be obtained via Chvátal-Gomoryrounding. �We an summarize the results of this setion as follows:Theorem 6.11 The Chvátal rank of the polyhedron (6.24)�(6.30) is one if K ∈ {2, 3}, whileit is (in general) greater than one for K ≥ 4.If K = 1, the Chvátal rank of (6.24)�(6.30) is learly equal to zero (i.e. the polyhedron isintegral), as the onstraint matrix is totally unimodular and the right-hand side is an integralvetor.





Chapter 7Extension to simple non dual networksetsIn Chapters 2�5 we presented, disussed and demonstrated a tehnique to onstrut extendedformulations for mixed-integer sets with dual network onstraint matrix. Suh a tehnique isbased on the expliit enumeration of all the frational parts taken by the ontinuous variablesin the verties of the onvex hull of the set. It is natural to wonder whether this approah anbe extended to other kinds of mixed-integer sets.In this hapter we onsider two examples of a mixed-integer set whose onstraint matrixhas a simple struture but is not totally unimodular (in fat, it is not even a 0,±1-matrix).Both sets are speial ases of the following quite natural generalization of the mixing set (seeSetion 4.2):
s+ Cizi ≥ bi, 1 ≤ i ≤ n, (7.1)

s ≥ 0, (7.2)
zi integer, 1 ≤ i ≤ n, (7.3)where bi, Ci ∈ R for 1 ≤ i ≤ n. Clearly the mixing set is the above set with Ci = 1 for allindies 1 ≤ i ≤ n.The motivation for the study of the above set is the same as that desribed for the mixingset in Setion 4.2. In partiular, the presene of more general oe�ients Ci allows oneto model lot-sizing problems with non-onstant apaities (for this reason these oe�ientsare also alled apaities). However, the above set is also interesting in its own right, asonstraints (7.1) have a very simple form and thus a deep understanding of suh a set wouldprobably be useful to takle more ompliated mixed-integer sets. Unfortunately, it is stillunknown whether linear optimization over a general set of the type (7.1)�(7.3) an be arriedout in polynomial time.In the next setions we show how the approah desribed in the previous hapters an beextended and how this yields extended formulations for the two sets that are analyzed here.However, we will point out that the suess in �nding suh formulations relies upon the fatthat eah integer variable zi appear in a single onstraint (7.1).119



120 Chapter 7. Extension to simple non dual network setsIn Setion 7.1 we onsider the set (7.1)�(7.3) where the apaities Ci satisfy a divisibil-ity assumption, while in Setion 7.2 we study the ase of only two distint apaities. Forthe former set the size of the extended formulation is polynomial in the size of the originaldesription of the set, while for the latter we an only obtain a pseudo-polynomial desription.The results of Setion 7.1 are joint work with Mihele Conforti and Laurene A. Wolseyand are also summarized in [14℄.7.1 The mixing set with divisible apaitiesThe mixing set with divisible apaities is a set of the type (7.1)�(7.3) where the oe�ients(apaities) Ci for 1 ≤ i ≤ n an be ordered in suh a way that they form a sequene ofdivisible numbers. Here we also allow arbitrary lower and upper bounds on the ontinuousvariable. If we group together onstraints of type (7.1) assoiated with the same value of Ci,the mixing set with divisible apaities an be desribed as follows:
s+Ckzi ≥ bi, i ∈ Ik, 0 ≤ k ≤ m, (7.4)
bl ≤ s ≤ bu, (7.5)
zi integer, i ∈ I0 ∪ · · · ∪ Im, (7.6)where Ck/Ck−1 is an integer greater than one for 1 ≤ i ≤ m and Ij ∩ Ik = ∅ for j 6= k. Weassume that l, u /∈ I0 ∪ · · · ∪ Im and all numbers Ck, bi are rational. We denote by DIV theabove mixed-integer set.The assumption of divisibility of the oe�ients was exploited by several authors to takleinteger sets that are otherwise untratable, suh as integer knapsak problems. Under thedivisibility assumption, Marotte [42℄ gave a simple formulation of the integer knapsak setwithout upper bounds on the variables. Pohet and Wolsey [54℄ studied the same set wherethe knapsak inequality is of the �≥� type. They gave both a formulation of the set in itsoriginal spae (onsisting of an exponential number of inequalities) and a ompat formulationin an extended spae. Pohet and Weismantel [51℄ provided a linear inequality desriptionof the knapsak set where all variables are bounded. Other hard problems studied underthe assumption of divisibility of the oe�ients inlude network design [52℄ and lot-sizingproblems [16℄.The set (7.4)�(7.6) with just two distint apaities (i.e. m = 2) and without upper boundon s was studied by Van Vyve in [63℄, where both a ompat extended formulation and alinear inequality desription of the set in its original spae were given. The set DIV withgeneral m and without upper bound on s was treated reently by Zhao and de Farias [72℄,who haraterized the extreme points and extreme rays of the set and provided an O

(
n4
)algorithm for optimizing a rational linear funtion (suh a running time an be improved to

O
(
n3
) [20℄). However, they did not give a linear inequality formulation of the set either inthe original spae or in an extended spae.We give here an extended formulation of the polyhedron conv(DIV ) whose size is poly-nomial in the size of the original desription (7.4)�(7.6). In Setion 7.1.1 we introdue an



7.1. The mixing set with divisible apaities 121expansion of a real number x:
x = α0(x) +

m+1∑

j=1

αj(x)Cj−1,where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ m, and 0 ≤ α0(x) < C0. Furthermore αj(x) is an integerfor 1 ≤ j ≤ m+ 1. We show in Setion 7.1.3 that for �xed j, the number of possible valuesthat αj(s) an take over the set of verties of conv(DIV ) is bounded by a linear funtion ofthe number of onstraints (7.4). This property allows us to assoiate a binary variable witheah of these possible values. These binary variables are the important additional variablesof our ompat extended formulation, whih is onstrut in Setions 7.1.3�7.1.6. In ontrastto Van Vyve's result [63℄ for the ase m = 2, our formulation de�nes an integral polyhedronin the extended spae. In Setion 7.1.7 we brie�y disuss how to formulate the polyhedron

conv(DIV ) when there are lower bounds on the integer variables. Finally, in Setion 7.1.8 wepoint out some unsatisfatory aspets of our result.7.1.1 Expansion of a numberThe tehnique that we use here generalizes that adopted in Chapter 2 for mixed-integer setswith dual network onstraint matrix. In that hapter, the ontinuous variables were deom-posed into an integer part plus a frational part. Here the presene of several distint oe�-ients in onstraints (7.4) leads us to iterate a deomposition of that type. This requires theintrodution of some notation.Our arguments are based on the following expansion of a real number x:
x = α0(x) +

m+1∑

j=1

αj(x)Cj−1, (7.7)where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ m, and 0 ≤ α0(x) < C0. Furthermore αj(x) is an integerfor 1 ≤ j ≤ m + 1 (this is not required for α0(x)). Note that the above expansion is unique.If we de�ne

f0(x) := α0(x), fk(x) := f0(x) +

k∑

j=1

αj(x)Cj−1 for 1 ≤ k ≤ m, (7.8)we have that
x = fk(x) +

m+1∑

j=k+1

αj(x)Cj−1 for 0 ≤ k ≤ m. (7.9)Therefore fk(x) is the remainder of the division of x by Ck and it an be heked that
αk(x) =

⌊
fk(x)

Ck−1

⌋

=
fk(x) − fk−1(x)

Ck−1
for 1 ≤ k ≤ m, αm+1(x) =

⌊
x

Cm

⌋

=
x− fm(x)

Cm
.We also de�ne ∆k(x) as the quotient of the division of x by Ck. That is,

∆k(x) =

⌊
x

Ck

⌋

=
x− fk(x)

Ck

=
m+1∑

j=k+1

Cj−1

Ck

αj(x) for 0 ≤ k ≤ m. (7.10)



122 Chapter 7. Extension to simple non dual network setsWe remark that the above expression yields the following expansion of x:
x = Ck∆k + fk(x) for 0 ≤ k ≤ m. (7.11)Note that if Ck = 1 then (7.11) is preisely the deomposition of a real number into an integerpart plus a frational part.It is also useful to introdue the following notation: for 0 ≤ k ≤ m, we de�ne Jk :=

Ik ∪ Ik+1 ∪ · · · ∪ Im ∪ {l, u}.7.1.2 Assumptions on the upper boundIn this setion we make some onvenient assumptions on the value of bu. As we now explain,this an be done without loss of generality.If for any γ ∈ R we apply the mixed-integer linear mapping (see Setion 4.1)
s′ := s+ γ, z′i := zi for i ∈ I0 ∪ · · · ∪ Im,the mixed-integer set (7.4)�(7.6) beomes

s′ + Ckz
′
i ≥ b′i, i ∈ Ik, 0 ≤ k ≤ m, (7.12)

b′l ≤ s′ ≤ b′u, (7.13)
zi integer, i ∈ I0 ∪ · · · ∪ Im, (7.14)where b′i := bi +γ for all i ∈ J0. Sine the above set is of the same type as (7.4)�(7.6), withoutloss of generality we an study the set (7.12)�(7.14) for a spei� value of γ. We now hoose avalue of γ whih will allow us to onstrut an extended formulation of the onvex hull of theabove set.Lemma 7.1 De�ne the set of indies T := {i ∈ J0 \ {u} : α0(bi) > α0(bu)} and the value

α∗ :=

{

mini∈T α0(bi) if T 6= ∅,

C0 if T = ∅.If one sets γ∗ := C0 − α∗, then α0(bu + γ∗) = maxi∈J0 α0(bi + γ∗).Proof. First of all note that sine α∗ > α0(bu), then α0(bu) + γ∗ < C0. Thus α0(bu + γ∗) =

α0(bu) + γ∗. Let i be any index in J0. If α0(bi) + γ∗ ≥ C0 then
α0(bi + γ∗) = α0(bi) + γ∗ − C0 < γ∗ ≤ α0(bu) + γ∗ = α0(bu + γ∗).We then assume α0(bi) + γ∗ < C0, whih is equivalent to α0(bi) < α∗. Then by de�nition of

α∗ we have α0(bi) ≤ α0(bu), thus
α0(bi + γ∗) = α0(bi) + γ∗ ≤ α0(bu) + γ∗ = α0(bu + γ∗).This onludes the proof of the lemma. �



7.1. The mixing set with divisible apaities 123We hoose γ to be any number suh that α0(bu + γ) = γ∗ and αk(bu + γ) = Ck

Ck−1
− 1for 1 ≤ k ≤ m − 1. Note that ondition α0(bu + γ) = γ∗ and Lemma 7.1 together imply

α0(b
′
u) = maxi∈J0 α0(b

′
i).Without loss of generality, we assume diretly that the above properties hold for ouroriginal set (7.4)�(7.6):

α0(bu) = max
i∈J0

α0(bi), αk(bu) =
Ck

Ck−1
− 1 for 1 ≤ k ≤ m− 1. (7.15)The above assumption, whih will be useful in modeling the upper bound s ≤ bu, will bedisussed in Setion 7.1.8.7.1.3 Properties of the vertiesThe tehnique desribed in Chapter 2 is based on the expliit enumeration of all the possiblefrational parts taken by the ontinuous variables at a vertex of the onvex hull of the setunder onsideration. More information is now needed to �nd an extended formulation of

conv(DIV ): in partiular, for all 0 ≤ k ≤ m we need to list all the possible values αk(s) forthe verties (s, z) of conv(DIV ).This setion desribed properties of the verties of conv(DIV ) that will be used to on-strut the extended formulation. The assumption desribed in Setion 7.1.2 is not neededhere.Given a real number s and an index 0 ≤ k ≤ m, for i ∈ Jm \ {u} we de�ne
bi,k(s) =

{

bi + Ck if fk(bi) > fk(s),

bi if fk(bi) ≤ fk(s),while we set
bu,k(s) =

{

bu if fk(bu) ≥ fk(s),

bu − Ck if fk(bu) < fk(s).We will see that the disrepany in the above de�nitions re�ets the fat that all onstraints(7.4)�(7.5) are of the type �≥�, exept s ≤ bu.Lemma 7.2 Consider two indies 0 ≤ k ≤ ℓ. Then for i ∈ Iℓ the inequality
∆k(s) +

Cℓ

Ck

zi ≥ ∆k(bi,k(s)) (7.16)is valid for (7.4)�(7.6) and implies inequality s+ Cℓzi ≥ bi.Proof. Expanding s and bi as in (7.11), inequality s+ Cℓzi ≥ bi an be rewritten as
∆k(s) +

Cℓ

Ck

zi ≥ ∆k(bi) +
fk(bi) − fk(s)

Ck

.Sine ℓ ≥ k, the left-hand side of the above inequality is an integer. Therefore the followinginequality is valid for (7.4)�(7.6):
∆k(s) +

Cℓ

Ck
zi ≥ ∆k(bi) +

⌈
fk(bi) − fk(s)

Ck

⌉

= ∆k(bi,k(s)).This also shows that inequality (7.16) implies the original inequality s+ Cℓzi ≥ bi. �



124 Chapter 7. Extension to simple non dual network setsA similar argument an be used to prove the following lemma:Lemma 7.3 Consider an index k ≥ 0. Then the inequalities
∆k(bl,k(s)) ≤ ∆k(s) ≤ ∆k(bu,k(s)) (7.17)are valid for (7.4)�(7.6) and imply inequalities bl ≤ s ≤ bu.Proof. For the lower bound, the proof is essentially idential to that of Lemma 7.2. As to theupper bound, it is su�ient to make obvious hanges to the above proof. �Note that inequalities (7.16) and (7.17) involve the term bi,k(s) and thus are not linearinequalities. We will show in Setion 7.1.4 how to linearize these onstraints, using the fatthat for �xed k, there are only two possible values for bi,k(s).Lemma 7.4 Let (s̄, z̄) be a point in conv(DIV ).(i) Given indies 1 ≤ k ≤ ℓ and i ∈ Iℓ, if αk(s̄) 6= αk(bi,k−1(s̄)) then s̄+ Cℓz̄i ≥ bi + Ck−1.(ii) Given an index k ≥ 1, if αk(s̄) 6= αk(bl,k−1(s̄)) then s̄ ≥ bl + Ck−1, and if αk(s̄) 6=

αk(bu,k−1(s̄)) then s̄ ≤ bu − Ck−1.Proof. We prove (i). By Lemma 7.2, (s̄, z̄) satis�es inequality (7.16) for the pair of indies
k − 1, ℓ, that is,

∆k−1(s) +
Cℓ

Ck−1
zi ≥ ∆k−1(bi,k−1(s)).By (7.10) the above inequality an be rewritten as

m+1∑

j=k

Cj−1

Ck−1
αj(s) +

Cℓ

Ck−1
zi ≥

m+1∑

j=k

Cj−1

Ck−1
αj(bi,k−1(s)),or equivalently as

m+1∑

j=k+1

Cj−1

Ck−1
αj(s) +

Cℓ

Ck−1
zi −

m+1∑

j=k+1

Cj−1

Ck−1
αj(bi,k−1(s)) ≥ αk(bi,k−1(s)) − αk(s). (7.18)Sine {Cj−1

Ck−1
: k + 1 ≤ j ≤ m+ 1

} is a sequene of divisible integers and sine ℓ ≥ k, the left-hand side of the above inequality is an integer multiple of Ck/Ck−1. Sine the right-handside is an integer satisfying −Ck/Ck−1 < αk(bi,k−1(s)) − αk(s) < Ck/Ck−1, this shows that if
αk(s̄) 6= αk(bi,k−1(s̄)), then inequality (7.18) annot be tight for (s̄, z̄), thus

∆k−1(s̄) +
Cℓ

Ck−1
z̄i ≥ ∆k−1(bi,k−1(s̄)) + 1.Sine bi,k−1(s̄) = bi + Ck−1 if fk−1(bi) > fk−1(s̄) and bi,k−1(s̄) = bi if fk−1(bi) ≤ fk−1(s̄), thisshows that in both ases

fk−1(s̄)

Ck−1
+ ∆k−1(s̄) +

Cℓ

Ck−1
z̄i ≥ ∆k−1(bi) +

fk−1(bi)

Ck−1
+ 1.Multiplying the above inequality by Ck−1 gives s̄+ Cℓz̄i ≥ bi + Ck−1.The proof of (ii) is similar. �



7.1. The mixing set with divisible apaities 125The following result gives us the list of all possible values αk(s) taken at the verties of
conv(DIV ).Lemma 7.5 If (s̄, z̄) is a vertex of conv(DIV ), then the following properties hold:(i) α0(s̄) = α0(bi) for some i ∈ J0.(ii) For 1 ≤ k ≤ m, αk(s̄) = αk(bi,k−1(s̄)) for some i ∈ Jk.Proof. Let (s̄, z̄) be a vertex of conv(DIV ). Sine z̄ is an integral vetor, if (i) is violated thenthere exists a number ε 6= 0 suh that (s̄ ± ε, z̄) ∈ DIV , a ontradition.Assume that (ii) is violated, that is, there exists an index 1 ≤ k ≤ m suh that αk(s̄) 6=

αk(bi,k−1(s̄)) for all i ∈ Jk. By Lemma 7.4 we have that bl + Ck−1 ≤ s̄ ≤ bu − Ck−1 and
s̄ + Cℓz̄i ≥ bi + Ck−1 for all i ∈ Iℓ with ℓ ≥ k. Consider the vetor v whose omponents arede�ned as follows:

s = −Ck−1; zi =
Ck−1

Cℓ

for i ∈ Iℓ with ℓ ≤ k − 1; zi = 0 for i ∈ Iℓ with ℓ ≥ k.Sine both points (s̄, z̄) ± v belong to DIV , (s̄, z̄) is not a vertex of conv(DIV ). �We now introdue extra variables to model the possible values taken by s at a vertex of
conv(DIV ). The new variables are the following:

• ∆0, w0,i for i ∈ J0;
• ∆k, w↓

k,i, w
↑
k,i for 1 ≤ k ≤ m and i ∈ Jk.The role of the above variables is as follows:

• Variables ∆k for 1 ≤ k ≤ m represent the quotients of the division of s by Ck. That is,
∆k = ∆k(s) as de�ned in (7.10).

• Variables w0,i for i ∈ J0 are binary variables. Exatly one of them is equal to 1: ondition
w0,i = 1 indiates that α0(s) = α0(bi).

• For �xed 1 ≤ k ≤ m, variables w↓
k,i, w

↑
k,i for i ∈ Jk are binary variables. Exatly one ofthem is equal to one:(a) for i ∈ Jk \ {u}, ondition w↓

k,i = 1 indiates that αk(s) = αk(bi), while ondition
w↑

k,i = 1 indiates that αk(s) = αk(bi + Ck−1);(b) for i = u, ondition w↓
k,u = 1 indiates that αk(s) = αk(bu −Ck−1), while ondition

w↑
k,u = 1 indiates that αk(s) = αk(bu)In order to write the upoming onstraints in a ompat form, we introdue the followingsimple notation: for 1 ≤ k ≤ m and i ∈ Jk, we de�ne

bi,k =

{

bi if i 6= u,

bi − Ck if i = u.This de�nition allows us to unify (a) and (b) (see above) into the following:



126 Chapter 7. Extension to simple non dual network sets(a)�(b) for all i ∈ Jk, ondition w↓
k,i = 1 indiates that αk(s) = αk(bi,k−1), while ondition

w↑
k,i = 1 indiates that αk(s) = αk(bi,k−1 + Ck−1).Now onsider the following onditions:

s = C0∆0 +
∑

t∈J0

α0(bt)w0,t, (7.19)
∆k−1 =

Ck

Ck−1
∆k +

∑

t∈Jk

(
αk(bt,k−1)w

↓
k,t + αk(bt,k−1 + Ck−1)w

↑
k,t

)
, 1 ≤ k ≤ m, (7.20)

w0,t ≥ 0, t ∈ J0;
∑

t∈J0

w0,t = 1, (7.21)
w↓

k,t, w
↑
k,t ≥ 0, t ∈ Jk;

∑

t∈Jk

(
w↓

k,t + w↑
k,t

)
= 1, 1 ≤ k ≤ m, (7.22)

∑

t∈J0:
α0(bt)≥α0(bi)

w0,t ≥ w↓
1,i, i ∈ J1, (7.23)

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t ≥ w↓

k+1,i, i ∈ Jk+1, 1 ≤ k < m,(7.24)
∆k, w0,t, w

↓
k,t,w

↑
k,t integer, t ∈ Jk, 0 ≤ k ≤ m.(7.25)Lemma 7.6 Every vertex (s̄, z̄) of conv(DIV ) an be ompleted to a vetor (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)satisfying onditions (7.19)�(7.25).Proof. Given a vertex (s̄, z̄) of conv(DIV ), let t0 be any index in J0 suh that α0(bt0) = α0(s̄)(t0 exists by Lemma 7.5 (i)). Take w̄0,t0 := 1 and w̄0,t := 0 for t 6= t0.Now �x k ≥ 1 and de�ne
Tk(s̄) := {t ∈ Jk : αk(s̄) = αk(bt,k−1), fk−1(s̄) ≥ fk−1(bt,k−1)}.If Tk(s̄) 6= ∅ then de�ne tk as any element in Tk(s̄) suh that fk−1(btk ,k−1) is maximum andtake w̄↓

k,tk
:= 1. Otherwise (Tk(s̄) = ∅) de�ne tk as any index in Jk suh that αk(s̄) =

αk(btk ,k−1 + Ck−1) (tk exists by Lemma 7.5 (ii)) and take w̄↑
k,tk

:= 1.Finally take ∆̄k := ∆k(s̄) for 0 ≤ k ≤ m.We prove that the point thus onstruted satis�es onditions (7.19)�(7.25). To see that(7.19) is satis�ed, note that
C0∆̄0 +

∑

t∈J0

α0(bt)w̄0,t = C0∆0(s̄) + α0(bt0) = C0∆0(s̄) + f0(bt0) = s̄.To prove the validity of (7.20), note that the following hain of equations holds:
Ck

Ck−1
∆̄k +

∑

t∈Jk

(
αk(bt,k−1)w̄

↓
k,t + αk(bt,k−1 + Ck−1)w̄

↑
k,t

)

=
Ck

Ck−1
∆k(s̄) + αk(s̄) = ∆k−1(s̄) = ∆̄k−1.



7.1. The mixing set with divisible apaities 127To see that (7.23) is veri�ed, suppose that w̄↓
1,i = 1 for the index i ∈ J1. Then neessarily

i = t1 ∈ T1(s̄) and thus f0(s̄) ≥ f0(bi,0) = f0(bi), that is, α0(s̄) ≥ α0(bi). Then α0(bt0) =

α0(s̄) ≥ α0(bi) and (7.23) is satis�ed.We now onsider (7.24) for k ≥ 1. Suppose that w↓
k+1,i = 1 for the index i ∈ Jk+1. Thenneessarily i = tk+1 ∈ Tk+1(s̄). Therefore αk+1(s̄) = αk+1(bi,k) and fk(s̄) ≥ fk(bi,k). Thisimplies αk(s̄) ≥ αk(bi,k). We distinguish two ases.1. Assume αk(s̄) ≥ αk(bi,k) + 1. If Tk(s̄) 6= ∅ then w̄↓

k,t = 1 for an index t ∈ Jk suhthat αk(bt,k−1) = αk(s̄) ≥ αk(bi,k) + 1 and thus fk(bt,k−1) ≥ fk(bi,k). If Tk(s̄) = ∅ then
w̄↑

k,t = 1 for an index t ∈ Jk suh that αk(bt,k−1 +Ck−1) = αk(s̄) ≥ αk(bi,k)+ 1. In bothases (7.24) is satis�ed.2. Now assume αk(s̄) = αk(bi,k). Then inequality fk(s̄) ≥ fk(bi,k) implies fk−1(s̄) ≥

fk−1(bi,k), thus i ∈ Tk(s̄) 6= ∅. Then the hoie of tk shows that αk(btk ,k−1) = αk(s̄) =

αk(bi,k) and fk−1(btk ,k−1) ≥ fk−1(bi,k), thus fk(btk ,k−1) ≥ fk(bi,k) and (7.24) is satis�ed.Constraints (7.21)�(7.22) and (7.25) are learly satis�ed. �We say that (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) is a standard ompletion of the vertex (s̄, z̄) of conv(DIV )if ∆̄, w̄, w̄↓, w̄↑ are hosen as in the above proof. Then the above proof shows that every vertexof conv(DIV ) has a standard ompletion satisfying (7.19)�(7.25).Note that the �nal part of the proof of Lemma 7.6 also shows the following:Lemma 7.7 Fix 0 ≤ k ≤ m and i ∈ Ik. If (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) is a standard ompletion of thevertex (s̄, z̄) of conv(DIV ), where fk(s̄) ≥ fk(bi), then
∑

t∈J0:
α0(bt)≥α0(bi)

w̄0,t = 1 if k = 0, (7.26)
∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w̄↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w̄↑
k,t = 1 if k ≥ 1. (7.27)7.1.4 Linearizing the onstraintsAs already observed, onstraints (7.16) and (7.17) are not linear inequalities. We show herehow they an be linearized. For this purpose we need to prove a result whih is stronger thanthe inverse of Lemma 7.7, as it holds not only for standard ompletions, but for all othervetors too.Lemma 7.8 Fix 0 ≤ k ≤ m and i ∈ Ik. If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) satis�es onditions(7.19)�(7.25) along with equation (7.26) if k = 0 or (7.27) if k ≥ 1, then fk(s̄) ≥ fk(bi).Proof. Assume that k = 0 and equation (7.26) is satis�ed. If t ∈ J0 is the index suh that
w̄0,t = 1 then, by (7.19) and (7.26), f0(s̄) = α0(bt) ≥ α0(bi) = f0(bi).



128 Chapter 7. Extension to simple non dual network setsBy indution, we now assume that the result holds for an index 0 ≤ k < m. We have toprove that if
∑

t∈Jk+1:
fk+1(bt,k)≥fk+1(bi,k+1)

w̄↓
k+1,t +

∑

t∈Jk+1:
αk+1(bt,k+Ck)≥αk+1(bi,k+1)+1

w̄↑
k+1,t = 1, (7.28)then fk+1(s̄) ≥ fk+1(bi).If w̄↑

k+1,t = 1 for some t ∈ Jk+1, then (7.20) and the above equation give αk+1(s̄) =

αk+1(bt,k + Ck) ≥ αk+1(bi,k+1) + 1, thus fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi).If w̄↓
k+1,t = 1 for some t ∈ Jk+1, equation (7.28) implies that fk+1(bt,k) ≥ fk+1(bi,k+1),thus αk+1(bt,k) ≥ αk+1(bi,k+1). Assume �rst αk+1(bt,k) ≥ αk+1(bi,k+1) + 1. Then αk+1(s̄) =

αk+1(bt,k) ≥ αk+1(bi,k+1) + 1, thus fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi).Finally assume that w̄↓
k+1,t = 1 for some t ∈ Jk+1 suh that αk+1(bt,k) = αk+1(bi,k+1).Sine (7.28) implies fk+1(bt,k) ≥ fk+1(bi,k+1), we then have fk(bt,k) ≥ fk(bi,k+1). Inequal-ity (7.24) for the index t implies that

∑

j∈Jk:
fk(bj,k−1)≥fk(bt,k)

w̄↓
k,j +

∑

j∈Jk:
αk(bj,k−1+Ck−1)≥αk(bt,k)+1

w̄↑
k,j = 1.Then, by indution, fk(s̄) ≥ fk(bt), whih an also be written as fk(s̄) ≥ fk(bt,k). This, to-gether with inequality fk(bt,k) ≥ fk(bi,k+1) proven above, shows that fk(s̄) ≥ fk(bi,k+1). Using

αk+1(s̄) = αk+1(bt,k) = αk+1(bi,k+1), we onlude that fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi). �The following result gives a linear version of inequality (7.16).Lemma 7.9 For 0 ≤ k ≤ m and i ∈ Ik, the following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) an be ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) thatsatis�es onditions (7.19)�(7.25) along with the linear inequality

∆0 +
∑

t∈J0:
α0(bt)≥α0(bi)

w0,t + zi ≥

⌊
bi
C0

⌋

+ 1 if k = 0, (7.29)
∆k +

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t + zi ≥

⌊
bi
Ck

⌋

+ 1 if k ≥ 1.(7.30)(ii) If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satis�es onditions (7.19)�(7.25) and inequality (7.29) if

k = 0 or (7.30) if k ≥ 1, then s̄+ Ckz̄i ≥ bi.Proof. (i) Let (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) be a standard ompletion of the vertex (s̄, z̄) of conv(DIV ).By Lemma 7.2 (with ℓ = k), (s̄, z̄) satis�es inequality

∆k(s) + zi ≥

{

∆k(bi) + 1 if fk(s̄) < fk(bi),

∆k(bi) if fk(s̄) ≥ fk(bi).
(7.31)



7.1. The mixing set with divisible apaities 129After realling that ∆̄k = ∆k(s̄) and ∆k(bi) = ⌊bi/Ck⌋, the result follows form Lemma 7.7.(ii) Note that for every point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satisfying (7.19)�(7.25), equation ∆̄ =

∆(s̄) holds. Then, by Lemma 7.2 (with ℓ = k), it is su�ient to prove that (7.31) is satis�ed.This follows from Lemma 7.8. �In the above proof we used Lemma 7.2 with ℓ = k. In fat, the same lemma ould be usedto �nd di�erent (but similar) linear versions of inequality (7.16). However, the hoie ℓ = k ispreferable as it leads to inequalities (7.29)�(7.30), whih have a oe�ient of 1 in variable zi.This property will be ruial in the proof of Theorem 7.15 �the main result of this setion.We now show how to model the lower bound on s. As before, we present a linear inequalitywhose form will allow us to prove the main result of the setion. Suh a linear inequalityinvolves variables ∆m, w
↓
i,m, w

↑
i,m for i ∈ Jm. However, for eah k the same tehnique allowsone to write a similar inequality that uses variables ∆k, w

↓
i,k, w

↑
i,k for i ∈ Jk.Lemma 7.10 The following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) an be ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) thatsatis�es onditions (7.19)�(7.25) along with the linear inequality
∆m +

∑

t∈Jm:
fm(bt,m−1)≥fm(bi,m)

w↓
m,t +

∑

t∈Jm:
αm(bt,m−1+Cm−1)≥αm(bi,m)+1

w↑
m,t ≥

⌊
bl
Cm

⌋

+ 1. (7.32)(ii) If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satis�es onditions (7.19)�(7.25) and inequality (7.32), then

s̄ ≥ bl.Proof. The proof is similar to that of Lemma 7.9 (Lemma 7.3 with k = m is needed). �We now turn to the upper bound onstraint s ≤ bu. We would like to model this inequalityin a way that is similar to what we did above. Without any spei� assumptions on the valueof bu, the only simple way to do this seems to be the following (the proof is similar to that ofthe above lemma):
∆0 +

∑

i∈J0:
α0(bi)>α0(bu)

w0,i ≤

⌊
bu
C0

⌋

. (7.33)However, suh an inequality would not allow us to prove the main result of the setion. Wewill reonsider this aspet in Setion 7.1.8.The non-restritive assumption on the upper bound bu made in Setion 7.1.2 allows us tomodel the upper bound on s in a more onvenient way.Lemma 7.11 The following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) an be ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) thatsatis�es onditions (7.19)�(7.25) along with the linear inequality

∆m ≤

⌊
bu
Cm

⌋

. (7.34)



130 Chapter 7. Extension to simple non dual network sets(ii) If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satis�es onditions (7.19)�(7.25) and inequality (7.34), then

s̄ ≤ bu.Proof. (i) Consider any ompletion (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) of (s̄, z̄) satisfying onditions (7.19)�(7.25). Inequality s ≤ bu implies ∆̄m = ∆m(s̄) ≤ ∆m(bu) = ⌊bu/Cm⌋.(ii) Assume that (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) satis�es onditions (7.19)�(7.25) along with inequal-ity (7.34). By Lemma 7.3, it is su�ient to show that
∆m(s̄) ≤

{

∆m(bu) if fm(s̄) ≤ fm(bu),

∆m(bu) − 1 if fm(s̄) > fm(bu).By assumption (7.15), αk(s̄) ≤ αk(bu) for all 0 ≤ k ≤ m − 1, thus fm(s̄) ≤ fm(bu) byequation (7.8) (with k = m). The result now follows by (7.34). �The same result holds if inequality (7.34) is replaed by ∆k ≤ ⌊bk/Ck⌋ for any k, but theabove is the most onvenient form.Let X be the mixed-integer set in the spae of the variables (s, z,∆, w,w↓, w↑
) de�ned bythe following onditions:

• (7.19)�(7.25),
• (7.29) for i ∈ J0,
• (7.30) for i ∈ Jk with k ≥ 1,
• (7.32) and (7.34).Proposition 7.12 The polyhedron conv(DIV ) is the projetion of the polyhedron conv(X)onto the spae of the variables (s, z).Proof. Parts (ii) of Lemmas 7.9�7.11 show that proj(s,z)(X) ⊆ DIV , thus proj(s,z)(conv(X)) ⊆

conv(DIV ). Furthermore, parts (i) of the same lemmas show that every vertex of conv(DIV )belongs to proj(s,z)(X). To onlude, we only need to prove that every extreme ray of
conv(DIV ) is a ray of conv(X).Reall that sine the values Ck and bi are all rational numbers, by Theorem 1.8 the rays of
conv(X) are preisely the rays of the linear relaxation of X (that is, the polyhedron de�nedby inequalities (7.19)�(7.24), (7.29)�(7.30), (7.32) and (7.34)). It is easily heked that theextreme rays of conv(DIV ) are the vetors de�ned by setting zi := 1 for some i ∈ J0 \ {l, u}and all other variables to zero. Eah of these vetors an be ompleted to a feasible ray of
conv(X) by setting all other variables to zero. �By the above proposition, in order to give an extended formulation of conv(DIV ) we haveto �nd a linear inequality desription of conv(X).



7.1. The mixing set with divisible apaities 1317.1.5 Strengthening the onstraintsLemma 7.13 The following inequalities are valid for X and dominate (7.23)�(7.24):
∑

t∈J0:
α0(bt)≥α0(bi)

w0,t ≥
∑

t∈J1:
f0(bt)≥f0(bi)

w↓
1,t, i ∈ J1, (7.35)

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t ≥

∑

t∈Jk+1:
fk(bt,k−1)≥fk(bi,k)

w↓
k+1,t, i ∈ Jk+1, 1 ≤ k < m.(7.36)Proof. Fix i ∈ Jk+1 for k ≥ 1 and de�ne L := {t ∈ Jk+1 : fk(bt,k−1) ≥ fk(bi,k)}. Inequal-ity (7.36) an be derived by applying the Chvátal-Gomory proedure (Theorem 1.10) to thefollowing |L| + 1 inequalities, whih are all valid for X:

∑

t∈Jk:
fk(bt,k−1)≥fk(bℓ,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bℓ,k)+1

w↑
k,t ≥ w↓

k+1,ℓ, ℓ ∈ L, (7.37)
1 ≥

∑

ℓ∈L

w↓
k+1,ℓ, (7.38)with multipliers 1/|L| for eah of inequalities (7.37) and 1 − 1/|L| for inequality (7.38).The derivation of inequalities (7.35) is similar. �7.1.6 The extended formulationLet P be the polyhedron in the spae of the variables (s, z,∆, w,w↓, w↑

) de�ned by thefollowing linear equations and inequalities:
• (7.19)�(7.22),
• (7.29) for i ∈ J0,
• (7.30) for i ∈ Jk with k ≥ 1,
• (7.32) and (7.34),
• (7.35)�(7.36).We denote by Ax ∼ b the linear system omprising the above equations and inequalities.Lemma 7.14 Let M be the submatrix of A indexed by the olumns orresponding to vari-ables ∆m, w,w

↓, w↑ and the rows orresponding to onstraints (7.21)�(7.22), (7.32) and (7.35)�(7.36). The matrix M is totally unimodular.Proof. We use the haraterization of Ghouila-Houri [26℄ desribed in Setion 1.3.2. Wepartition the rows of M into the submatries M0, . . . ,Mm de�ned as follows:
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• M0 onsists of the rows orresponding to equation (7.21) and inequalities (7.35) for
i ∈ J1;

• for 1 ≤ k ≤ m − 1, Mk onsists of the rows orresponding to equation (7.22) andinequalities (7.36) for i ∈ Jk+1;
• Mm onsists of the rows orresponding to equation (7.22) for k = m and inequal-ity (7.32).For eah odd k, we multiply by −1 the rows of M that belongs to Mk and the olumns of

M orresponding to variables w↓
k,i, w

↑
k,i for all i ∈ Jk. Then M beomes a 0-1 matrix.For 1 ≤ k ≤ m − 1, we order the rows of Mk as follows: �rst equation (7.22), theninequalities (7.36) aording to a non-dereasing order of the values fk(bi,k). The order of therows of M0 is analogous. The two rows of Mm are order as follows: �rst equation (7.22) andthen inequality (7.32). Note that in every matrixMk the support of any row, say the j-th row,ontains that of the (j + 1)-th row (in other words, the rows of Mk form a laminar family).We an now give an equitable bioloring of the rows of M : for k even (resp. odd), we givealternating olors to the rows of Mk starting with red (resp. blue). Sine every submatrixof M has the same struture as M itself, this proves that every submatrix of M admits anequitable bioloring of its rows and thus, by Theorem 1.14, M is totally unimodular. �Theorem 7.15 If x̄ = (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑) is a vertex of P , then (z̄, ∆̄, w̄, w̄↓, w̄↑) is an integralvetor.Proof. Note that the olumns of A orresponding to variables s and zi for i ∈ Ik, 0 ≤ k ≤ m,are unit olumns (as s only appears in equation (7.19) and eah variable zi only appears inone of (7.29)�(7.30)).Also note that in the subsystem of Ax ∼ b omprising inequalities (7.20)�(7.22), (7.32),(7.34) and (7.35)�(7.36) (i.e. with (7.19) and (7.29)�(7.30) removed) variables ∆0, . . . ,∆m−1appear with nonzero oe�ient only in equations (7.20). Furthermore the submatrix of Aindexed by the rows orresponding to (7.20) and the olumns orresponding to variables

∆0, . . . ,∆m−1 is an upper triangular matrix with 1 on the diagonal.Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼ b that de�nesa vertex x̄ = (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑) of P . The above observations show that (7.19)�(7.20) and(7.29)�(7.30) must be present in this subsystem. Furthermore let C ′ be the submatrix of Cindexed by the olumns orresponding to variables ∆m, w,w
↓, w↑ and the rows that do notorrespond to (7.19)�(7.20) or (7.29)�(7.30). Then the omputation of a determinant withLaplae expansion shows that |det(C)| = |det(C ′)| 6= 0.Sine C ′ is a submatrix of the matrix M de�ned in Lemma 7.14 and C ′ is nonsingular,then |det(C)| = |det(C ′)| = 1. Sine all entries of A (exept those orresponding to equa-tion (7.19)) are integer and the right-hand side vetor b is integral, by Cramer's rule we havethat (z̄, ∆̄, w̄, w̄↓, w̄↑) is an integral vetor. �Note that the proof of the above theorem strongly depends on the fat that eah variable

zi appears in a single inequality of the system Ax ∼ b. Even adding nonnegativity onstraintson the integer variables would reate serious problems (see Setions 7.1.7�7.1.8 below).



7.1. The mixing set with divisible apaities 133Corollary 7.16 The linear inequalities of the system Ax ∼ b de�ning P onstitute an ex-tended formulation of conv(DIV ) with O(mn) variables and onstraints, where n := |I0| +

· · · + |Im|.Proof. Consider the set X de�ned in Setion 7.1.4 and let R(X) be its linear relaxation.By omparing the inequalities of the system Ax ∼ b (de�ning P ) with those appearing inthe de�nition of X, and using Lemma 7.13, one sees that X ⊆ P ⊆ R(X). The abovetheorem then implies that P = conv(X). By Proposition 7.12, a linear inequality desriptionof conv(X) is an extended formulation of conv(DIV ), so the result follows. �Observation 7.17 If we drop the lower (resp. upper) bound from onstraint (7.4)�(7.6), anextended formulation is given by the same inequalities as above, exept that onstraint (7.32)(resp. (7.34)) must be removed.7.1.7 Lower bounds on the integer variablesWe now onsider the set DIV +, the mixing set with divisible apaities and lower bounds onthe integer variables. Without loss of generality suh bounds an be assumed to be all equalto zero. The set DIV + is desribed by the following onditions:
s+ Ckzi ≥ bi, i ∈ Ik, 0 ≤ k ≤ m, (7.39)
bl ≤ s ≤ bu, (7.40)

zi ≥ 0 integer, i ∈ I0 ∪ · · · ∪ Im. (7.41)Di Summa [20℄ gave a polynomial time algorithm to optimize a linear funtion over
DIV +. We disuss the problem of �nding a ompat extended formulation of the polyhe-dron conv(DIV +).We do not know how to inorporate the bounds zi ≥ 0 in a formulation of the type givenin Setion 7.1.6, as the standard approah requires that the system Ax ∼ b, purged of theequations de�ning s and ∆k, be de�ned by a totally unimodular matrix (see for instane[11, 45, 53, 63, 65℄, as well as Chapter 2 of this thesis). However this is not the ase, asdisussed in Setion 7.1.8. So we use an approah based on union of polyhedra, following anidea appearing in [2, 16℄.Let {β1, . . . , βq} be the set of distint values in the set {bi : i ∈ J0, bl < bi < bu}. Assume
β1 < · · · < βq and de�ne β0 := bl and βq+1 := bu. For eah 0 ≤ ℓ ≤ q, let DIV (ℓ) be thefollowing set:

s+ Ckzi ≥ bi, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m, (7.42)
βℓ ≤ s ≤ βℓ+1, (7.43)

zi ≥ 0, i ∈ Ik : bi ≤ βℓ, 0 ≤ k ≤ m, (7.44)
zi integer, i ∈ I0 ∪ · · · ∪ Im. (7.45)Lemma 7.18 conv(DIV +) = conv

(⋃q
ℓ=1DIV (ℓ)

).



134 Chapter 7. Extension to simple non dual network setsProof. Fix 0 ≤ ℓ ≤ q and assume that (s̄, z̄) is a feasible point in DIV (ℓ). If i ∈ Ik is suhthat bi ≤ βℓ, then s̄ + Ckz̄i ≥ βℓ ≥ bi. Thus (s̄, z̄) satis�es all inequalities (7.39). If i ∈ Ik issuh that bi > βℓ (thus bi ≥ βℓ+1), then Ckzi ≥ bi − s̄ ≥ βℓ+1 − s̄ ≥ 0. Thus (s̄, z̄) satis�esall nonnegativity bounds on z. This shows that conv
(⋃q

ℓ=1DIV (ℓ)
)
⊆ conv(DIV +). Thereverse inlusion is obvious. �Proposition 7.19 The set conv(DIV +) admits an extended formulation with O

(
m2n

) vari-ables and onstraints, where n := |I0| + · · · + |Im|.Proof. Fix an index 1 ≤ ℓ ≤ q. Note that the variables zi appearing in inequalities (7.44) arenot used by any other inequality of the system. This means that the above set is the artesianprodut X1 ×X2 of the following two sets: X1, whih is de�ned by the onditions
s+ Ckzi ≥ bi, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m,

βℓ ≤ s ≤ βℓ+1,

zi integer, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m,and X2, whih is desribed by the onditions
zi ≥ 0 integer, i ∈ Ik : bi ≤ βℓ, 0 ≤ k ≤ m. (7.46)Relation DIV (ℓ) = X1×X2 easily implies conv(DIV (ℓ)) = conv(X1)×conv(X2). The set

X1 is a mixing set with divisible apaities (without lower bounds on the integer variables),thus it admits an extended formulation with O(mn) variables and onstraints, where n := |I0|+

· · ·+|Im| (Corollary 7.16). The onvex hull ofX2 is learly obtained by removing the integralityrequirements from (7.46). Therefore there is an extended formulation of conv(DIV (ℓ)) thatuses O(mn) variables and onstraints.The result now follows from Lemma 7.18 and Theorem 1.3. �7.1.8 A di�erent approah?We onlude our study of the mixing set with divisible apaities by disussing two unsatis-fatory aspets of the formulation that we onstruted.Upper boundThe �rst aspet onerns the assumption on the upper bound bu made in Setion 7.1.2. Eventhough suh an assumption an be made without loss of generality, it would be interesting tounderstand whether our formulation really needs it.As already pointed out in Setion 7.1.4, the upper bound s ≤ bu ould be model byinequality (7.33) independently of the value of bu. It is now lear that suh a hoie wouldhave prevented us from proving Theorem 7.15, as in the proof of that result we used thefat that in the matrix obtained from A by removing the rows orresponding to (7.19) and(7.29)�(7.30), the olumn orresponding to variable ∆0 is a unit vetor.



7.1. The mixing set with divisible apaities 135In fat, examples an be onstruted whih show that if one uses inequality (7.33) to modelonstraints s ≤ bu, the resulting formulation is not tight, in the sense that it ontains points
(
s, z,∆, w,w↓, w↑

) suh that (s, z) /∈ conv(DIV ). An example of this type is now skethed.Consider the following instane of DIV :
s+ 10z0 ≥ 0.5,

s+ 10z1 ≥ 7.8,

1.4 ≤ s ≤ 15.6,

z0, z1 integer.Our formulation in the extended spae, with inequality (7.33) instead of (7.34), is:
s = ∆0 + 0.5w0,0 + 0.8w0,1 + 0.4w0,l + 0.6w0,u, (7.47)

w0,0, w0,1, w0,l, w0,u ≥ 0, w0,0 + w0,1 + w0,l + w0,u = 1, (7.48)
∆0 = 10∆1 + 7w↓

1,1 + 8w↑
1,1 + 1w↓

1,l + 2w↑
1,l + 4w↓

1,u + 5w↑
1,u, (7.49)

w↓
1,1, w

↑
1,1, w

↓
1,l, w

↑
1,l, w

↓
1,u, w

↑
1,u ≥ 0, (7.50)

w↓
1,1 + w↑

1,1 + w↓
1,l + w↑

1,l + w↓
1,u + w↑

1,u = 1, (7.51)
w0,1 ≥ w↓

1,1, w0,1 + w0,u ≥ w↓
1,1 + w↓

1,u, (7.52)
w0,0 + w0,1 + w0,l + w0,u ≥ w↓

1,1 + w↓
1,l + w↓

1,u, (7.53)
∆0 + w0,0 + w0,1 + w0,u + z0 ≥ 1, (7.54)

∆1 + w↓
1,1 +w↑

1,1 + z1 ≥ 1, (7.55)
∆0 + w0,0 + w0,1 + w0,l + w0,u ≥ 2, (7.56)

∆0 + w0,1 ≤ 15. (7.57)The following point is a vertex of the above polyhedron:
s = 15.6, z0 = −15, z1 = −0.7, ∆0 = 15, w0,u = 1, ∆1 = 0.7, w↑

1,1 = 1. (7.58)(Apart form nonnegativity onstraints, inequalities (7.53), (7.54) and (7.56) are the only non-tight inequalities.) The orresponding point in the original (s, z)-spae does not belong to
conv(DIV ), as all points in DIV suh that s = 15.6 satisfy z1 ≥ 0.In order to make the proof of Theorem 7.15 work, onstraint s ≤ bu should be modeledwithout using any of the variables ∆0, . . . ,∆m−1, thus one should use ∆m. Without anyassumptions on the value of bu, this seems to be hard. The main reason for this is that thebound s ≤ bu is the only onstraint of the type �≤�, whereas our formulation (in partiularonditions (7.23)�(7.24)) essentially �ts the inequalities of the type �≥�.For the above example, we ould think of two (wrong) ways to model the upper boundusing ∆1. The �rst way is

∆1 + w↓
1,1 + w↑

1,1 ≤ 1. (7.59)However, this is too weak, as the point
s = 15.8, z1 = −15, z2 = 0, ∆0 = 15, w0,1 = 1, ∆1 = 1, w↑

1,u = 1



136 Chapter 7. Extension to simple non dual network setswould be feasible even though it violates inequality s ≤ 15.6. The other way is
∆1 + w↓

1,1 + w↑
1,1 + w↑

1,u ≤ 1,but this ut o� the feasible point (7.58).Total unimodularityWe now turn to the seond unsatisfatory aspet. One might wonder whether it is possible togeneralize the tehnique used for the set DIV to onstrut an extended formulation for DIV +without using Balas' result on the union of polyhedra. In other word, one ould try to adaptthe results of Lemma 7.5 to the set DIV +.However, for eah i ∈ J0 \ {l, u}, suh an extended formulation would ontain at leasttwo inequalities with zi in their support: inequality (7.30) (or (7.29)) and inequality zi ≥ 0.It follows that the tehnique used to prove Theorem 7.15 annot be used in this ase, thusto prove a result similar to that of Theorem 7.15 we should �rst show that the onstraintmatrix of the extended formulation is totally unimodular (ignoring equations (7.19)�(7.20)).However, in general this is false even for the set DIV , as the example below shows.Consider the following instane of DIV (without upper bound on s):
s+ 100z1 ≥ 0.1, 0

s+ 110z2 ≥ 6.3, 0

s+ 100z3 ≥ 81.4,

s+ 100z4 ≥ 48.6,

s+ 000z0 ≥ 0, 0.0

z1, . . . , z4 integer.Note that I0 = {1}, I1 = {2}, I3 = {3, 4}.Among the onstraints de�ning the extended formulation of the onvex hull of the aboveset, we onsider the following four inequalities:
w↓

1,2 + w↑
1,2 + w↓

1,3 + w↑
1,3 + w↓

1,4 + w↑
1,4 ≥ w↓

2,3 + w↓
2,4,

w0,3 + w0,4 ≥ w↓
1,3 + w↓

1,4,

w↓
1,4 + w↑

1,4 ≥ w↓
2,4,

∆1 + w↓
1,2 + w↑

1,2 + w↓
1,4 + w↑

1,4 + z2 ≥ 1,whih orrespond respetively to inequality (7.36) for k = 1 and i = 3, inequality (7.35) for
i = 3, inequality (7.36) for k = 1 and i = 4, and inequality (7.30) for k = 1 and i = 2.The submatrix of the onstraint matrix of the above four inequalities, restrited to variables
w↓

1,4, w
↓
1,3, w

↓
2,4, w

↑
1,2, is 






1 1 −1 1

−1 −1 0 0

1 0 −1 0

1 0 0 1







,whih is not totally unimodular as its determinant is −2.



7.2. The mixing set with two apaities 1377.2 The mixing set with two apaitiesThe suess in �nding an extended formulation of the mixing set with divisible apaities(Setion 7.1) strongly depends on the divisibility assumption. The study of a general set ofthe type (7.1)�(7.3) seems to be a muh more di�ult problem: it is not known whether linearoptimization over a general set of this type an be arried out in polynomial time.In this setion we onsider an instane of the mixed-integer set (7.1)�(7.3) where there areonly two distint apaities C1, C2. We denote suh a set by 2CAP :
s+ C1zi ≥ bi, i ∈ I1,

s+ C2zi ≥ bi, i ∈ I2,

s ≥ 0,

zi integer, i ∈ I1 ∪ I2,where 0 < C1 < C2, I1 ∩ I2 = ∅. We assume without loss of generality that C1 and C2 areoprime integer numbers. We set bl := 0, where l /∈ I1 ∪ I2, and de�ne C0 := 1.We give an extended formulation of conv(2CAP ) with O(nC1) variables and onstraints,where n := |I1| + |I2|. Note that the formulation in non-ompat, as its size depends on thevalue of C1. However the size is independent of C2, thus the formulation is ompat wheneverthe value of the smallest oe�ient C1 is not �too large�.The formulation is obtained by adapting the tehnique used in the divisible ase (in fat,if C1 = 1 the two formulations oinide). However, ompliations will soon arise.7.2.1 NotationWe �rst introdue some notation.Given a real number x and an index 0 ≤ k ≤ 2, we denote by ∆k(x) and fk(x) respetivelythe quotient and the remainder of the division of x by Ck. Thus x = Ck∆k(x) + fk(x).Similarly we de�ne ∆12(x) and f12(x) respetively as the quotient and the remainder of thedivision of x by C1C2.Finally we set J1 := I1 ∪ I2 ∪ {l} and J2 := I2 ∪ {l}.7.2.2 Properties of the vertiesLemma 7.20 If (s̄, z̄) is a vertex of conv(2CAP ) then the following onditions hold:(i) f0(s̄) = f0(bi) for some i ∈ J1.(ii) f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) for some i ∈ J2 and some integer ℓ suh that:(a) either 1 ≤ ℓ ≤ C1,(b) or −C1 + 1 ≤ ℓ ≤ 0 and f1(s̄) ≥ −ℓ+ f0(bi).Proof. If (i) is violated then, sine z̄ is an integral vetor, there exists ε 6= 0 suh that
(s̄± ε, z̄) ∈ 2CAP , a ontradition.



138 Chapter 7. Extension to simple non dual network setsTo prove (ii) we �rst observe that there exists an index i ∈ J2 suh that bi ≤ s̄ + C2z̄i <

bi + C1: if not, after de�ning a vetor v by setting
s := −C1, zi := 1 for i ∈ I1, zi := 0 for i ∈ I2,we would have that (s̄, z̄) ± v ∈ 2CAP , a ontradition.So we let i ∈ J2 be suh that bi ≤ s̄+ C2z̄i < bi + C1. Then

f2(⌊s̄⌋) ∈ {f2(⌊bi⌋), f2(⌊bi⌋ + 1), . . . , f2(⌊bi⌋ + C1)}. (7.60)Sine C1∆1(s̄) = s̄− f1(s̄) = ⌊s̄⌋ − f1(⌊s̄⌋) and 0 ≤ f1(⌊s̄⌋) ≤ C1 − 1, it follows by (7.60) that
f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) for some integer ℓ suh that −C1 + 1 ≤ ℓ ≤ C1.If ℓ ≥ 1 then (a) holds, so we assume −C1 + 1 ≤ ℓ ≤ 0. Suppose �rst that ℓ ≤ C1 − C2and de�ne ℓ′ := C2 + ℓ. Then f2(⌊bi⌋+ ℓ) = f2(⌊bi⌋+ ℓ′) and 1 ≤ ℓ′ ≤ C1, thus (a) holds with
ℓ′ in plae of ℓ. So from now on we assume C1 − C2 + 1 ≤ ℓ ≤ 0.We now distinguish some ases.1. If f2(s̄) ≥ f2(bi) and f2(⌊bi⌋) + ℓ ≥ 0, then f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓand

f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) ≥ f2(s̄) − f2(C1∆1(s̄))

≥ f2(bi) − f2(⌊bi⌋) − ℓ = f0(bi) − ℓ,thus (a) holds.2. Now assume f2(s̄) ≥ f2(bi) and f2(⌊bi⌋) + ℓ < 0. Then f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓ+ C2and
f2(s̄) ≤ f2(bi) + C1 ≤ f2(bi) + ℓ+ C2 − 1 ≤ f2(⌊bi⌋ + ℓ),where the �rst inequality follows from (7.60) and the seond one holds beause C1 −

C2 + 1 ≤ ℓ. This implies that f2(s̄− (⌊bi⌋ + ℓ)) = f2(s̄) − f2(⌊bi⌋ + ℓ) + C2, thus
f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) = f2(s̄ − (⌊bi⌋ + ℓ))

= f2(s̄) − f2(⌊bi⌋ + ℓ) + C2 ≥ f2(bi) − f2(⌊bi⌋) − ℓ = f0(bi) − ℓand (a) holds.3. We now onsider the ase f2(s̄) < f2(bi). In this ase inequalities bi ≤ s̄+C2z̄i < bi +C1imply f2(bi) > C2 − C1. Then f2(⌊bi⌋) + ℓ > f2(⌊bi⌋) + C1 − C2 > 0. This implies
f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓ. Furthermore,

f2(s̄) ≤ f2(bi) + C1 − C2 ≤ f2(bi) + ℓ− 1 ≤ f2(⌊bi⌋ + ℓ),where the �rst inequality follows from f2(s̄) < f2(bi) and (7.60). This implies
f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) = f2(s̄ − (⌊bi⌋ + ℓ))

= f2(s̄) − f2(⌊bi⌋ + ℓ) + C2 ≥ 0 − f2(⌊bi⌋) − ℓ+ C2 ≥ −ℓ+ 1and (a) holds.



7.2. The mixing set with two apaities 139This onludes the proof of the lemma. �For i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1, we de�ne cℓi to be the unique integer number suh that
0 ≤ cℓi < C1C2, f2

(
cℓi
)

= f2(⌊bi⌋ + ℓ), f1

(
cℓi
)

= 0.Existene and uniqueness of suh a number follow from the Chinese remainder theorem (seee.g. [56℄ or any basi algebra book).Remark 7.21 Let i, ℓ be two indies as in part (ii) of Lemma 7.20. Then f12(C1∆1(s̄)) = cℓi ,as the integer number f12(C1∆1(s̄)) satis�es the three onditions that de�ne ciℓ.We now introdue extra variables to model the possible values taken by s at a vertex of
conv(2CAP ). The new variables are the following:

• ∆, wℓ
i for i ∈ J1 and 0 ≤ ℓ ≤ C1 − 1;

• Γ, πℓ
i for i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1.The role of the above variables is as follows:

• Variable ∆ represents the quotient of the division of s by C1. That is, ∆ = ∆(s) asde�ned in Setion 7.2.1.
• Variable Γ represents the quotient of the division of s by C1C2. That is, Γ = ∆12(s) asde�ned in Setion 7.2.1.
• Variables wℓ

i for i ∈ J1 and 0 ≤ ℓ ≤ C1 − 1 are binary variables. Exatly one ofthem is equal to 1: ondition wℓ
i = 1 indiates that f0(s) = f0(bi) and f1(⌊s⌋) = ℓ, i.e.

f1(s) = ℓ+ f0(bi).
• Variables πℓ

i for i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1 are binary variables. Exatly one of themis equal to one: ondition πℓ
i = 1 indiates that f12(C1∆1(s̄)) = cℓi .Consider the following onditions:

s = C1∆ +

C1−1∑

ℓ=0

∑

t∈J1

(ℓ+ f0(bt))w
ℓ
t , (7.61)

C1∆ = C1C2Γ +

C1∑

ℓ=−C1+1

∑

t∈J2

cℓtπ
ℓ
t , (7.62)

wℓ
t ≥ 0, t ∈ J1, 0 ≤ ℓ ≤ C1 − 1;

C1−1∑

ℓ=0

∑

t∈J1

wℓ
t = 1, (7.63)

πℓ
t ≥ 0, t ∈ J2, −C1 + 1 ≤ ℓ ≤ C1;

C1∑

ℓ=−C1+1

∑

t∈J2

πℓ
t = 1, (7.64)

C1−1∑

j=−ℓ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bi)

w−ℓ
t ≥ πℓ

i , i ∈ J2, −C1 + 1 ≤ ℓ ≤ 0, (7.65)
∆, wℓ

t ,Γ, π
ℓ
t integer. (7.66)



140 Chapter 7. Extension to simple non dual network setsLemma 7.22 Every vertex (s̄, z̄) of conv(2CAP ) an be ompleted to a vetor (s̄, z̄, ∆̄, w̄, Γ̄, π̄)satisfying (7.61)�(7.66).Proof. Lemma 7.20 and Remark 7.21 show that f12(C1∆1(s̄)) = cℓi for some i ∈ J2 and
−C1 + 1 ≤ ℓ ≤ C1. The vertex (s̄, z̄) an be ompleted as follows.If there exist an index i ∈ J2 and an integer −C1 +1 ≤ ℓ ≤ 0, suh that f12(C1∆1(s̄)) = cℓiand f1(s̄) ≥ −ℓ + f0(bi), then we set π̄ℓ

i = 1. For onveniene, if suh a hoie of ℓ is notunique, we hoose ℓ as small as possible. If, after this, the hoie of i is not unique, we hoose
i so that f0(bi) is as large as possible. (Further ties an be broken arbitrarily.)Otherwise there exist an index i ∈ J2 and an integer 1 ≤ ℓ ≤ C1 suh that f12(C1∆1(s̄)) =

cℓi , and we set π̄ℓ
i = 1 for any suh hoie of i and ℓ.By Lemma 7.20, there exist t ∈ J1 and 0 ≤ h ≤ C1 − 1 suh that f1(s̄) = h + f0(bt). Wethen set w̄h

t = 1 for any suh hoie of t and h.Finally we set ∆̄ = ∆1(s̄) and Γ̄ = ∆12(s̄).It is easily heked that the vertex thus onstruted satis�es (7.61)�(7.64) and (7.66). Tosee that (7.65) is satis�ed, suppose π̄ℓ
i = 1 for some i ∈ J2 and−C1+1 ≤ ℓ ≤ 0. Lemma 7.20 (ii)then implies that h+ f0(bt) = f1(s̄) ≥ −ℓ+ f0(bi), that is, either h ≥ −ℓ+ 1, or h = −ℓ and

f0(bt) ≥ f0(bi). In both ases the left-hand side of (7.65) is equal to 1 and the inequality issatis�ed. �We say that (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is a standard ompletion of the vertex (s̄, z̄) of conv(2CAP ) if
∆̄, w̄, Γ̄, π̄ are hosen as desribed in the above proof. Then the above proof shows that everyvertex of conv(2CAP ) has a standard ompletion satisfying (7.61)�(7.66).7.2.3 Modeling the onstraintsProposition 7.23 For i ∈ I1, a point (s̄, z̄) satis�es inequality s + C1zi ≥ bi if and onlyif every ompletion (s̄, z̄, ∆̄, w̄, Γ̄, π̄) of (s̄, z̄) ful�lling onditions (7.61)�(7.66) also satis�esinequality

∆ +

C1−1∑

ℓ=k+1

∑

t∈J1

wℓ
t +

∑

t∈J1:
f0(bt)≥f0(bi)

wk
t + zi ≥

⌊
bi
C1

⌋

+ 1, (7.67)where k := f1(⌊bi⌋).Proof. Using (7.61), inequality s+C1zi ≥ bi an be rewritten as
∆ +

C1−1∑

ℓ=0

∑

t∈J1

ℓ+ f0(bt)

C1
wℓ

t + zi ≥
bi
C1
. (7.68)Observe that ℓ+f0(bt)

C1
≥ f0

(
bi

C1

) if and only if ℓ+ f0(bt) ≥ f1(bi), that is, if and only if either
ℓ ≥ f1(⌊bi⌋) + 1, or ℓ = f1(⌊bi⌋) and f0(bt) ≥ f0(bi). Inequality (7.67) an then be obtainedby summing inequalities (7.68) and

−(f0(bi/C1) − ε)

C1−1∑

ℓ=0

∑

t∈J1

wℓ
t ≥ −(f0(bi/C1) − ε)



7.2. The mixing set with two apaities 141for ε > 0 small enough and then applying Chvátal-Gomory rounding (see Theorem 1.10). �Proposition 7.24 For i ∈ I2, the following properties hold:(i) Every vertex (s̄, z̄) of conv(2CAP ) an be ompleted to a point (s̄, z̄, ∆̄, w̄, Γ̄, π̄) thatsatis�es onditions (7.61)�(7.66) along with the linear inequality
C1Γ +

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
tπ

ℓ
t + zi ≥

⌊
bi
C2

⌋

+ 1, (7.69)where βℓ
t is de�ned as follows:

βℓ
t :=







∆2

(
cℓt
) if f2

(
cℓt
)
− f2(⌊bi⌋) ≤ min{0, ℓ− 1},

∆2

(
cℓt
) if ℓ = f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0 and f0(bt) < f0(bi),

∆2

(
cℓt
)

+ 1 if ℓ = f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0 and f0(bt) ≥ f0(bi),

∆2

(
cℓt
)

+ 1 if ℓ < f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0,

∆2

(
cℓt
)

+ 1 if 0 < f2

(
cℓt
)
− f2(⌊bi⌋) ≤ C2 −C1,

∆2

(
cℓt
)

+ 1 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) < ℓ+C2,

∆2

(
cℓt
)

+ 1 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) = ℓ+C2 and f0(bt) < f0(bi),

∆2

(
cℓt
)

+ 2 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) = ℓ+C2 and f0(bt) ≥ f0(bi),

∆2

(
cℓt
)

+ 2 if f2

(
cℓt
)
− f2(⌊bi⌋) > max{C2 −C1, ℓ+ C2}.(ii) If a point (s̄, z̄, ∆̄, w̄, Γ̄, π̄) satis�es onditions (7.61)�(7.66) along with inequality (7.69),then s̄+ C2zi ≥ bi.Proof. (i) We show that every standard ompletion of a vertex of conv(2CAP ) satis�esinequality (7.69).Let (s̄, z̄, ∆̄, w̄, Γ̄, π̄) be a standard ompletion of the vertex (s̄, z̄) of conv(2CAP ) andassume π̄ℓ

t = 1. By (7.61)�(7.62),
s̄ = C1C2Γ̄ + cℓt + f1(s̄) = C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄). (7.70)Assume �rst βℓ
t = ∆2

(
cℓt
)

+ 2. Then, using (7.70),
C1Γ̄+

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄+∆2

(
cℓt
)
+2+ z̄i =

s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄) + 2C2

C2
>

bi
C2
,where the last inequality holds beause s̄ + C2z̄i ≥ bi and f2

(
cℓt
)

+ f1(s̄) < C2 + C1 < 2C2.Thus inequality (7.69) is satis�ed in this ase.Now assume βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ C2 − C1. Using (7.70),

C1Γ̄+

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄+∆2

(
cℓt
)
+1+ z̄i =

s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄) +C2

C2
>

bi
C2
,



142 Chapter 7. Extension to simple non dual network setswhere the last inequality holds beause s̄+C2z̄i ≥ bi and −f2

(
cℓt
)
−f1(s̄)+C2 ≥ C1−f2(⌊bi⌋)−

f1(s̄) > −f2(bi). Thus inequality (7.69) is satis�ed in this ase.If βℓ
t = ∆

(
cℓt
)
+1 and f2

(
cℓt
)
−f2(⌊bi⌋) > C2−C1, the proof is by ontradition: we assumethat (7.69) is violated, that is (after multiplying by C2),

C1C2Γ̄ + C2∆2

(
cℓt
)

+ C2 + C2z̄i ≤ C2∆2(bi). (7.71)De�ne k := f2

(
cℓt
)
− f2(⌊bi⌋) − C2. Sine f2

(
cℓt
)
− f2(⌊bi⌋) > C2 − C1, we have k ≥ −C1 + 1.Furthermore, k ≤ 0. Sine f2

(
cℓt
)

= f2(⌊bi⌋) + k + C2 = f2

(
cki
), we see that cℓt = cki . In thefollowing we show that (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is not a standard ompletion of the vertex (s̄, z̄), assetting πk

i = 1 would be a preferable hoie.By (7.70), s̄ = C1C2Γ̄+C2∆2

(
cℓt
)
+f2(⌊bi⌋)+k+C2+f1(s̄). Then inequality s̄+C2z̄i ≥ bireads

C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2(⌊bi⌋) + k + C2 + f1(s̄) + C2z̄i ≥ C2∆2(bi) + f2(bi).By ombining the above inequality with (7.71), we derive f1(s̄) ≥ −k + f0(bi).On the other hand, onditions βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) > C2 − C1, togetherwith the de�nition of βℓ

t , show that neessarily k ≤ ℓ, and if k = ℓ then f0(bi) > f0(bt). This,along with inequality f1(s̄) ≥ −k+ f0(bi) derived above and the fat that cℓt = cki , shows thatsetting πk
i = 1 would be a preferable hoie for representing the vertex (s̄, z̄).The above shows that inequalities (7.69) holds whenever βℓ

t > ∆2

(
cℓt
). We now assume

βℓ
t = ∆2

(
cℓt
) and f2

(
cℓt
)
− f2(⌊bi⌋) > −C1. The proof is again by ontradition: we assumethat (7.69) is violated, that is, C1C2Γ̄ + C2∆2

(
cℓt
)

+ C2z̄i ≤ C2∆2(bi). In this ase we de�ne
k := f2

(
cℓt
)
− f2(⌊bi⌋) and proeed as in the previous ase (note that −C1 + 1 ≤ k ≤ 0).Finally, assume βℓ

t = ∆2

(
cℓt
) and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ −C1. Using (7.70),

C1Γ̄ +

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄ + ∆2

(
cℓt
)

+ z̄i =
s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄)

C2
>

bi
C2
,where the last inequality holds beause s̄+C2z̄i ≥ bi and f2

(
cℓt
)
+f1(s̄) < (f2(⌊bi⌋)−C1)+C1 ≤

f2(bi). Thus inequality (7.69) is satis�ed in this ase.(ii) We now show that if (s̄, z̄, ∆̄, w̄, Γ̄, π̄) satis�es (7.61)�(7.66) and (7.69), then s̄+C2z̄i ≥

bi. Let (s̄, z̄, ∆̄, w̄, Γ̄, π̄) be a point satisfying (7.61)�(7.66) and (7.69), and assume π̄ℓ
t = 1 and

w̄h
j = 1. Note that (7.70) holds and f1(s̄) = h+ f0(bj).If βℓ

t = ∆2

(
cℓt
) then, using (7.70) and (7.69),

s̄+C2z̄i = C1C2Γ̄ +C2∆2

(
cℓt
)
+ f2

(
cℓt
)
+ f1(s̄) +C2z̄i ≥ C2∆2(bi +C2) + f2

(
cℓt
)
+ f1(s̄) ≥ bi.Now assume βℓ

t = ∆2

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) > 0. Using (7.70) and (7.69),

s̄+ C2z̄i = C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄) + C2z̄i ≥ C2∆2(bi) + f2

(
cℓt
)

+ f1(s̄) ≥ bi,



7.2. The mixing set with two apaities 143where the last inequality holds beause f2

(
cℓt
)
≥ f2(⌊bi⌋) + 1.If βℓ

t = ∆
(
cℓt
)
+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, the proof is by ontradition: we assume that

s̄+ C2z̄i < bi, that is (again using (7.70)),
C1C2Γ̄ +C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄) + C2z̄i < bi. (7.72)Summing the above inequality with inequality (7.69), whih an be written as
−C1C2Γ̄ − C2∆2

(
cℓt
)
− C2 − C2z̄i ≤ −C2∆2(bi + C2),gives f2

(
cℓt
)

+ f1(s̄) < f2(bi). If we de�ne k := f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, the latter inequalityreads f1(s̄) < −k + f0(bi). Sine f1(s̄) = h+ f0(bj), this implies

h+ f0(bj) < −k + f0(bi). (7.73)On the other hand, onditions βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, together withthe de�nition of βℓ

t , show that neessarily ℓ ≤ k ≤ 0, and if ℓ = k then f0(bt) ≥ f0(bi). Then(7.73) implies h + f0(bj) < −ℓ + f0(bi). This implies that either h < −ℓ, or h = −ℓ and
f0(bj) < f0(bi). In the former ase, inequality (7.65) is learly violated for the indies t ∈ J2and ℓ ≤ 0. So we assume h = −ℓ and f0(bj) < f0(bi).By (7.73), h ≤ −k. This, together with h = −ℓ ≥ −k, shows that ℓ = k. As seen above,this implies that f0(bt) ≥ f0(bi), thus f0(bj) < f0(bt). This shows that inequality (7.65) isagain violated for the indies t ∈ J2 and ℓ ≤ 0.The above shows that s̄ + C2z̄i ≥ bi whenever βℓ

t ≤ ∆2

(
cℓt
)

+ 1. We now assume βℓ
t =

∆2

(
cℓt
)

+ 2. The proof is again by ontradition: we assume that (7.72) holds. In this aseinequality (7.69) reads
−C1C2Γ̄ − C2∆2

(
cℓt
)
− 2C2 − C2z̄i ≤ −C2∆2(bi + C2),whih together with (7.72) gives f2

(
cℓt
)

+ f1(s̄) < f2(bi) + C2. We then de�ne k := f2

(
cℓt
)
−

f2(⌊bi⌋) − C2 ≤ 0 and ontinue as in the previous ase. �Proposition 7.25 A point (s̄, z̄) satis�es inequality s+C1zi ≥ bi if and only if every extension
(s̄, z̄, ∆̄, w̄, Γ̄, π̄) of (s̄, z̄) ful�lling onditions (7.61)�(7.66) also satis�es inequality

Γ ≥ 0. (7.74)Proof. The result is obvious. �Let X be the mixed-integer set in the spae of the variables (s, z,∆, w,Γ, π) de�ned byonditions
• (7.61)�(7.66),
• (7.67) for i ∈ I1,
• (7.69) for i ∈ I2,
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• (7.74).Proposition 7.26 The polyhedron conv(2CAP ) is the projetion of conv(X) onto the spaeof the variables (s, z).Proof. The proof is similar to that given in Setion 7.1 for the mixing set with divisibleapaities (see Proposition 7.12). The only di�erene is that now there is one more extremeray, namely the vetor de�ned by setting s := 1, zi := 1/C1 for i ∈ I1 and zi := 1/C2 for

i ∈ I2. �By the above proposition, in order to give an extended formulation of conv(2CAP ) wehave to �nd a linear inequality desription of conv(X).7.2.4 Strengthening the onstraintsLemma 7.27 The following inequalities are valid for (7.61)�(7.66) and dominate (7.65):
C1−1∑

j=−ℓ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bi)

w−ℓ
t ≥

ℓ−1∑

j=−C1+1

∑

t∈J2

πj
t +

∑

t∈J2:
f0(bt)≥f0(bi)

πℓ
t , i ∈ J2, −C1 + 1 ≤ ℓ ≤ 0.(7.75)Proof. Fix −C1 + 1 ≤ ℓ ≤ 0 and i ∈ J2. De�ne

L := {(λ, τ) ∈ {−C1 − 1, . . . , 0} × J2 : either λ ≤ ℓ− 1, or λ = ℓ− 1 and f0(bτ ) ≥ f0(bi)}.Inequality (7.75) an be derived by applying the Chvátal-Gomory proedure to the following
|L| + 1 inequalities, whih are all valid for (7.61)�(7.66):

C1−1∑

j=−λ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bτ )

w−λ
t ≥ πλ

τ , (λ, τ) ∈ L, (7.76)
1 ≥

ℓ−1∑

j=−C1+1

∑

t∈J2

πj
t +

∑

t∈J2:
f0(bt)≥f0(bi)

πℓ
t , (7.77)with multipliers 1/|L| for eah of inequalities (7.76) and 1 − 1/|L| for inequality (7.77). �7.2.5 The extended formulationWe show here the main result of the setion. The proofs are similar to those of Setion 7.1.6.Let P be the polyhedron in the spae of the variables (s, z,∆, w,Γ, π) de�ned by thefollowing linear equations and inequalities:

• (7.61)�(7.64),
• (7.67) for i ∈ I1,
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• (7.69) for i ∈ I2,
• (7.74) and (7.75).Note that if we divide equation (7.62) by C1, all oe�ients remain integer and the oe�ientof ∆ beomes 1. We denote by Ax ∼ b the linear system omprising the above equations andinequalities, where equation (7.62) has been divided by C1.Lemma 7.28 Let M be the submatrix of A indexed by the olumns orresponding to variables

w, π and the rows orresponding to onstraints (7.63)�(7.64) and (7.75). The matrix M istotally unimodular.Proof. We use the haraterization of Ghouila-Houri [26℄ desribed in Setion 1.3.2. We orderthe rows orresponding to inequalities (7.75) aording �rstly to a dereasing order of index ℓand seondly to a non-dereasing order of f0(bi). Note that with suh an ordering, the supportof any row, say the j-th row, ontains that of the (j + 1)-th row (in other words, the rowsform a laminar family).We now give an equitable bioloring to the rows of M : we assign olor red to the rows or-responding to equations (7.63)�(7.64) and then alternate the olors starting with blue. Sineevery submatrix of M has the same struture as M itself, this proves that every submatrixof M admits an equitable bioloring of its rows and thus, by Theorem 1.14, M is totallyunimodular. �Theorem 7.29 If x̄ = (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is a vertex of P then (z̄, ∆̄, w̄, Γ̄, π̄) is an integralvetor.Proof. Note that the olumns of A orresponding to variables s and zi for i ∈ I1 ∪ I2 areunit olumns (as s only appears in equation (7.61) and eah variable zi only appears in oneof (7.67), (7.69)).In the subsystem of Ax ∼ b omprising inequalities (7.62)�(7.64), (7.74) and (7.75) (i.e.with (7.61), (7.67) and (7.69) removed) variables ∆,Γ appear with nonzero oe�ient only inequations (7.62) and (7.74). Furthermore the submatrix of A indexed by the rows orrespond-ing to (7.62), (7.74) and the olumns orresponding to variables ∆,Γ is an upper triangularmatrix with 1 on the diagonal.Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼ b that de�nesa vertex x̄ = (s̄, z̄, ∆̄, w̄, Γ̄, π̄) of P . The above observations show that (7.61)�(7.62), (7.67),(7.69) or (7.74) must be present in this subsystem. Furthermore let C ′ be the submatrix of Cindexed by the olumns orresponding to variables w, π and the rows that do not orrespond to(7.61)�(7.62), (7.67), (7.69) and (7.74). Then the omputation of a determinant with Laplaeexpansion shows that |det(C)| = |det(C ′)| 6= 0.Sine C ′ is a submatrix of the matrix M de�ned in Lemma 7.28 and C ′ is nonsingular,then |det(C)| = |det(C ′)| = 1. Sine all entries of A (exept those orresponding to equa-tion (7.61)) are integer and the right-hand side vetor b is integral, by Cramer's rule we havethat (z̄, ∆̄, w̄, Γ̄, π̄) is an integral vetor. �



146 Chapter 7. Extension to simple non dual network setsCorollary 7.30 The linear inequalities of the system Ax ∼ b de�ning P onstitute an ex-tended formulation of conv(2CAP ) with O(nC1) variables and onstraints, where n := |I1| +

|I2|.Proof. The proof is idential to that of Corollary 7.16. �The extended formulation onstruted here is only pseudo-polynomial, as it depends onthe value C1. Note however that the size of the formulation is independent of the value C2.It was reently proven by Zhao and de Farias [73℄ that linear optimization over the set 2CAPan be arried out in polynomial time, but it is not known whether there exists a ompatextended formulation of conv(2CAP ). Also, it seems hard to extend the above onstrutionto the ase of three apaities.We �nally remark that the proofs of both Theorem 7.29 above and Theorem 7.15 inSetion 7.1.6 exploit the fat that eah integer variable appears in a single onstraint. We donot know how to deal with a more general mixed-integer set of the form
sj + Ckzi ≥ bji, 1 ≤ j ≤ q, i ∈ Ik, 0 ≤ k ≤ m,

blj ≤ sj ≤ buj
, 1 ≤ j ≤ q,

zi integer, i ∈ I0 ∪ · · · ∪ Im,where either the apaities are divisible or take few values. In the ase C0 = · · · = Cm = 1 theabove is a set of the type MIX2TU for whih an extended formulation was given by Millerand Wolsey [45℄ (when there are no upper bounds buj
).



Chapter 8A di�erent tehniqueThe approah to onstrut extended formulations introdued in Chapter 2 is based on theexpliit enumeration of all the frational parts that the variables take over the verties ofthe onvex hull of the set. The extension disussed in Chapter 7 is based on a re�nement ofthe same tehnique, due to the presene of several distint oe�ients in the onstraints thatde�ne the set.We explore here another way of onstruting a formulation of a mixed-integer set eitherin the original spae or in an extended spae. No expliit enumeration of frational parts orother numbers is required (exept possibly in the �nal phase of the proess). We adopted thistehnique to formulate two spei� sets, but we ould not determine a lass of mixed-integersets for whih this approah an be used.Both mixed-integer sets onsidered here have been already disussed in this thesis: one isthe mixing set with �ows (Setions 4.2.2 and 5.3), the other is the ontinuous mixing set with�ows (Setion 4.2.1). We observed in Chapter 4 that eah of these sets is equivalent to a dualnetwork set and therefore admits an extended formulation of the type presented in Chapter 2.We also omputed the projetion of the extended formulation of the mixing set with �ows,thus obtaining a linear inequality desription in the original spae (Chapter 5).We reonsider here the above two sets and we give formulations for them by using aommon approah, whih is summarized below.We �rst reall a well-known fat. Let X be a mixed-integer set. Suppose that there exista mixed-integer set Z and a polyhedron P suh that X = Z ∩ P . It is easy to see that then
conv(X) ⊆ conv(Z) ∩ P, (8.1)but equality does not hold in general.To desribe the ommon approah used for the two sets, we let X denote any of the twosets.Step 1. The �rst step of our proess is writing X = Z ∩ P for some mixed-integer set Z andsome polyhedron P that is desribed by a simple linear system.Step 2. Next we prove that for this partiular hoie of Z and P , equality holds in (8.1).147



148 Chapter 8. A different tehniqueStep 3. We introdue another mixed-integer set Y and prove that the polyhedra conv(Z) and
conv(Y ) are in a one-to-one orrespondene via an a�ne transformation.Step 4. The �nal step is to give a formulation of conv(Y ) either in the original spae or in anextended spae. In the former ase we immediately derive a formulation of conv(Z),and thus of conv(X) = conv(Z)∩P , in its original spae; in the latter ase an extendedformulation is obtained.The ruial point is proving that equality holds in (8.1). This will be done by using apolyhedral result that we introdue in Setion 8.1.The �nal step is di�erent for the two sets. In the ase of the mixing set with �ows(Setion 8.2) we give a formulation of Y both in the original spae and in an extended spae,thus both kinds of desription are also obtained for X �the mixing set with �ows itself. Forthe ontinuous mixing set with �ows (Setion 8.3) only extended formulations are given.The results of this hapter are joint work with Mihele Conforti and Laurene A. Wolsey,and also appear in [13, 12℄.8.1 Some equivalenes of polyhedraStep 2 of the proess desribed above will be possible thanks to a result on the equivalene ofpolyhedra that we introdue here.For a nonempty polyhedron P in R

n and a vetor α ∈ R
n, de�ne µP (α) := min{αx :

x ∈ P} and let MP (α) be the fae {x ∈ P : αx = µP (α)}, where MP (α) = ∅ whenever
µP (α) = −∞.Lemma 8.1 Let P ⊆ Q be two nonempty polyhedra in R

n and let α be a nonzero vetor in
R

n. Then the following onditions are equivalent:(i) µP (α) = µQ(α);(ii) MP (α) ⊆MQ(α).Proof. Suppose µP (α) = µQ(α). Sine P ⊆ Q, every point in MP (α) belongs to MQ(α). Soif (i) holds, then (ii) holds as well. The onverse is obvious. �Lemma 8.2 Let P ⊆ Q be two nonempty polyhedra in R
n, where P is not an a�ne variety.Suppose that for every inequality αx ≥ β that is faet-induing for P , at least one of thefollowing holds:(i) µP (α) = µQ(α);(ii) MP (α) ⊆MQ(α).Then P = Q.



8.1. Some equivalenes of polyhedra 149Proof. We prove that ifMP (α) ⊆MQ(α) for every inequality αx ≥ β that is faet-induing for
P , then every faet-induing inequality for P is a valid inequality for Q and every hyperplaneontaining P also ontains Q. This shows that Q ⊆ P and therefore P = Q. By Lemma 8.1,the onditions µP (α) = µQ(α) and MP (α) ⊆MQ(α) are equivalent and we are done.Let αx ≥ β be a faet-induing inequality for P . Sine MP (α) ⊆ MQ(α), then β =

µP (α) = µQ(α) and αx ≥ β is an inequality whih is valid for Q.Now let γx = δ be a hyperplane ontaining P . If Q 6⊆ {x : γx = δ}, then there exists
x̄ ∈ Q suh that γx̄ 6= δ. We assume without loss of generality σ = γx̄ − δ > 0. Sine P isnot an a�ne variety, there exists an inequality αx ≥ β whih is faet-induing for P (and soit is valid for Q). Then, for λ > 0 the inequality (λα − γ)x ≥ λβ − δ is also faet-induingfor P , so it is valid for Q. Choosing λ > 0 suh that λ(αx̄ − β) < σ gives a ontradition, as
(λα− γ)x̄ = λαx̄− γx̄ < λβ + σ − γx̄ = λβ − δ. �If P is not full-dimensional, for eah faet F of P there are in�nitely many distint inequal-ities that de�ne F (two inequalities are distint if their assoiated half-spaes are distint: thatis, if one is not a positive multiple of the other). Observe that the hypotheses of the lemmamust be veri�ed for all distint faet-de�ning inequalities (not just one faet-de�ning inequal-ity for eah faet), otherwise the result is false. For instane, onsider the polyhedra

P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}The hypotheses of Lemma 8.2 are satis�ed for the inequalities x ≥ 0 and x ≤ 1, whih de�neall the faets of P .Also note that the assumption that P is not an a�ne variety annot be removed: indeed,in suh a ase P does not have proper faes, so the hypotheses of the lemma are triviallysatis�ed, even if P 6= Q.Corollary 8.3 Let P ⊆ Q be two pointed polyhedra in R
n, with the property that every vertexof Q belongs to P . Let Cx ≥ d be a system of inequalities that are valid for P suh thatfor every inequality γx ≥ δ of the system, P 6⊆ {x ∈ R

n : γx = δ}. If for every α ∈ R
nsuh that µP (α) is �nite but µQ(α) = −∞, Cx ≥ d ontains an inequality γx ≥ δ suh that

MP (α) ⊆ {x ∈ R
n : γx = δ}, then P = Q ∩ {x ∈ R

n : Cx ≥ d}.Proof. We �rst show that dim(P ) = dim(Q). If not, there exists a hyperplane αx = βontaining P but not Q. Without loss of generality we an assume that µQ(α) < β = µP (α).So µQ(α) = −∞, otherwise there would exist an α-optimal vertex x̄ of Q suh that αx̄ < β,ontraditing the fat that x̄ ∈ P . Now the system Cx ≥ d must ontain an inequality γx ≥ δsuh that P = MP (α) ⊆ {x ∈ R
n : γx = δ}, a ontradition to the hypotheses of the orollary.Let Q′ = Q ∩ {x ∈ R

n : Cx ≥ d}. Note that P ⊆ Q′ ⊆ Q, thus dim(P ) = dim(Q′) =

dim(Q). Let αx ≥ β be a faet-induing inequality for P . If µQ(α) is �nite, then Q ontains an
α-optimal vertex whih is in P and therefore β = µP (α) = µQ′(α) = µQ(α). If µQ(α) = −∞,the system Cx ≥ d ontains an inequality γx ≥ δ suh that MP (α) ⊆ {x ∈ R

n : γx = δ} and
P 6⊆ {x ∈ R

n : γx = δ}. It follows that γx ≥ δ is a faet-induing inequality for P and thatit de�nes the same faet of P as αx ≥ β (that is, MP (α) = MP (γ)). This means that there



150 Chapter 8. A different tehniqueexist ν > 0, a vetor λ and a system Ax = b whih is valid for P suh that γ = να+ λA and
δ = νβ + λb. Sine dim(P ) = dim(Q′) and P ⊆ Q′, the system Ax = b is valid for Q′, as well.As γx ≥ δ is also valid for Q′, it follows that αx ≥ β is valid for Q′ (beause α = 1

ν
γ − λ

ν
Aand β = 1

ν
δ − λ

ν
b). Therefore β = µP (α) = µQ′(α).Thus in all ases µP (α) = µQ′(α). Now assume that P onsists of a single point and P 6= Q.Then Q is a one having P as apex. Given a ray α of Q, µP (α) is �nite while µQ(α) = −∞,so the system Cx ≥ d ontains an inequality γx ≥ δ suh that P ⊆ {x ∈ R

n : γx = δ},a ontradition. So we an assume that P is not a single point and thus P is not an a�nevariety, as it is pointed. Now we an onlude by applying Lemma 8.2 to the polyhedra Pand Q′. �We remark that in the statement of Corollary 8.3 the ondition that the two polyhedraare pointed is not neessary: if we replae the property �every vertex of Q belongs to P � with�every minimal fae of Q belongs to P �, the proof needs a very slight modi�ation to remainvalid. (However, in this ase we should assume that P is not an a�ne variety, so that we anapply Lemma 8.2 in the proof.)We also observe that the ondition �for every inequality γx ≥ δ of the system, P 6⊆ {x ∈

R
n : γx = δ}� is indeed neessary. For instane, onsider the polyhedra

P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : x ≥ 0, y = 0}and the system onsisting of the single inequality y ≥ 0.8.2 The mixing set with �owsIn this setion we reonsider the mixing set with �ows introdued in Setion 4.2.2:
s+ yi ≥ bi, 1 ≤ i ≤ n, (8.2)
yi ≤ zi, 1 ≤ i ≤ n, (8.3)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (8.4)
zi integer, 1 ≤ i ≤ n, (8.5)where we assume without loss of generality 0 ≤ b1 ≤ · · · ≤ bn. We denote the above set by

XMF .The original motivation for studying XMF was to generalize the mixing set XMIX

s+ zi ≥ bi, 1 ≤ i ≤ n,

s ≥ 0,

zi integer, 1 ≤ i ≤ n,by introduing the ontinuous (�ow) variables x (see also Setion 4.2). However the mixing setwith �ows is also losely related to two lot-sizing models, as explained in Setions 4.2.1�4.2.2.A linear inequality desription of the onvex hull ofXMF in its original spae was omputedin Setion 5.3 by projeting an extended formulation of the set. In this setion we obtain a



8.2. The mixing set with �ows 151linear inequality desription of conv
(
XMF

) both in the original spae and in an extendedspae by using the approah summarized in Steps 1�4 above.Steps 1�2 are performed in Setion 8.2.1, while Steps 3�4 are the subjet of Setion 8.2.2.We onlude in Setion 8.2.3 by studying a mixed-integer set that is losely related to XMF .8.2.1 A relaxationWe introdue a mixed-integer set Z whih is the following relaxation of the set XMF :
s+ zi ≥ bi, 1 ≤ i ≤ n, (8.6)

s+ yj + zi ≥ bi, 1 ≤ j < i ≤ n, (8.7)
s+ yi ≥ bi, 1 ≤ i ≤ n, (8.8)
s ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (8.9)
zi integer, 1 ≤ i ≤ n. (8.10)Note that variables yi are not required to take a nonnegative value in Z.The following easy lemma onstitutes Step 1 of the proess.Lemma 8.4 Let XMF and Z be de�ned on the same vetor b. Then XMF = Z ∩ {(s, y, z) :

0 ≤ y ≤ z}.Proof. Observe that for (s, y, z) ∈ XMF , s + zi ≥ s + yi ≥ bi holds, so s + zi ≥ bi is a validinequality for XMF . Also, inequalities s + zi ≥ bi and yj ≥ 0 imply that s + yj + zi ≥ bi isvalid for XMF . Inequalities zi ≥ 0 follow from yi ≥ 0 and yi ≤ zi. This proves that Z is arelaxation of XMF .The only inequalities that de�ne XMF but do not appear in the de�nition of Z are theinequalities 0 ≤ y ≤ z, thus XMF = Z ∩ {(s, y, z) : 0 ≤ y ≤ z}. �We prove here that conv
(
XMF

)
= conv(Z) ∩ {(s, y, z) : 0 ≤ y ≤ z} (Step 2). To do this,we need to establish some properties of the polyhedra conv

(
XMF

) and conv(Z). We start byharaterizing their extreme rays. In the following ej denotes the n-dimensional vetor with 1in the �rst omponent and 0 elsewhere, while 1 is the n-dimensional all-one vetor.Lemma 8.5 The extreme rays (s, y, z) of conv
(
XMF

) are the following 2n+ 1 vetors:
(1,0,0), (0,0, ej) for 1 ≤ j ≤ n, (0, ej , ej) for 1 ≤ j ≤ n.The extreme rays (s, y, z) of conv(Z) are the following 2n + 1 vetors:
(1,−1,0), (0,0, ej) for 1 ≤ j ≤ n, (0, ej ,0) for 1 ≤ j ≤ n.Proof. Sine the left-hand sides of inequalities (8.2)�(8.5) and (8.6)�(8.10) have integer oef-�ients, the reession ones of XMF and Z oinide with the reession ones of their linearrelaxations (Theorem 1.8). One an hek that the extreme rays of suh relaxations are thoselisted above. �



152 Chapter 8. A different tehniqueCorollary 8.6 The polyhedra conv
(
XMF

) and conv(Z) are full-dimensional.Proof. One an hek that the extreme rays of conv
(
XMF

) (resp. conv(Z)) listed above arelinearly independent. This shows that the reession one of conv
(
XMF

) (resp. conv(Z)) isfull-dimensional and the onlusion follows. �The following observation is easy.Lemma 8.7 Let (s̄, ȳ, z̄) be a vertex of conv(Z) and let 1 ≤ j ≤ n. Then
s̄ = max







0,

bi − z̄i, 1 ≤ i ≤ n,

bi − ȳi, 1 ≤ i ≤ n,

bi − z̄i − ȳj, 1 ≤ j < i ≤ n







, ȳj = max

{

bj − s̄,

bi − s̄− z̄i, j < i ≤ n

}

.Proof. If s̄ is not as above then there exists ε 6= 0 suh that both points (s̄ ± ε, ȳ, z̄) satisfyonditions (8.6)�(8.10), whih ontradit the fat that (s̄, ȳ, z̄) is a vertex of conv(Z). For ȳjthe proof is similar. �The following result is ruial for proving that conv
(
XMF

)
= conv(Z) ∩ {(s, y, z) : 0 ≤

y ≤ z}.Lemma 8.8 Let (s̄, ȳ, z̄) be a vertex of conv(Z). Then 0 ≤ ȳ ≤ z̄.Proof. Assume ȳk < 0 for some index k. Then s̄ > 0, otherwise, if s̄ = 0, the onstraints
s+ yk ≥ bk and bk ≥ 0 would imply ȳk ≥ 0.We now laim that there is an index 1 ≤ i ≤ n suh that s̄ = bi − z̄i. If not, s̄ > bi − z̄ifor 1 ≤ i ≤ n and there exists ε 6= 0 suh that (s̄, ȳ, z̄) ± ε(1,−1,0) belong to conv(Z), aontradition.So there is an index 1 ≤ i ≤ n suh that s̄ = bi − z̄i > 0. Sine bi − z̄i ≥ bi − z̄i − ȳj for
1 ≤ j < i, this implies ȳj ≥ 0 for 1 ≤ j < i. Lemma 8.7 also implies bi − z̄i ≥ bj − ȳj for
1 ≤ j ≤ n. Together with z̄i ≥ 0 and bi ≤ bj for j ≥ i, this implies ȳj ≥ z̄i ≥ 0 for j ≥ i. Thisompletes the proof that ȳ ≥ 0.Now assume ȳj > z̄j for some index j. Then z̄j ≥ 0 implies ȳj > 0. Assume ȳj = bj − s̄.Then inequality s̄ + z̄j ≥ bj implies that ȳj ≤ z̄j, a ontradition. Therefore by Lemma 8.7,
ȳj = bi − s̄− z̄i for some i > j. Sine ȳj > 0, then bi − s̄− z̄i > 0, a ontradition to s̄+ z̄i ≥ bi.This shows that ȳ ≤ z̄. �We an now prove the main theorem of this subsetion:Theorem 8.9 Let XMF and Z be de�ned on the same vetor b. Then conv

(
XMF

)
=

conv(Z) ∩ {(s, y, z) : 0 ≤ y ≤ z}.



8.2. The mixing set with �ows 153Proof. We prove the result by applying Corollary 8.3 to the polyhedra conv
(
XMF

) and
conv(Z) and the system 0 ≤ y ≤ z. To do this, we show that the hypotheses of that orollaryare satis�ed.By Lemma 8.4, conv

(
XMF

)
⊆ conv(Z). By Lemmas 8.8 and 8.4, every vertex of conv(Z)belongs to conv

(
XMF

).Let α = (h, p, q), with h ∈ R, p ∈ R
n, q ∈ R

n, be suh that µconv(XMF )(α) is �nite and
µconv(Z)(α) = −∞. Sine by Lemma 8.5, the extreme rays of conv(Z) that are not rays of
conv

(
XMF

) are (0, ej ,0) for 1 ≤ j ≤ n and (1,−1,0), then either pj < 0 for some index j or
h <

∑n
i=1 pi. Also note that h ≥ 0, as otherwise µconv(XMF )(α) = −∞ beause of ray (1,0,0).If pj < 0 for some index j, then Mconv(XMF )(α) ⊆ {(s, y, z) : yj = zj}.If h <∑n

i=1 pi, let N+ := {i : pi > 0}. We an assume that N+ 6= ∅: if not, either thereis an index j suh that pj < 0 (and we are in the previous ase) or pj = 0 for all 1 ≤ j ≤ n,in whih ase we have h < 0, ontraditing our assumption h ≥ 0. Thus N+ 6= ∅ and wean safely de�ne j := min{i : i ∈ N+}. We show that Mconv(XMF )(α) ⊆ {(s, y, z) : yj = 0}.Suppose that yj > 0 in some optimal solution. As the solution is optimal and pj > 0, weannot just derease the variable yj and remain feasible. Thus s + yj = bj, hene s < bj.However this implies that for all i ∈ N+, we have yi ≥ bi − s > bi − bj ≥ 0 as i ≥ j. Now as
yi > 0 for all i ∈ N+, we an inrease s by ε > 0 and derease yi by ε for all i ∈ N+. Thenew point is feasible in XMF and has lower objetive value, a ontradition.Therefore we have shown that for every vetor α suh that µconv(XMF )(α) is �nite and
µconv(Z)(α) = −∞, the system 0 ≤ y ≤ z ontains an inequality whih is tight for the pointsin Mconv(XMF )(α). To omplete the proof, note that sine conv

(
XMF

) is full-dimensional(Corollary 8.6), the system 0 ≤ y ≤ z does not ontain an inequality de�ning an improperfae of conv
(
XMF

). So we an now apply Corollary 8.3 to the polyhedra conv
(
XMF

) and
conv(Z) and the system 0 ≤ y ≤ z. �8.2.2 The intersetion setWe now ome to Step 3 of the proess desribed at the beginning of the hapter. In this stepa new mixed-integer set Y is introdued, whih in our ase is the intersetion set :1

σj + zi ≥ bi − bj , 0 ≤ j < i ≤ n, (8.11)
σj ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n, (8.12)
zi integer, 1 ≤ i ≤ n, (8.13)where 0 := b0 ≤ b1 ≤ . . . ≤ bn.Note that Y is the intersetion of the following n+1 mixing setsXMIX

j (with nonnegativitybounds on the integer variables), eah one assoiated with a distint variable σj (in theonstraints below j is a �xed index in {0, . . . , n}):
σj + zi ≥ bi − bj, j < i ≤ n,

σj ≥ 0, zi ≥ 0, j < i ≤ n,

zi integer, j < i ≤ n.1Note that this is not the same set as the intersetion set de�ned in Setion 4.3.



154 Chapter 8. A different tehniqueThe theorem below shows that the polyhedra conv(Z) and conv(Y ) are equivalent via ana�ne transformation (Step 3).Theorem 8.10 Let Z and Y be de�ned on the same vetor b. The a�ne transformation
σ0 := s; σi := s+ yi − bi, zi := zi for 1 ≤ i ≤ n (8.14)maps conv(Z) into conv(Y ).Proof. It is straightforward to hek that (8.14) transforms the inequalities in (8.6)�(8.10) intothe inequalities in (8.11)�(8.13). Sine this transformation is a mixed-integer linear mapping(see Setion 4.1) plus a translation, the result follows. �An immediate onsequene is the following:Corollary 8.11 Let XMF and Y be de�ned on the same vetor b. The a�ne transforma-tion (8.14) maps conv
(
XMF

) into
conv(Y ) ∩ {(σ, z) : 0 ≤ σi − σ0 + bi ≤ zi for 1 ≤ i ≤ n}.Proof. The result follows from Theorems 8.9 and 8.10. �The above orollary shows that an external desription of conv

(
XMF

) an be obtainedfrom an external desription of conv(Y ).Reall that Y is the intersetion of n+1 mixing sets de�ned on distint ontinuous variablesbut sharing some of the integer variables. For the mixing set, both a ompat extendedformulation and a linear inequality desription in the original spae are known: the formerwas �rst obtained by Miller and Wolsey [45℄, the latter by Günlük and Pohet [31℄. Bothformulations were illustrated in Chapter 5.The following result of Miller and Wolsey [45℄ shows that the onvex hull of the intersetionset Y is given by the intersetion of the onvex hulls of the single mixing sets.Proposition 8.12 (Miller and Wolsey [45℄) For 1 ≤ j ≤ m, let XMIX
j be a mixing set.Assume that eah set XMIX

j is de�ned on a distint ontinuous variable σj , while some or allinteger variables are in ommon. De�ne X∗ :=
⋂m

j=1X
MIX
j . Then

conv(X∗) =

m⋂

j=1

conv
(
XMIX

j

)
.It follows from Corollary 8.11 and Proposition 8.12 that an external desription of thepolyhedron conv

(
XMF

) in its original spae an be obtained by writing the external desrip-tions of all the polyhedra conv
(
XMIX

j

) together with the inequalities 0 ≤ σi − σ0 + bi ≤ zifor 1 ≤ i ≤ n and then applying the inverse of transformation (8.14). Similarly, a ompatextended formulation of conv
(
XMF

) an be obtained by writing the extended formulationsof all the polyhedra conv
(
XMIX

j

) together with the inequalities 0 ≤ σi − σ0 + bi ≤ zi for
1 ≤ i ≤ n and then applying the inverse of transformation (8.14). The resulting extendedformulation uses O(n2

) variables and onstraints.



8.3. The ontinuous mixing set with �ows 1558.2.3 A variantHere for the purpose of omparison we examine the onvex hull of a set losely related to
XMF . Suh a set is the relaxation obtained by dropping the nonnegativity onstraints on the�ow variables y. The unrestrited mixing set with �ows XUMF is the set:

s+ yi ≥ bi, 1 ≤ i ≤ n,

yi ≤ zi, 1 ≤ i ≤ n,

s ≥ 0,

zi integer, 1 ≤ i ≤ n.Its onvex hull turns out to be muh simpler and in fat the unrestrited mixing set with �owsand the mixing set are losely related.Proposition 8.13 For an unrestrited mixing set with �ows XUMF and the mixing set XMIXde�ned on the same vetor b,
conv

(
XUMF

)
=
{
(s, y, z) : (s, z) ∈ conv

(
XMIX

)
, bi − s ≤ yi ≤ zi for 1 ≤ i ≤ n

}
.Proof. Let P :=

{
(s, y, z) : (s, z) ∈ conv

(
XMIX

)
, bi − s ≤ yi ≤ zi for 1 ≤ i ≤ n

}. The inlu-sion conv(XUMF ) ⊆ P is obvious. In order to show that P ⊆ conv
(
XUMF

), we prove thatthe extreme rays (resp. verties) of P are rays (resp. feasible points) of conv
(
XUMF

).The one {(s, y, z) ∈ R+ × R
n × R

n
+ : −s ≤ yi ≤ zi, 1 ≤ i ≤ n} is the reession one ofboth P and conv

(
XUMF

), thus P and conv
(
XUMF

) have the same rays.We now prove that if (s̄, ȳ, z̄) is a vertex of P , then (s̄, ȳ, z̄) belongs to conv
(
XUMF

). It issu�ient to show that z̄ is integer. We do so by proving that (s̄, z̄) is a vertex of conv
(
XMIX

).If not, there exists a nonzero vetor (u,w) ∈ R × R
n suh that (s̄, z̄) ± (u,w) ∈ conv

(
XMIX

)and wi = −u whenever z̄i = bi − s̄. De�ne a vetor v ∈ R
n as follows: If ȳi = bi − s̄, set

vi = −u and if ȳi = z̄i, set vi = wi. (Sine ȳi satis�es at least one of these two equations,this assignment is indeed possible). It is now easy to hek that, for ε > 0 su�iently small,
(s̄, ȳ, z̄)±ε(u, v,w) ∈ P , a ontradition. Therefore (s̄, z̄) is a vertex of conv

(
XMIX

) and thus
(s̄, z̄) ∈ XMIX . Then (s̄, ȳ, z̄) ∈ XUMF and the result is proven. �8.3 The ontinuous mixing set with �owsIn this setion we reonsider the ontinuous mixing set with �ows introdued in Setion 4.2.1:

s+ ri + yi ≥ bi, 1 ≤ i ≤ n,

yi ≤ zi, 1 ≤ i ≤ n,

s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n,

zi integer, 1 ≤ i ≤ n,where we assume without loss of generality 0 ≤ b1 ≤ · · · ≤ bn (as all variables are nonnegative).We write XCMF to denote this mixed-integer set.



156 Chapter 8. A different tehniqueThe pratial usefulness of XCMF in lot-sizing problems was disussed in Setion 4.2.1,where we showed that the onvex hull of this set an be transformed into a dual network setand thus admits a ompat extended formulation (Proposition 4.4). We propose here somedi�erent ompat extended formulations of the polyhedron conv
(
XCMF

) that are derived byusing the approah skethed in Steps 1�4 at the beginning of this hapter.For the set XCMF studied here, the set Y of Steps 3�4 is an instane of the di�ereneset de�ned in Setion 4.3.1. We propose three ompat extended formulations for the onvexhull of this set and therefore we obtain three di�erent ompat extended formulations of thepolyhedron conv
(
XCMF

). All formulations derived here are less ompat than that givenin Setion 4.2.1. However the existene of a ompat extended formulation of conv
(
XCMF

)was �rst proven by using the approah presented here, when the generality of the results ofChapter 2 was not lear.Steps 1�2 of the proess desribed at the beginning of the hapter are performed in Se-tion 8.2.1, while Steps 3�4 are the subjet of Setion 8.2.2.8.3.1 A relaxationWe introdue a mixed-integer set Z whih is the following relaxation of the set XCMF :
s+ ri + zi ≥ bi, 1 ≤ i ≤ n, (8.15)

s+ rj + yj + ri + zi ≥ bi, 1 ≤ j < i ≤ n, (8.16)
s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (8.17)

s ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (8.18)
zi integer, 1 ≤ i ≤ n. (8.19)Note that variables yi are not required to take a nonnegative value in Z.The following lemma onstitutes Step 1 of the proess:Lemma 8.14 Let XCMF and Z be de�ned on the same vetor b. Then XCMF = Z ∩

{(s, r, y, z) : 0 ≤ y ≤ z}.Proof. Observe that for (s, y, r, z) ∈ XMF , s+ri+zi ≥ s+ri+yi ≥ bi holds, so s+ri+zi ≥ biis a valid inequality for XCMF . Also, inequalities s + ri + zi ≥ bi and yj, rj ≥ 0 imply that
s+ rj + yj + ri + zi ≥ bi is valid for XCMF . Inequalities zi ≥ 0 follow from yi ≥ 0 and yi ≤ zi.This proves that Z is a relaxation of XMF .The only inequalities that de�ne XCMF but do not appear in the de�nition of Z are theinequalities 0 ≤ y ≤ z, thus XCMF = Z ∩ {(s, r, y, z) : 0 ≤ y ≤ z}. �Similarly to what we did in Setion 8.2.1, we prove here that conv

(
XCMF

)
= conv(Z) ∩

{(s, r, y, z) : 0 ≤ y ≤ z} (Step 2). To do this, we need to establish some properties of thepolyhedra conv
(
XCMF

) and conv(Z). We start by haraterizing their extreme rays.Lemma 8.15 The extreme rays (s, r, y, z) of conv
(
XCMF

) are the following 3n+ 1 vetors:
(1,0,0,0); (0, ej ,0,0), (0,0,0, ej), (0,0, ej , ej) for 1 ≤ j ≤ n.



8.3. The ontinuous mixing set with �ows 157The extreme rays (s, r, y, z) of conv(Z) are the following 3n+ 1 vetors:
(1,0,−1,0); (0,0, ej ,0), (0,0,0, ej), (0, ej ,−ej ,0) for 1 ≤ j ≤ n.Proof. The �rst part is easy. We haraterize the extreme rays of conv(Z). The reessionone C of conv(Z) is de�ned by

s+ rj + yj + ri + zi ≥ 0, 1 ≤ j < i ≤ n,

s+ ri + yi ≥ 0, 1 ≤ i ≤ n,

s ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n.One an verify that the vetors ρ := (1,0,−1,0), uj := (0, ej ,−ej ,0), vj := (0,0, ej ,0),
wj := (0,0,0, ej) for 1 ≤ j ≤ n are extreme rays of conv(Z) by heking that eah of themsatis�es at equality 3n linearly independent inequalities de�ning C.Thus we only have to show that every vetor in C an be expressed as oni ombinationof the above rays. Let (s̄, r̄, ȳ, z̄) be in C. Note that

(s̄, r̄, ȳ, z̄) = s̄ρ+

n∑

j=1

r̄juj +

n∑

j=1

(s̄+ r̄j + ȳj)vj +

n∑

j=1

z̄jwj.Sine (s̄, r̄, ȳ, z̄) ∈ C, all the oe�ients appearing in the above ombination are nonnegative.
�Corollary 8.16 The polyhedra conv

(
XCMF

) and conv(Z) are full-dimensional.Proof. One an hek that the extreme rays of conv
(
XCMF

) (resp. conv(Z)) listed above arelinearly independent. This shows that the reession one of conv
(
XCMF

) (resp. conv(Z)) isfull-dimensional and the onlusion follows. �Lemma 8.17 Let (s̄, r̄, ȳ, z̄) be a vertex of conv(Z) and let 1 ≤ j ≤ n. Then
s̄ = max{0; bi − r̄i − z̄i : 1 ≤ i ≤ n},

ȳj = max{bj − s̄− r̄j; bi − s̄− r̄j − r̄i − z̄i : 1 ≤ j < i ≤ n}.Proof. Assume s̄ > 0 and s̄ + r̄i + z̄i > bi for 1 ≤ i ≤ n. Then there exists ε 6= 0 suh that
(s̄, r̄, ȳ, z̄) ± ε(1,0,−1,0) belong to conv(Z), a ontradition. This proves the �rst statement.The seond one is obvious. �The following result is ruial for proving that conv

(
XCMF

)
= conv(Z)∩{(s, r, y, z) : 0 ≤

y ≤ z}.Lemma 8.18 Let (s̄, r̄, ȳ, z̄) be a vertex of conv(Z). Then 0 ≤ ȳ ≤ z̄.



158 Chapter 8. A different tehniqueProof. Assume that {i : ȳi < 0} 6= ∅ and let h = min{i : ȳi < 0}. Then s̄ + r̄h > bh ≥ 0 andtogether with z̄h ≥ 0, this implies s̄+ r̄h + z̄h > bh.Claim: r̄h > 0.Proof. Assume r̄h = 0. Then s̄ > bh ≥ 0. By Lemma 8.17, s̄ + r̄i + z̄i = bi for some index
i. It follows that s̄ ≤ bi, thus i > h (as bh < s̄ ≤ bi). Equation s̄+ r̄i + z̄i = bi, together with
s̄ + r̄h + ȳh + r̄i + z̄i ≥ bi, gives r̄h + ȳh ≥ 0, thus r̄h > 0, as ȳh < 0, and this onludes theproof of the laim.Inequalities s̄+ r̄h + z̄h > bh and r̄j + ȳj ≥ 0 for 1 ≤ j < h imply s̄+ r̄j + ȳj + r̄h + z̄h > bhfor 1 ≤ j < h.All these observations show the existene of an ε 6= 0 suh that both points (s̄, r̄, ȳ, z̄) ±

ε(0, eh,−eh,0) belong to conv(Z), a ontradition to the fat that the point (s̄, r̄, ȳ, z̄) is avertex of conv(Z). Thus ȳ ≥ 0.Suppose now that there exists h suh that ȳh > z̄h. Then onstraint s + rh + zh ≥ bhgives s̄ + r̄h + ȳh > bh. Lemma 8.17 then implies that s̄ + r̄h + ȳh + r̄i + z̄i = bi for some
i > h. This is not possible, as inequalities ȳh > z̄h ≥ 0, r̄h ≥ 0 and s̄ + r̄i + z̄i ≥ bi imply
s̄+ r̄h + ȳh + r̄i + z̄i > bi. Thus ȳ ≤ z̄. �We an now prove the main theorem of this subsetion:Theorem 8.19 Let XCMF and Z be de�ned on the same vetor b. Then conv

(
XCMF

)
=

conv(Z) ∩ {(s, r, y, z) : 0 ≤ y ≤ z}.Proof. We prove the result by applying Corollary 8.3 to the polyhedra conv
(
XCMF

) and
conv(Z) and the system 0 ≤ y ≤ z. To do this, we show that the hypotheses of that orollaryare satis�ed.By Lemma 8.14, conv

(
XCMF

)
⊆ conv(Z). By Lemmas 8.18 and 8.14, every vertex of

conv(Z) belongs to conv
(
XCMF

).Let α = (h, d, p, q), with h ∈ R, d ∈ R
n, p ∈ R

n, q ∈ R
n, be suh that µconv(XCMF )(α) is�nite and µconv(Z)(α) = −∞. Sine by Lemma 8.15, the extreme rays of conv(Z) that are notrays of conv

(
XCMF

) are the vetors (0,0, ej ,0) for 1 ≤ j ≤ n, (0, ej ,−ej ,0) for 1 ≤ j ≤ n and
(1,0,−1,0), then either pj < 0 for some index j, or dj < pj for some index j, or h <∑n

i=1 pi.Also note that h ≥ 0, as otherwise µconv(XMF )(α) = −∞ beause of ray (1,0,0,0).If pj < 0 for some index j, then Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = zj}.If dj < pj for some index j, then Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = 0}, otherwise, givenan optimal solution with yj > 0, we ould inrease rj by a small ε > 0 and derease yj by ε,thus obtaining a feasible point with lower objetive value.If h <∑n
i=1 pi, let N+ := {i : pi > 0}. We an assume that N+ 6= ∅: if not, either thereis an index j suh that pj < 0 (and we are in the �rst ase above) or pj = 0 for all 1 ≤ j ≤ n,in whih ase we have h < 0, ontraditing our assumption h ≥ 0. Thus N+ 6= ∅ and we ansafely de�ne j := min{i : i ∈ N+}. We show that Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = 0}.Suppose that yj > 0 in some optimal solution. As the solution is optimal and pj > 0, weannot just derease yj and remain feasible. Thus s+ rj + yj = bj, whih implies that s < bj .Then for all i ∈ N+ we have ri + yi ≥ bi − s > bi − bj ≥ 0, as i ≥ j. Sine we an assume
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di ≥ pi for every i (otherwise we are in the previous ase), ri = 0 for every i: if not, hosenan index i suh that ri > 0, one an derease ri by a small ε > 0 and inrease yi by ε, thusobtaining a feasible point with lower objetive value, a ontradition. So ri = 0 for every iand thus, sine ri +yi > 0 for all i ∈ N+, we have yi > 0 for all i ∈ N+. Then we an inrease
s by a small ε > 0 and derease yi by ε for all i ∈ N+. The new point is feasible in XCMFand has lower objetive value, a ontradition.Therefore we have shown that for every vetor α suh that µconv(XCMF )(α) is �nite and
µconv(Z)(α) = −∞, the system 0 ≤ y ≤ z ontains an inequality whih is tight for thepoints in Mconv(XCMF )(α). To omplete the proof, sine conv

(
XCMF

) is full-dimensional(Corollary 8.16), the system 0 ≤ y ≤ z does not ontain an inequality de�ning an improperfae of conv
(
XCMF

). So we an now apply Corollary 8.3 to the polyhedra conv
(
XCMF

) and
conv(Z) and the system 0 ≤ y ≤ z. �8.3.2 The di�erene setWe now arrive to Step 3 of the proess, where a new mixed-integer set Y is introdued. Inour ase Y is the di�erene set, whih was also disussed in Setion 4.3:

σj + ri + zi ≥ bi − bj , 0 ≤ j < i ≤ n, (8.20)
σj ≥ 0, ri ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n, (8.21)

zi integer, 1 ≤ i ≤ n. (8.22)where 0 = b0 ≤ b1 ≤ . . . ≤ bn. Note that this de�nition is equivalent to that given inSetion 4.3, beause for j ≥ i the onstraint σj + ri + zi ≥ bi − bj is redundant (as bj ≥ bi andall variables are nonnegative).The theorem below shows that the polyhedra conv(Z) and conv(Y ) are equivalent via ana�ne transformation (Step 3).Theorem 8.20 Let Z and Y be de�ned on the same vetor b. The a�ne transformation
σ0 := s; σi := s+ ri + yi − bi, zi := zi for 1 ≤ i ≤ n (8.23)maps conv(Z) into conv(Y ).Proof. It is straightforward to hek that (8.23) transforms the inequalities in (8.15)�(8.19) intothe inequalities in (8.20)�(8.22). Sine this transformation is a mixed-integer linear mapping(see Setion 4.1) plus a translation, the result follows. �An immediate onsequene is the following:Corollary 8.21 Let XCMF and Y be de�ned on the same vetor b. The a�ne transforma-tion (8.23) maps conv
(
XCMF

) into
conv(Y ) ∩ {(σ, r, z) : 0 ≤ σi − σ0 − ri + bi ≤ zj for 1 ≤ i ≤ n}.Proof. The result follows from Theorems 8.19 and 8.20. �



160 Chapter 8. A different tehniqueThe above orollary shows that an external desription of conv
(
XCMF

) an be obtainedfrom an external desription of conv(Y ). Unfortunately, the onvex hull of a set of the type
Y in its spae of de�nition is not known. However there are several ways of giving a ompatextended formulation of conv(Y ) (Step 4).First approah: transforming Y into a dual network setReall that in Setion 4.3 we showed that conv(Y ) admits a ompat extended formulation, asit an be transformed into a dual network set having a short omplete list of frational parts.Thus that extended formulation yields a ompat extended formulation for conv

(
XCMF

).This approah might appear quite odd, as the set XCMF itself an be transformed into a dualnetwork set, thus it seems more onvenient to write the orresponding extended formulationdiretly for suh set. Nonetheless this approah was adopted by Conforti, Di Summa andWolsey [12℄ to provide the �rst ompat extended formulation for conv
(
XCMF

), when thegenerality of the results of Chapter 2 was not ompletely lear.Seond approah: formulating onv(Y ) as a union of polyhedraA seond possible way of onstruting a ompat extended formulation of conv(Y ) onsistsin using the approah skethed in Setion 1.5.4, whih exploits Balas' result on the union ofpolyhedra (Theorem 1.3). Suh a tehnique was used by Atamtürk [2℄ to model a simple setand was disussed and demonstrated in a paper by Conforti and Wolsey [16℄.Enumeration of frational parts is still present in this formulation. However, the frationalparts are listed in a way that is di�erent from that onsidered in Chapter 2. To explain this,let us onsider the σ-variables. Instead of giving a list of values ontaining all the frationalparts taken by the σ-variables over the set of verties of conv(Y ), we provide a list of (n+ 1)-dimensional vetors F =
{
f1, . . . , fk

} suh that eah vertex (σ̄, r̄, z̄) of conv(Y ) satis�es
(
f(σ̄0), . . . , f(σ̄n)

)
∈ F .Suh a list is given by the following result:Proposition 8.22 Let (σ̄, r̄, z̄) be a vertex of conv(Y ). Then there exist two indies 0 ≤ h ≤

ℓ ≤ n suh that f(σ̄j) = 0 for h ≤ j ≤ n and f(σ̄j) = f(bℓ − bj) for 0 ≤ j < h.Proof. Let (σ̄, r̄, z̄) be a vertex of conv(Y ), de�ne α := max1≤i≤n{bi − r̄i − z̄i} and let
Tα ⊆ {1, . . . , n} be the subset of indies for whih this maximum is ahieved.Claim 1: For eah 1 ≤ j ≤ n, σ̄j = max{0, α − bj}.Proof. The inequalities that de�ne Y show that σ̄j ≥ max{0, α−bj}. If σ̄j > max{0, α−bj},then there is an ε > 0 suh that (σ̄, r̄, z̄) ± ε(ej ,0,0) are both in conv(Y ), a ontradition tothe fat that (σ̄, r̄, z̄) is a vertex of conv(Y ). This onludes the proof of the laim.De�ne h := min{j : α− bj ≤ 0}. (This minimum is well de�ned: sine the only inequalityinvolving σn is σn ≥ 0, ertainly σ̄n = 0; then, by Claim 1, α− bn ≤ 0.) Sine 0 = b0 ≤ b1 ≤

· · · ≤ bn, Claim 1 shows that σ̄j > 0 for j < h and σ̄j = 0 for j ≥ h and this proves part ofthe proposition. Furthermore σ̄j + r̄i + z̄i = bi − bj for all j < h and i ∈ Tα.



8.3. The ontinuous mixing set with �ows 161Claim 2: Either r̄i = 0 for some i ∈ Tα, or f(ri) = f(bi − bh) for every i ∈ Tα.Proof. We use the fat that (σ̄, r̄) is a vertex of the polyhedron:
Q :=

{
(σ, r) ∈ R

n+1
+ × R

n
+ : σj + ri ≥ bi − bj − z̄i for 0 ≤ j < i ≤ n

}
.We now onsider the following two ases:Case 1: α− bh < 0.For j ≥ h, the only inequality that is tight for (σ̄, r̄) and ontains σj in its support is σj ≥ 0.For j < h, the only inequalities that are tight for (σ̄, r̄) and ontain σj in their support are

σj + ri ≥ bi − bj − z̄i for i ∈ Tα.Let eH be the (n + 1)-vetor having the �rst h omponents equal to 1 and the others to 0,let eTα be the inidene vetor of Tα and assume that r̄i > 0 for all i ∈ Tα. Then the vetors
(σ̄, r̄)± ε(eH ,−eTα) for some ε > 0 are both in Q, ontraditing the fat that (σ̄, r̄) is a vertexof Q. So r̄i = 0 for some i ∈ Tα.Case 2: α− bh = 0.Then (σ̄, r̄, z̄) satis�es σ̄h + r̄i + z̄i = bi − bh for all i ∈ Tα. Sine σ̄h = 0 and z̄i is integer, then
f(r̄i) = f(bi − bh) for all i ∈ Tα and this ompletes the proof of Claim 2.Assume r̄i = 0 for some i ∈ Tα. Sine σ̄j + r̄i + z̄i = bi − bj for all j < h and z̄i is aninteger, then f(σ̄j) = f(bi − bj) for all j < h. Note that if i < h then α − bh > 0 and thus(realling that i ∈ Tα) bi − r̄i − z̄i − bh > 0, whih is not possible as bi ≤ bh and r̄i, z̄i ≥ 0.Thus i ≥ h and the result holds with ℓ = i.If f(r̄i) = f(bi − bh) for all i ∈ Tα, sine σ̄j + r̄i + z̄i = bi − bj for all i ∈ Tα and for all
j < h and sine z̄ is an integral vetor, then f(σ̄j) = f(bh − bj) for all j < h. Then the resultholds with ℓ = h. �A similar result an be proven for the variables rt:Proposition 8.23 Let (σ̄, r̄, z̄) be a vertex of conv(Y ). Then there exist two indies 0 ≤ ℓ′ ≤

h′ ≤ n suh that f(r̄i) = 0 for 1 ≤ i ≤ h′ and f(r̄i) = f(bi − bℓ′) for h′ < i ≤ n.Proof. We omit the proof, whih is symmetri to that of Proposition 8.22. We only remarkthat throughout the proof, the role of a variable σj is now played by the sum ri + zi: forinstane, one de�nes α′ := max0≤j≤n{−bj − σ̄j} and then proves that for eah 0 ≤ i ≤ n,
r̄i + z̄i = max{0, α′ + bi}. �Let T be the set of quadruples of indies τ = (h, ℓ, h′, ℓ′) with 0 ≤ h ≤ ℓ ≤ n and
0 ≤ ℓ′ ≤ h′ ≤ n. For eah τ ∈ T , let Y τ be the set of points (σ, r, z) ∈ Y for whih thevalues f(σj), f(ri) satisfy the properties of Propositions 8.22�8.23. Note that every vertex of
conv(Y ) belongs to Y τ for some τ ∈ T . Furthermore, it an be heked that the reessionone of eah polyhedron conv(Y τ ) oinides with that of conv(Y ). This is su�ient to seethat conv(Y ) = conv

(⋃

τ∈T Y
τ
). Then, if we give a formulation of conv(Y τ ) for eah τ ∈ T ,Balas' result (Theorem 1.3) will provide an extended formulation for conv(Y ).



162 Chapter 8. A different tehniqueFix τ = (h, ℓ, h′, ℓ′) ∈ T . Sine the frational part of eah ontinuous variable is �xed in
Y τ , we an model the ontinuous variables as shown below:

σj = µj + f(bℓ − bj), 0 ≤ j ≤ h, (8.24)
σj = µj, h < j ≤ n, (8.25)
ri = νi, 1 ≤ i ≤ h′, (8.26)
ri = νi + f(bi − bℓ′), h′ < i ≤ n, (8.27)
µj, νi integer, 0 ≤ j ≤ n, 1 ≤ i ≤ n. (8.28)Under the above onditions, inequalities (8.20)�(8.22) an be rewritten as follows:

µj + νi ≥ bi − bj − f(bℓ − bj) − f(bi − bℓ′), 0 ≤ j ≤ h, h′ < i ≤ n, j < i,

µj + νi ≥ bi − bj − f(bℓ − bj), 0 ≤ j ≤ h, 1 ≤ i ≤ h′, j < i,

µj + νi ≥ bi − bj − f(bi − bℓ′), h < j ≤ n, h′ < i ≤ n, j < i,

µj + νi ≥ bi − bj, h < j ≤ n, 1 ≤ i ≤ h′, j < i,

µj ≥ 0, νi ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n,

zi integer, 1 ≤ i ≤ n.Sine the onstraint matrix of the above system is totally unimodular and all variables areinteger, the onvex hull is obtained by rounding up the right-hand sides and removing theintegrality restritions. The resulting linear system, together with equations (8.24)�(8.27)(whih de�ne the original variables) is an extended formulation of conv(Y τ ). By applyingBalas'result (Theorem 1.3) we obtain an extended formulation of conv(Y ).Third approah: a mixture of the above methodsWhen disussing the �rst approah to formulate conv(Y ), we pointed out that Conforti, DiSumma and Wolsey used that tehnique in [12℄, where the �rst ompat extended formulationof conv
(
XCMF

) was given. In fat that paper desribes two ompat extended formulationsof conv
(
XCMF

). The other formulation was given by using in a sense a mixture of the twoapproahes illustrated above, as we now explain.The �rst part of the proess is as in the seond approah above, exept that only Propo-sition 8.22 is used. More spei�ally, let T be the set of pairs of indies τ = (h, ℓ) with
0 ≤ h ≤ ℓ ≤ n. For eah τ ∈ T , let Y τ be the set of points (σ, r, z) ∈ Y for whih the values
f(σj) for 0 ≤ j ≤ n satisfy the properties of Proposition 8.22. As above, one an prove that
conv(Y ) = conv

(⋃

τ∈T Y
τ
). Then, if we give a formulation of conv(Y τ ) for eah τ ∈ T , Balas'result (Theorem 1.3) will provide an extended formulation for conv(Y ).Fix τ = (h, ℓ) ∈ T . Sine the frational parts of variables σj are �xed in Y τ , we an modelthese variables as shown below:

σj = µj + f(bℓ − bj), 0 ≤ j ≤ h, (8.29)
σj = µj , h < j ≤ n, (8.30)
µj integer, 0 ≤ j ≤ n. (8.31)



8.3. The ontinuous mixing set with �ows 163Under the above onditions, inequalities (8.20)�(8.22) an be rewritten as follows:
µj + ri + zi ≥ bi − bj − f(bℓ − bj), 0 ≤ j ≤ h, 0 ≤ j < i ≤ n, (8.32)
µj + ri + zi ≥ bi − bj , h < j ≤ n, 0 ≤ j < i ≤ n, (8.33)
µj ≥ 0, ri ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n (8.34)
µj, zi integer, 0 ≤ j ≤ n, 1 ≤ i ≤ n. (8.35)In [12℄ the above system is strengthened in a way that is similar to that disussed inChapter 2:2 for eah 1 ≤ i ≤ n, a list Fi is given that ontains all the frational parts taken byvariable ri over the verties of the onvex hull of (8.32)�(8.35). In other words, Fi is ompletefor the above mixed-integer set with respet to variable ri.Lemma 8.24 The list of frational parts Fi := {0, f(bi − bℓ)} ∪ {f(bi − bj) : 0 ≤ j < i} isomplete for (8.32)�(8.35) with respet to variable ri.Proof. First of all note that the frational part of the right-hand side of inequality (8.32) is

f(bi − bℓ). Let (µ̄, r̄, z̄) be a vertex of the onvex hull of (8.32)�(8.35). Sine µ̄ and z̄ areintegral vetors, if f(r̄i) were not in the list Fi de�ned above then both points (µ̄, r̄ ± εei, z̄)would satisfy (8.32)�(8.35) for some ε 6= 0. This ontradits the assumption that (µ̄, r̄, z̄) is avertex. �For eah index 1 ≤ i ≤ n, de�ne f j
i := f(bi − bj) for 0 ≤ j ≤ i and f i+1

i := f(bi − bℓ), sothat Fi =
{
f0

i , . . . , f
i+1
i

}. We model the r-variables as follows:
ri = νi +

∑i+1
t=0 f

t
i δ

t
i , 1 ≤ i ≤ n, (8.36)

∑i+1
t=0 δ

t
i = 1, δt

i ≥ 0, 1 ≤ i ≤ n, 0 ≤ t ≤ i+ 1, (8.37)
νi, δ

t
i integer, 1 ≤ i ≤ n, 0 ≤ t ≤ i+ 1. (8.38)Under the above onditions and using Chvátal-Gomory rounding similarly to what we did inthe proof of Lemma 2.5, inequalities (8.32)�(8.33) beome

µj + νi +
∑

t:ft
i ≥f(bi−bℓ)

δt
i + zi ≥ ⌊bi − bj − f(bℓ − bj)⌋ + 1, 0 ≤ j ≤ h, 0 ≤ j < i ≤ n, (8.39)

µj + νi +
∑

t:ft
i ≥f(bi−bj)

δt
i + zi ≥ ⌊bi − bj⌋ + 1, h < j ≤ n, 0 ≤ j < i ≤ n. (8.40)Therefore the set Y τ is desribed by onditions (8.29)�(8.31), (8.36)�(8.38) and (8.39)�(8.40).Proposition 8.25 The onstraint matrix of the system omprising inequalities (8.37) and(8.39)�(8.40) is totally unimodular.2In fat the set de�ned by (8.32)�(8.35) ould be mapped into a dual network set. However we present theresult as in [12℄.



164 Chapter 8. A different tehniqueProof. Let A be the onstraint matrix of the system omprising inequalities (8.37) and (8.39)�(8.40). Order the olumns of A aording to the following ordering of the variables:
µ0, . . . , µn; z1, ν1, δ

1
1 , δ

2
1 ; z2, ν2, δ

1
2 , δ

2
2 , δ

3
2 ; . . . ; zi, νi, δ

1
i , . . . , δ

i+1
i ; . . . ; zn, νn, δ

1
n, . . . , δ

n+1
n .For eah row of A, the 1's that appear in a blok [zi, νi, δ

1
i , . . . , δ

i+1
i

] are onseutive andstart from the �rst position. Furthermore, for eah row of A only one of these bloks ontainsnonzero elements.Consider an arbitrary olumn submatrix of A. We give olor red to all the µj (if any) andthen, for eah of the bloks [zi, νi, δ
1
i , . . . , δ

i+1
i

], we give alternating olors, always starting withblue, to the olumns of this blok that appear in the submatrix. Sine this is an equitablebioloring, the result of Ghouila-Houri (Theorem 1.14) shows that A is totally unimodular.
�Sine eah variable σj, ri is de�ned by the orresponding equation in (8.29)�(8.30) or (8.36),and does not appear in any other onstraint, the above proposition implies that the integralityrequirements an be dropped. Thus inequalities (8.29)�(8.30), (8.36)�(8.37) and (8.39)�(8.40)form an extended formulation of conv(Y τ ). By applying Balas'result we obtain an extendedformulation of conv(Y ).To onlude, we point out that eah of the three extended formulations of conv

(
XCMF

)disussed here is less ompat than that given in Setion 4.2.1. In partiular the formulationobtained here by using the seond approah is very large, as it uses O
(
n6
) variables andonstraints.



Chapter 9Open problemsWe onlude this dissertation by addressing some questions that remain unanswered.In Chapter 2 we introdued a tehnique to onstrut extended formulations for mixed-integer setsMIX2TU whose onstraint matrix is totally unimodular and ontains at most twononzero entries per row. The tehnique is based on the expliit enumeration of all possiblefrational parts that the variables take at the verties of conv
(
MIX2TU

). As shown in Chap-ter 3, sine there exist sets of the typeMIX2TU that do not admit a omplete list of frationalparts whose size is ompat, a formulation of this type might have exponential size.A �rst natural question is then the following: Is it possible to modify our approah so thata ompat extended formulation is obtained even if no omplete list for the set is ompat? A�rst failed attempt was brie�y disussed in Setion 2.4.2, but the answer to the above questionis not known.We remark that even if no omplete list for the set is ompat, still we do have an extendedformulation for the set, as Lemma 2.11 provides us with a list whih is always omplete.Thus we an weaken the above question to the following: Is it possible to use our extendedformulation to optimize in polynomial time even if no omplete list for the set is ompat?The inequalities onstituting our formulation are expliitly given. The fat that the numberof these inequalities might be exponential is probably a minor issue, thanks to the equivalenebetween separation and optimization (Theorem 1.6). The major problem is the fat that thenumber of variables an be exponentially large with respet to the original desription of theset. Nonetheless there is muh struture in our extended formulation, so there may be a hopeto handle this problem.This thesis ontains no omputational experiment. However this is also an aspet thatshould be explored. As pointed out for instane in [70℄, ompliated mixed-integer sets anbe e�etively takled by onstruting relaxations that have a simpler struture and thentightening or reformulating suh relaxations. As shown for instane in Chapter 4, there areseveral well studied simple-strutured mixed-integer sets that are of the type MIX2TU , andmany others an probably arise in other ontexts. It would be interesting to understand howe�etive an extended formulation of our type an be when used to tighten a substruture ofa more ompliated mixed-integer set. Also, it is not obvious how suh a formulation should165



166 Chapter 9. Open problemsbe used: one ould for instane add all or only some of the inequalities of the formulation tothe original set, or use the extended formulation to separate.Another interesting aspet is the following. Note that even if all omplete list of fra-tional parts for a set are non-ompat, one an onsider a short sublist and onstruting theorresponding extended formulation. By doing so, one obtains the desription of a subset(not a relaxation) of the onvex hull of the original set. Can this idea be used to e�etivelyapproximate a mixed-integer set of our family?A question that arises naturally is about projetions. It is probably hard to ompute theprojetion of our extended formulation onto the original spae of variables in the general ase.Still, sine suh formulations have a ommon struture, there is a hope that the extendedformulations an be used to �nd some general properties of the faet-de�ning inequalities inthe original spae. (However information about the onvex hull in the original spae an alsobe found without using extended formulations or projetions, as demonstrated in Chapters 6and 8.)Another question that we address onerns the possible generalizations of the approahpresented in Chapter 2. In Chapter 7 we onsidered two variants of a spei� set MIX2TU(namely the mixing set) obtained by multiplying the olumns of the onstraint matrix by someonstants. Under the assumption of divisibility, we ould (non-trivially) extend the approahpresented in the previous hapters. It would be nie to understand whether a generalizationof this type is only possible for those spei� sets, or the idea underlying our extension anbe pushed further.Reall that we pointed out in Setion 7.1.8 that for the formulations of Chapter 7 theonstraint matrix is not (in general) totally unimodular. In fat, the onstrution of integralextended formulations was possible beause of the presene of a single onstraint for eahinteger variable. It would be useful to remove this strong limitation.Finally, we observe that the approah illustrated in Chapter 8 is somehow mysterious.First, it is not lear to whih lass of sets it an be applied. Seond, even restriting ourselvesto the ases studied in that hapter (i.e. the mixing set with �ow and the ontinuous mixingset with �ows), it is di�ult to see a rational riterion for hoosing that relaxation Z ratherthan another one (exept for the a posteriori onsideration that suh a hoie works!).



Bibliography[℄Numbers in brakets at the end of entries refer to pages iting them.[℄[1℄ W.P. Adams and H.D. Sherali, A hierarhy of relaxations leading to the onvex hullrepresentation for general disrete optimization problems, Annals of Operations Researh,140 (2005), pp. 21�47. [13℄[2℄ A. Atamtürk, Strong formulations of robust mixed 0-1 programming, MathematialProgramming, 108 (2006), pp. 235�250. [17, 133, 160℄[3℄ E. Balas, Disjuntive programming, Annals of Disrete Mathematis, 5 (1979), pp. 3�51.[14℄[4℄ E. Balas, Disjuntive programming: Properties of the onvex hull of feasible points,Disrete Applied Mathematis, 89 (1998), pp. 3�44. [4℄[5℄ E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-projet utting plane algorithmfor mixed 0-1 programs, Mathematial Programming, 58 (1993), pp. 295�324. [14, 15℄[6℄ E. Balas and W. Pulleyblank, The perfetly mathable subgraph polytope of a bipar-tite graph, Networks, 13 (1983), pp. 495�516. [11℄[7℄ R.E. Bellman, Dynami Programming, Prineton University Press, 1957. [18℄[8℄ R.N. �ernikov, The solution of linear programming problems by elimination of un-knowns, Soviet Mathematis Doklady, 2 (1961), pp. 1099�1103. [11℄[9℄ T. Christof, PORTA �a POlyhedron Representation Transformation Algorithm. Freesoftware, 2002. Revised by A. Löbel. [36℄[10℄ V. Chvátal, Edmonds polytopes and a hierarhy of ombinatorial problems, DisreteMathematis, 4 (1973), pp. 305�337. [8℄[11℄ M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey, Network formula-tions of mixed-integer programs, CORE Disussion Paper 2006/117, Université atholiquede Louvain, Belgium, 2006. Aepted by Mathematis of Operations Researh. [21, 26,43, 51, 133℄ 167



168 BIBLIOGRAPHY[12℄ M. Conforti, M. Di Summa, and L.A. Wolsey, The intersetion of ontinuous mix-ing polyhedra and the ontinuous mixing polyhedron with �ows, in Integer Programmingand Combinatorial Optimization, M. Fishetti and D.P. Williamson, eds., vol. 4513 ofLeture Notes in Computer Siene, Springer, 2007, pp. 352�366. [16, 18, 54, 57, 59, 60,61, 148, 160, 162, 163℄[13℄ M. Conforti, M. Di Summa, and L.A. Wolsey, The mixing set with �ows, SIAMJournal on Disrete Mathematis, 21 (2007), pp. 396�407. [18, 41, 57, 102, 148℄[14℄ M. Conforti, M. Di Summa, and L.A. Wolsey, The mixing set with divisible apa-ities, in Integer Programming and Combinatorial Optimization, Leture Notes in Com-puter Siene, Springer, 2008. To appear. [120℄[15℄ M. Conforti, B. Gerards, and G. Zambelli,Mixed-integer vertex overs on bipartitegraphs, in Integer Programming and Combinatorial Optimization, M. Fishetti and D.P.Williamson, eds., vol. 4513 of Leture Notes in Computer Siene, Springer, 2007, pp. 324�336. [63, 65, 115℄[16℄ M. Conforti and L.A. Wolsey, Compat formulations as a union of polyhedra, Math-ematial Programming, (2007). To appear (published online). [17, 18, 57, 61, 120, 133,160℄[17℄ S.A. Cook, The omplexity of theorem-proving proedures, in Proeedings of the thirdannual ACM symposium on Theory of omputing, ACM Press New York, 1971, pp. 151�158. [6℄[18℄ G. Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematial Pro-gramming, 112 (2008), pp. 3�44. [4, 7, 16℄[19℄ G.B. Dantzig, Maximization of a linear funtion of variables subjet to linear inequal-ities, in Ativity Analysis of Prodution and Alloation, T.C. Koopmans, ed., Wiley-Intersiene, New York, 1951, pp. 339�347. [5℄[20℄ M. Di Summa, The mixing set with divisible apaities. Manusript, 2007. [120, 133℄[21℄ M. Di Summa and L.A. Wolsey, Lot-sizing on a tree, Operations Researh Letters,36 (2008), pp. 7�13. [54, 58℄[22℄ L.L. Dines, Systems of linear inequalities, The Annals of Mathematis, 20 (1919),pp. 191�199. [10℄[23℄ F. Eisenbrand, Mixed-integer programming over TU systems. Manusript, 2006. [21,26℄[24℄ F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura, Cirular ones matriesand the stable set polytope of quasi-line graphs, in Integer Programming and Combinato-rial Optimization, M. Jünger and V. Kaibel, eds., vol. 3509 of Leture Notes in ComputerSiene, Springer, 2005, pp. 291�305. [22, 103, 108, 111℄



BIBLIOGRAPHY 169[25℄ J.B.J. Fourier, Analyse des travaux de l'Aadémie Royale des Sienes, pendant l'année1824, Histoire de l'Aadémie Royale des Sienes de l'Institut de Frane, 7 (1824),pp. xlvii�lv. [10℄[26℄ A. Ghouila-Houri, Caratérisations des matries totalement unimodulaires, ComptesRendus Hebdomadaires des Séanes de l'Aadémie des Sienes, Paris, 254 (1962),pp. 1192�1194. [8, 9, 28, 131, 145℄[27℄ R.E. Gomory, Outline of an algorithm for integer solution to linear programs, Bulletinof the Amerian Mathematial Soiety, 64 (1958), pp. 275�278. [7℄[28℄ M. Grötshel, L. Lovász, and A. Shrijver, The ellipsoid method and its onse-quenes in ombinatorial optimization, Combinatoria, 1 (1981), pp. 169�197. [6℄[29℄ M. Grötshel, L. Lovász, and A. Shrijver, Geometri Algorithms and Combina-torial Optimization, Springer, 1988. [6℄[30℄ Y. Guan, S. Ahmed, A.J. Miller, and G.L. Nemhauser, On formulations ofthe stohasti unapaitated lot-sizing problem, Operations Researh Letters, 34 (2006),pp. 241�250. [18℄[31℄ O. Günlük and Y. Pohet, Mixing mixed-integer inequalities, Mathematial Program-ming, 90 (2001), pp. 429�457. [53, 54, 59, 75, 76, 154℄[32℄ I. Heller and C.B. Tompkins, An extension of a theorem of Dantzig, Linear Inequal-ities and Related Systems, (1956), pp. 247�252. [28℄[33℄ F.S. Hillier and G.J. Lieberman, Introdution to Operations Researh, MGraw-HillShool Eduation Group, seventh ed., 2000. [1℄[34℄ A.J. Hoffman and J.B. Kruskal, Integral boundary points of onvex polyhedra, inLinear Inequalities and Related Systems, H.W. Kuhn and A.W. Tuker, eds., no. 38 inAnnals of Mathematial Study, Prineton Unversity Press, 1956, pp. 223�246. [8℄[35℄ N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinator-ia, 4 (1984), pp. 373�395. [6℄[36℄ L.G. Khahiyan, A polynomial algorithm in linear programming, Doklady AkademiaNauk SSSR, 244 (1979), pp. 1093�1096. [5℄[37℄ V. Klee and G.J. Minty, How good is the simplex algorithm?, in Inequalities, O. Shisha,ed., vol. III, Aademi Press, New York, 1972, pp. 159�175. [5℄[38℄ B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,Springer, 2000. [12, 18, 30, 52℄[39℄ J.B. Lasserre, An expliit exat SDP relaxation for nonlinear 0-1 programs, in IntegerProgramming and Combinatorial Optimization, K. Aardal and B. Gerards, eds., vol. 2081of Leture Notes in Computer Siene, Springer, 2001, pp. 293�303. [14℄



170 BIBLIOGRAPHY[40℄ M. Laurent, A omparison of the Sherali-Adams, Lovász-Shrijver, and Lasserre relax-ations for 0-1 programming, Mathematis of Operations Researh, 28 (2003), pp. 470�496.[12℄[41℄ L. Lovász and A. Shrijver, Cones of matries and set-funtions and 0-1 optimization,SIAM Journal on Optimization, 1 (1991), pp. 166�190. [13℄[42℄ O. Marotte, The utting stok problem and integer rounding, Mathematial Program-ming, 33 (1985), pp. 82�92. [120℄[43℄ R.K. Martin, R.L. Rardin, and B.A. Campbell, Polyhedral haraterization ofdisrete dynami programming, Operations Researh, 38 (1990), pp. 127�138. [19℄[44℄ R.R. Meyer, On the existene of optimal solutions to integer and mixed-integer program-ming problems, Mathematial Programming, 7 (1974), pp. 223�235. [6℄[45℄ A.J. Miller and L.A. Wolsey, Tight formulations for some simple mixed integerprograms and onvex objetive integer programs, Mathematial Programming, 98 (2003),pp. 73�88. [15, 16, 18, 21, 25, 41, 54, 58, 59, 63, 77, 133, 146, 154℄[46℄ A.J. Miller and L.A. Wolsey, Tight mip formulation for multi-item disrete lot-sizingproblems, Operations Researh, 51 (2003), pp. 557�565. [16, 18, 21, 25℄[47℄ H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896. [4℄[48℄ T.S. Motzkin, Beiträge zur Theorie der linearen Ungleihungen. Inaugural dissertation,Basel, Jerusalem, 1936. [4, 10℄[49℄ G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley-Intersiene, New York, 1988. [1, 2, 7, 8, 12, 28, 76℄[50℄ M. Padberg and T.-Y. Sung, An analytial omparison of di�erent formulations of thetravelling salesman problem, Mathematial Programming, 52 (1991), pp. 315�357. [20℄[51℄ Y. Pohet and R. Weismantel, The sequential knapsak polytope, SIAM Journal onOptimization, 8 (1998), pp. 248�264. [120℄[52℄ Y. Pohet and L.A. Wolsey, Network design with divisible apaities: Aggregated�ow and knapsak subproblems, in Integer Programming and Combinatorial Optimization,E. Balas, G. Cornuéjols, and R. Kannan, eds., Carnegie Mellon University, 1992, pp. 324�336. [120℄[53℄ Y. Pohet and L.A. Wolsey, Polyhedra for lot-sizing with Wagner-Whitin osts,Mathematial Programming, 67 (1994), pp. 297�323. [15, 16, 18, 26, 76, 133℄[54℄ Y. Pohet and L.A. Wolsey, Integer knapsak and �ow overs with divisible oe�-ients: Polyhedra, optimization and separation, Disrete Applied Mathematis, 59 (1995),pp. 57�74. [120℄



BIBLIOGRAPHY 171[55℄ Y. Pohet and L.A. Wolsey, Prodution Planning by Mixed Integer Programming,Springer, 2006. [1, 15, 54, 58℄[56℄ J.J. Rotman, A First Course in Abstrat Algebra, Prentie Hall Upper Saddle River,NJ, USA, 2000. [139℄[57℄ A. Shrijver, On utting planes, Annals of Disrete Mathematis, 9 (1980), pp. 291�296.[8℄[58℄ A. Shrijver, Theory of Linear and Integer Programming, John Wiley & Sons, In.,New York, 1986. [2, 5, 6, 18℄[59℄ A. Shrijver, Combinatorial Optimization: Polyhedra and E�ieny, Springer, 2003.[12℄[60℄ H.D. Sherali and W.P. Adams, A hierarhy of relaxations between the ontinuousand onvex hull representations for zero-one programming problems, SIAM Journal onDisrete Mathematis, 3 (1990), pp. 411�430. [12, 13℄[61℄ H.D. Sherali and W.P. Adams, A hierarhy of relaxations and onvex hull harateri-zations for mixed-integer zero-one programming problems, Disrete Applied Mathematis,52 (1994), pp. 83�106. [12, 13℄[62℄ H.D. Sherali, W.P. Adams, and P.J. Drisoll, Exploiting speial strutures in on-struting a hierarhy of relaxations for 0-1 mixed integer problems, Operations Researh,46 (1998), pp. 396�405. [13℄[63℄ M. Van Vyve, A solution approah of prodution planning problems based on om-pat formulations for single-item lot-sizing models, PhD thesis, Faulté des Sienes Ap-pliquées, Université atholique de Louvain, Belgium, 2003. [16, 18, 21, 25, 54, 58, 120,121, 133℄[64℄ M. Van Vyve, The ontinuous mixing polyhedron, Mathematis of Operations Researh,30 (2005), pp. 441�452. [18, 58℄[65℄ M. Van Vyve, Linear-programming extended formulations for the single-item lot-sizingproblem with baklogging and onstant apaity, Mathematial Programming, 108 (2006),pp. 53�77. [16, 18, 21, 25, 41, 58, 61, 62, 133℄[66℄ L. Vandenberghe and S. Boyd, Semide�nite programming, SIAM Review, 38 (1996),pp. 49�95. [14℄[67℄ H. Weyl, Elementare Theorie der konvexen Polyeder, Commentarii Mathematii Hel-vetii, 7 (1935), pp. 290�306. [4℄[68℄ L.A. Wolsey, Strong formulations for mixed integer programming: A survey, Mathe-matial Programming, 45 (1989), pp. 173�191. [18℄



172 BIBLIOGRAPHY[69℄ L.A. Wolsey, Integer Programming, Wiley-Intersiene, New York, 1998. [7℄[70℄ L.A. Wolsey, Strong formulations for mixed integer programs: Valid inequalities andextended formulations, Mathematial Programming, 97 (2003), pp. 423�447. [165℄[71℄ M. Yannakakis, Expressing ombinatorial optimization problems by linear programs,Journal of Computer and System Sienes, 43 (1991), pp. 441�466. [10℄[72℄ M. Zhao and I.R. de Farias, Jr, The mixing-MIR set with divisible apaities, Math-ematial Programming, (2007). To appear (published online). [120℄[73℄ M. Zhao and I.R. de Farias, Jr, The mixing-MIR set with two nondivisible apaities.Submitted to Mathematial Programming, 2007. [146℄[74℄ G.M. Ziegler, Letures on Polytopes, Springer, 1995. [9, 10℄


	Introduction
	Polyhedra
	External description of a polyhedron
	Internal description of a polyhedron
	Union of polyhedra

	Linear programming
	Integer and mixed-integer programming
	Valid inequalities
	Totally unimodular matrices

	Extended formulations
	The role of extended formulations in mixed-integer programming
	Projections

	Some well-known types of extended formulations
	Hierarchies of formulations
	Extended formulations based on Minkowski-Weyl theorem
	Extended formulations based on the properties of the extreme points
	Extended formulations based on the union of polyhedra
	Extended formulations more generally

	Outline of the thesis

	Extended formulations of dual network sets
	Complexity
	Dual network matrices
	Dual network systems and lists of fractional parts
	Complete lists of fractional parts
	An explicit complete list of fractional parts
	A different approach?

	Specific lists of fractional parts
	A more compact extended formulation
	Inequalities involving integer variables


	On the length of a complete list
	A non-compact example
	Sufficient conditions for the compactness of a complete list

	Examples of formulations of dual network sets
	Mixed-integer linear mappings
	The mixing set and its variants
	The continuous mixing set with flows
	The mixing set with flows
	The continuous mixing set
	The mixing set

	The intersection set
	The difference set

	Lot-sizing
	Bipartite cover inequalities
	The intersection of mixing sets
	Constant number of fractional parts


	Projections onto the original space of variables
	Circulation problems
	Dual network sets with a single continuous variable
	The extended formulation
	The projection
	The mixing set

	The mixing set with flows
	The extended formulation
	The projection


	Dual network sets with a single integer variable
	The convex hull in the original space
	Validity of the inequalities
	Sufficiency of the inequalities
	Extending a slicing approach
	Finding the inequalities

	Chvátal rank

	Extension to simple non dual network sets
	The mixing set with divisible capacities
	Expansion of a number
	Assumptions on the upper bound
	Properties of the vertices
	Linearizing the constraints
	Strengthening the constraints
	The extended formulation
	Lower bounds on the integer variables
	A different approach?

	The mixing set with two capacities
	Notation
	Properties of the vertices
	Modeling the constraints
	Strengthening the constraints
	The extended formulation


	A different technique
	Some equivalences of polyhedra
	The mixing set with flows
	A relaxation
	The intersection set
	A variant

	The continuous mixing set with flows
	A relaxation
	The difference set


	Open problems
	Bibliography

