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Abstract

We derive a new upper bound on the diameter of a polyhedron P = {x ∈ R
n : Ax É b}, where A ∈

Z
m×n . The bound is polynomial in n and the largest absolute value of a sub-determinant of A,

denoted by ∆. More precisely, we show that the diameter of P is bounded by O
(

∆
2n4 logn∆

)

. If P

is bounded, then we show that the diameter of P is at most O
(

∆
2n3.5 log n∆

)

.
For the special case in which A is a totally unimodular matrix, the bounds are O

(

n4 logn
)

and
O

(

n3.5 log n
)

respectively. This improves over the previous best bound of O(m16n3(logmn)3) due
to Dyer and Frieze [DF94].

1 Introduction

One of the fundamental open problems in optimization and discrete geometry is the question whether
the diameter of a polyhedron can be bounded by a polynomial in the dimension and the num-
ber of its defining inequalities. The problem is readily explained: A polyhedron is a set of the form
P = {x ∈ R

n : Ax É b}, where A ∈ R
m×n is a matrix and b ∈ R

m is an m-dimensional vector. A vertex

of P is a point x∗ ∈ P such that there exist n linearly independent rows of A whose corresponding
inequalities of Ax É b are satisfied by x∗ with equality. Throughout this paper, we assume that the
polyhedron P is pointed, i.e. it has vertices, which is equivalent to saying that the matrix A has full
column-rank. Two different vertices x∗ and y∗ are neighbors if they are the endpoints of an edge of the
polyhedron, i.e. there exist n −1 linearly independent rows of A whose corresponding inequalities of
Ax É b are satisfied with equality both by x∗ and y∗. In this way, we obtain the undirected polyhedral

graph with edges being pairs of neighboring vertices of P . This graph is connected. The diameter of P

is the smallest natural number that bounds the length of a shortest path between any pair of vertices
in this graph. The question is now as follows:

Can the diameter of a polyhedron P = {x ∈R
n : Ax É b} be bounded by a polynomial in m

and n?

The belief in a positive answer to this question is called the polynomial Hirsch conjecture. Despite
a lot of research effort during the last 50 years, the gap between lower and upper bounds on the
diameter remains huge. While, when the dimension n is fixed, the diameter can be bounded by a
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linear function of m [Lar70, Bar74], for the general case the best upper bound, due to Kalai and Kleit-
man [KK92], is m1+logn . The best lower bound is of the form (1+ ε) ·m for some ε > 0 in fixed and
sufficiently large dimension n. This is due to a celebrated result of Santos [San12] who disproved the,
until then longstanding, original Hirsch conjecture for polytopes. The Hirsch conjecture stated that
the diameter of a bounded polyhedron1 is at most m −n. Interestingly, this huge gap (polynomial
versus quasi-polynomial) is also not closed in a very simple combinatorial abstraction of polyhe-
dral graphs [EHRR10]. However, it was shown by Vershynin [Ver09] that every polyhedron can be
perturbed by a small random amount so that the expected diameter of the resulting polyhedron is
bounded by a polynomial in n and lnm. See Kim and Santos [KS10] for a recent survey.

In light of the importance and apparent difficulty of the open question above, many researchers
have shown that it can be answered in an affirmative way in some special cases. Naddef [Nad89]
proved that the Hirsch conjecture holds true for 0/1-polytopes. Orlin [Orl97] provided a quadratic
upper bound for flow-polytopes. Brightwell et al. [BvdHS06] showed that the diameter of the trans-
portation polytope is linear in m and n, and a similar result holds for the dual of a transportation
polytope [Bal84] and the axial 3-way transportation polytope [DLKOS09].

The results on flow polytopes and classical transportation polytopes concern polyhedra defined
by totally unimodular matrices, i.e., integer matrices whose sub-determinants are 0,±1. For such
polyhedra Dyer and Frieze [DF94] had previously shown that the diameter is bounded by a polyno-
mial in n and m. Their bound is O(m16n3(log mn)3). Their result is also algorithmic: they show that
there exists a randomized simplex-algorithm that solves linear programs defined by totally unimod-
ular matrices in polynomial time.

Our main result is a generalization and considerable improvement of the diameter bound of Dyer
and Frieze. We show that the diameter of a polyhedron P = {x ∈ R

n : Ax É b}, with A ∈ Z
m×n is

bounded by O
(

∆
2n4 log n∆

)

. Here, ∆ denotes the largest absolute value of a sub-determinant of A.
If P is bounded, i.e., a polytope, then we can show that the diameter of P is at most O

(

∆
2n3.5 log n∆

)

.
To compare our bound with the one of Dyer and Frieze one has to set ∆ above to one and obtains
O

(

n4 log n
)

and O
(

n3.5 log n
)

respectively. Notice that our bound is independent of m, i.e., the num-
ber of rows of A.

The proof method

Let u and v be two vertices of P . We estimate the maximum number of iterations of two breadth-
first-search explorations of the polyhedral graph, one initiated at u, the other initiated at v , until a
common vertex is discovered. The diameter of P is at most twice this number of iterations. The main
idea in the analysis is to reason about the normal cones of vertices of P and to exploit a certain volume
expansion property.

We can assume that P = {x ∈ R
n : Ax É b} is non-degenerate, i.e., each vertex has exactly n tight

inequalities. This can be achieved by slightly perturbing the right-hand side vector b: in this way
the diameter can only grow. Notice that the polyhedron is then also full-dimensional. We denote the
polyhedral graph of P by GP = (V ,E ). Let v ∈V now be a vertex of P . The normal cone Cv of v is the set
of all vectors c ∈R

n such that v is an optimal solution of the linear program max{cT x : x ∈R
n , Ax É b}.

The normal cone Cv of a vertex of v is a full-dimensional simplicial polyhedral cone. Two vertices
v and v ′ are adjacent if and only if Cv and Cv ′ share a facet. No two distinct normal cones share an
interior point. Furthermore, if P is a polytope, then the union of the normal cones of vertices of P is
the complete space R

n .
We now define the volume of a set U ⊆ V of vertices as the volume of the union of the normal

1A counterexample to the same conjecture for unbounded polyhedra was found in 1967 by Klee and Walkup [KW67].
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cones of U intersected with the unit ball Bn = {x ∈R
n : ‖x‖2 É 1}, i.e.,

vol(U ) := vol

(

⋃

v∈U

Cv ∩Bn

)

.

Consider an iteration of breadth-first-search. Let I ⊆V be the set of vertices that have been discovered
so far. Breadth-first-search will next discover the neighborhood of I , which we denote by N (I ).

Together with the integrality of A, the bound ∆ on the subdeterminants guarantees that the angle
between one facet of a normal cone Cv and the opposite ray is not too small. We combine this fact,
which we formalize in Lemma 3, with an isoperimetric inequality to show that the volume of N (I ) is
large relative to the volume of I .

Lemma 1. Let P = {x ∈R
n : Ax É b} be a polytope where all sub-determinants of A ∈Z

m×n are bounded

by ∆ in absolute value and let I ⊆ V be a set of vertices of GP with vol(I ) É (1/2) · vol(Bn). Then the

volume of the neighborhood of I is at least

vol(N (I )) Ê
√

2

π

1

∆2n2.5
·vol(I ).

We provide the proof of this lemma in the next section. Our diameter bound for polytopes is an
easy consequence:

Theorem 2. Let P = {x ∈R
n : Ax É b} be a polytope where all subdeterminants of A ∈Z

m×n are bounded

by ∆ in absolute value. The diameter of P is bounded by O
(

∆
2n3.5 log n∆

)

.

Proof. We estimate the maximum number of iterations of breadth-first-search until the total volume
of the discovered vertices exceeds (1/2) · vol(Bn). This is an upper bound on the aforementioned
maximum number of iterations of two breadth-first-search explorations until a common vertex is
discovered.

Suppose we start at vertex v and let I j be the vertices that have been discovered during the first j

iterations. We have Io = {v}. If j Ê 1 and vol(I j−1) É (1/2) ·vol(Bn) we have by Lemma 1

vol(I j ) Ê
(

1+
√

2

π

1

∆2n2.5

)

vol(I j−1)

Ê
(

1+
√

2

π

1

∆2n2.5

) j

vol(I0).

The condition vol(I j ) É (1/2) ·vol(Bn) implies






1+

1
√

π

2∆
2n2.5







j

vol(I0) É 2n .

This is equivalent to

j · ln





1+
1

√

π

2 ∆
2n2.5





É ln(2n/vol(I0)).

For 0 É x É 1 one has ln(1+x) Ê x/2 and thus the inequality above implies

j É
p

2π∆2n2.5 · ln(2n /vol(I0)). (1)
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To finish the proof we need a lower bound on vol(I0), i.e., the n-dimensional volume of the set Cv ∩
Bn . The normal cone Cv contains the full-dimensional simplex spanned by 0 and the n row-vectors
ai1 , . . . , ain

of A that correspond to the inequalities of Ax É b that are tight at v . Since A is integral,
the volume of this simplex is at least 1/n!. Furthermore, if this simplex is scaled by 1/max{‖aik

‖ : k =
1, . . . ,n}, then it is contained in the unit ball. Since each component of A is itself a sub-determinant,
one has max{‖aik

‖ : k = 1, . . . ,n} É
p

n∆ and thus vol(I0) Ê 1/(n! ·nn/2
∆

n). It follows that (1) implies
j =O

(

∆
2n3.5 log n∆

)

.

Remarks. The result of Dyer and Frieze [DF94] is also based on analyzing expansion properties via
isoperimetric inequalities. It is our choice of normal cones as the natural geometric representation,
and the fact that we only ask for volume expansion instead of expansion of the graph itself, that allows
us to get a better bound. Expansion properties of the graphs of general classes of polytopes have also
been studied elsewhere in the literature, e.g. [Kal91, Kai04].

Organization of the paper

The next section is devoted to a proof of the volume-expansion property, i.e., Lemma 1. The main
tool that is used here is a classical isoperimetric inequality that states that among measurable subsets
of a sphere with fixed volume, spherical caps have the smallest circumference. Section 3 deals with
unbounded polyhedra. Compared to the case of polytopes, the problem that arises here is the fact
that the union of the normal cones is not the complete space R

n . To tackle this case, we rely on an
isoperimetric inequality of Lovász and Simonovits [LS93]. Finally, we discuss how our bound can be
further generalized. In fact, not all sub-determinants of A need to be at most ∆ but merely the entries
of A and the (n −1)-dimensional sub-determinants have to be bounded by ∆, which yields a slightly
stronger result.

2 Volume expansion

This section is devoted to a proof of Lemma 1. Throughout this section, we assume that P = {x ∈
R

n : Ax É b} is a polytope. We begin with some useful notation. A (not necessarily convex) cone is a
subset of Rn that is closed under the multiplication with non-negative scalars. The intersection of a
cone with the unit ball Bn is called a spherical cone. Recall that Cv denotes the normal cone of the
vertex v of P . We denote the spherical cone Cv ∩Bn by Sv and, for a subset U ⊆ V , the spherical
cone

⋃

v∈U Sv by SU . Our goal is to show that the following inequality holds for each I ⊆ V with
vol(S I ) É 1

2 vol(Bn):

vol(SN (I ))Ê
√

2

π

1

∆2n2.5
·vol(S I ). (2)

Recall that two vertices are adjacent in GP if and only if their normal cones have a common facet.
This means that the neighbors of I are those vertices u for which Su has a facet which is part of the
surface of the spherical cone S I . In an iteration of breadth-first-search we thus augment the set of
discovered vertices I by those vertices u that can “dock” on S I via a common facet. We call the (n−1)-
dimensional volume of the surface of a spherical cone S that is not on the sphere, the dockable surface

D(S), see Figure 1.
The base of S is the intersection of S with the unit sphere. We denote the area of the base by B (S).

By area we mean the (n −1)-dimensional measure of some surface. Furthermore, L(S) denotes the
length of the relative boundary of the base of S. We use the term length to denote the measure of an
(n −2)-dimensional volume, see Figure 1.
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(a) Dockable surface of S. (b) Base of S. (c) Relative boundary of the base
of S.

Figure 1: Illustration of D(S), B (S) and L(S).

Given any spherical cone S in the unit ball, the following well-known relations follow from basic
integration:

vol(S)=
B (S)

n
, D(S)=

L(S)

n −1
. (3)

To obtain the volume expansion relation (2) we need to bound the dockable surface of a spherical
cone from below by its volume and, for a simplicial spherical cone, we need an upper bound on the
dockable surface by its volume. More precisely, we show that for every simplicial spherical cone Sv

one has
D(Sv )

vol(Sv )
É∆

2n3 (4)

and for any spherical cone one has
D(S)

vol(S)
Ê

√

2n

π
. (5)

Once inequalities (4) and (5) are derived, the bound (2) can be obtained as follows. All of the
dockable surface of S I must be “consumed” by the neighbors of I . Using (5) one has thus

∑

v∈N (I )
D(Sv ) Ê D(S I ) Ê

√

2n

π
·vol(S I ). (6)

On the other hand, (4) implies

∑

v∈N (I )
D(Sv ) É∆

2n3 ·
∑

v∈N (I )
vol(Sv ) =∆

2n3 ·vol(SN (I )). (7)

These last two inequalities imply inequality (2). The remainder of this section is devoted to proving (4)
and (5).

2.1 Area to volume ratio of a spherical simplicial cone

We will first derive inequality (4).

Lemma 3. Let v be a vertex of P. One has

D(Sv )

vol(Sv )
É∆

2n3.
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y a1

F

r

Figure 2: Proof of Lemma 3.

Proof. Let F be a facet of a spherical cone Sv . Let y be the vertex of Sv not contained in F . Let Q

denote the convex hull of F and y (see Figure 2). We have Q ⊆ Sv because Sv is convex. Moreover, if
hF is the Euclidean distance of y from the hyperplane containing F , then

vol(Sv ) Ê vol(Q)=
area(F ) ·hF

n
.

Summing over the facets of Sv , we find

D(Sv )

vol(Sv )
=

∑

facet F

area(F )

vol(Sv )
Én ·

∑

facet F

1

hF
. (8)

It remains to provide a lower bound on hF . Let a1, . . . , an be the row-vectors of A defining the extreme
rays of the normal cone of v , and let Av be the non-singular matrix whose rows are a1, . . . , an . Further-
more, suppose that the vertex y lies on the ray generated by a1. Let H be the hyperplane generated
by a2, . . . , an . The distance d (y, H ) of y to H is equal to d (a1, H )/‖a1‖. Let b1, . . . ,bn be the columns
of the adjugate of Av . The column-vector b1 is integral and each component of b1 is bounded by ∆.
Furthermore b1 is orthogonal to each of a2, . . . , an . Thus d (a1, H ) is the length of the projection of a1

to b1, which is |〈a1,b1〉|/‖b1‖ Ê 1/(
p

n ·∆), since a1 and b1 are integral. Thus

hF = d (y, H )Ê
1

n∆2
.

Plugging this into (8) completes the proof.

2.2 An isoperimetric inequality for spherical cones

We now derive the lower bound (5) on the area to volume ratio for a general spherical cone. To do
that, we assume that the spherical cone has the least favorable shape for the area to volume ratio
and derive the inequality for cones of this shape. Here one uses classical isoperimetric inequalities.
The basic isoperimetric inequality states that the measurable subset of Rn with a prescribed volume
and minimal area is the ball of this volume. In this paper, we need Lévy’s isoperimetric inequality,
see e.g. [FLM77, Theorem 2.1], which can be seen as an analogous result for spheres: it states that a
measurable subset of the sphere of prescribed area and minimal boundary is a spherical cap.

A spherical cone S is a cone of revolution if there exist a vector v and an angle 0 < θ É π/2 such
that S is the set of vectors in the unit ball that form an angle of at most θ with v :

S =
{

x ∈ Bn :
v T x

‖v‖‖x‖
Ê cosθ

}

.
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B (S)

K

H

θ

Σ

Figure 3: Proof of Lemma 5.

Note that a spherical cone is a cone of revolution if and only if its base is a spherical cap. We also
observe that two spherical cones of revolution, defined by two different vectors but by the same angle,
are always congruent. Therefore, in the following we will only specify the angle of a cone of revolution.

Lemma 4. The spherical cone of given volume with minimum lateral surface is a cone of revolution.

Proof. By the first equation of (3), every spherical cone of volume V intersects the unit sphere in a
surface of area nV . Furthermore, by the second equation of (3), the length of the boundary of this
surface is proportional to the area of the lateral surface of the cone. Then the problem of finding the
spherical cone of volume V with the minimum lateral surface can be rephrased as follows: Find a sur-
face of area nV on the unit sphere having the boundary of minimum length. By Lévy’s isoperimetric
inequality for spheres, the optimal shape for such a surface is a spherical cap. As observed above, this
corresponds to a cone of revolution.

Lemma 5. Let S be a spherical cone of revolution of angle 0 < θÉπ/2. Then

D(S)

vol(S)
Ê

√

2n

π
.

Proof. Using (3), we have to show that

L(S)

B (S)
Ê

√

2

π

n −1
p

n
. (9)

This is done in two steps. We first prove that this ratio is minimal for S being the half-ball, i.e.,

θ=π/2. Then we show that L(S)
B (S) Ê

√

2
π

n−1p
n

holds for the half-ball.

Let H be the hyperplane containing the boundary of the base of S. Then H divides S into two
parts: a truncated cone K and the convex hull of a spherical cap. The radius r of the base of K is
bounded by one.

Consider now the half-ball that contains B (S) and that has H ∩Bn as its flat-surface, see Figure 3,
and let Σ denote the area of the corresponding half-sphere. One has B (S)ÉΣ and thus

L(S)

B (S)
Ê

L(S)

Σ
.

Now Σ and L(S) are the surface of an (n−1)-dimensional half-sphere of radius r and the length of
its boundary respectively. If we scale this half-sphere by a factor of 1/r , we obtain the unit half-ball
and its length respectively. Since scaling by a factor of 1/r increases areas by a factor of 1/r n−1 and
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lengths by a factor of 1/r n−2, we have that L(S)
Σ

is at least the length of the unit-half-ball divided by the
area of the base of the half-ball.

Suppose now that S is the half-unit-ball. We show that the inequality L(S)/B (S) Ê
√

2
π

n−1p
n

holds.

The base of S is a half unit sphere and L(S) is the length of the boundary of a unit ball of dimension
n −1. Thus

B (S)=
n

2

π
n/2

Γ
(

n
2 +1

) , L(S)=
(n −1)π(n−1)/2

Γ
(

n−1
2 +1

) ,

where Γ is the well-known Gamma function. Using the fact that Γ(x +1/2)/Γ(x) Ê
√

x − 1
4 for all x > 1

4
(see, e.g., [Mer96]), one easily verifies that

Γ

(n

2
+1

)

Ê
√

n

2
·Γ

(

n −1

2
+1

)

.

It follows that
L(S)

B (S)
=

2
p
π

n −1

n

Γ
(

n
2 +1

)

Γ
(

n−1
2 +1

) Ê
√

2

π
·

n −1
p

n
.

Finally we are now ready to consider the case of an arbitrary spherical cone.

Lemma 6. Let S be a (not necessarily convex) spherical cone with vol(S)É 1
2 vol(Bn). Then

D(S)

vol(S)
Ê

√

2n

π
.

Proof. Let S∗ be a spherical cone of revolution with the same volume as S. By Lemma 4, D(S)Ê D(S∗).
Now, using Lemma 5 one has

D(S)

vol(S)
Ê

D(S∗)

vol(S∗)
Ê

√

2n

π
.

This was the final step in the proof of Lemma 1 and thus we have also proved Theorem 2, our main
result on polytopes. The next section is devoted to unbounded polyhedra.

3 The case of an unbounded polyhedron

If the polyhedron P is unbounded, then the union of the normal cones of all vertices of P forms a
proper subset K ′ of Rn : namely, K ′ is the set of objective functions c for which the linear program
max{cT x : x ∈ P } has finite optimum. Similarly, the set K ′∩Bn is a proper subset of Bn . Then, given
the union of the spherical cones that have already been discovered by the breadth-first-search (we
denote this set by S), we should redefine the dockable surface of S as that part of the lateral surface of
S that is shared by some neighboring cones. In other words, we should exclude the part lying on the
boundary of K ′∩Bn . However, this implies that Lemma 6 cannot be immediately applied.

To overcome this difficulty, we make use of the Lovász-Simonovits inequality, which we now recall.
Below we use notation d (X ,Y ) to indicate the Euclidean distance between two subsets X ,Y ⊆R

n , i.e.,
d (X ,Y ) = inf{‖x − y‖ : x ∈ X , y ∈ Y }. Also, [x, y] denotes the segment connecting two points x, y ∈ R

n

(see Figure 4).
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x

y

K1

K2

K3

Figure 4: Illustration of the Lovász-Simonovits inequality.

Theorem 7. [LS93] Let K ⊆ R
n be a convex compact set, 0 < ε < 1 and (K1,K2,K3) be a partition of K

into three measurable sets such that

∀x, y ∈ K , d ([x, y]∩K1, [x, y]∩K2) Ê ε · ‖x − y‖. (10)

Then

vol(K3) Ê
2ε

1−ε
min(vol(K1),vol(K2)) .

We now illustrate how the above result can be used in our context. Let K = K ′∩Bn and observe
that K is a convex and compact set. Let S ⊆ K be the union of the spherical cones that have already
been discovered by the breadth-first-search. We define the dockable surface of S as that part of the
lateral surface of S that is disjoint from the boundary of K . We denote by D ′(S) the area of the dockable
surface of S. We can prove the following analogue of Lemma 6:

Lemma 8. If vol(S)É 1
2 vol(K ), then D ′(S)Ê vol(S).

Proof. Let F denote the dockable surface of S (thus D ′(S) is the area of F ). For every ε> 0 we define

K3,ε = (F +εBn)∩K ,

K1,ε = S \ K3,ε,

K2,ε =K \ (K1,ε∪K3,ε),

where X +Y denotes the Minkowski sum of two subsets X ,Y ∈ R
n , i.e., X +Y = {x + y : x ∈ X , y ∈ Y }.

Clearly (K1,ε,K2,ε,K3,ε) is a partition of K into three measurable sets. Furthermore, condition (10) is
satisfied. Thus Theorem 7 implies that

vol(K3,ε)

2ε
Ê

1

1−ε
min

(

vol(K1,ε),vol(K2,ε)
)

.

We observe that

vol(K2,ε) Ê vol(K \ S)−vol(K3,ε)

Ê vol(S)−vol(K3,ε)

Ê vol(K1,ε)−vol(K3,ε).

Combining those two inequalities, we find

vol(F +εBn)

2ε
Ê

vol(K3,ε)

2ε
Ê

1

1−ε
(vol(K1,ε)−vol(K3,ε)). (11)
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By a well-known result in geometry (see, e.g., [Fed69],) as ε tends to 0 the left-hand side of (11) tends
to the area of F , which is precisely the dockable surface D ′(S). Moreover, as ε tends to 0, vol(K3,ε)
tends to 0 and vol(K1,ε) tends to vol(S). We conclude that D ′(S)Ê vol(S).

Following the same approach as that used for the case of a polytope, one can show the following
result for polyhedra.

Theorem 9. Let P = {x ∈ R
n : Ax É b} be a polyhedron, where all sub-determinants of A ∈ Z

m×n are

bounded by ∆ in absolute value. Then the diameter of P is bounded by O
(

∆
2n4 log n∆

)

. In particular,

if A is totally unimodular, then the diameter of P is bounded by O(n4 log n).

4 Remarks

4.1 Which sub-determinants enter the bound?

For simplicity, we have assumed that a bound∆was given for the absolute value of all sub-determinants
of A. However, our proof only uses the fact the the sub-determinants of size 1 (i.e., the entries of the
matrix) and n −1 are bounded. Calling ∆1 (resp. ∆n−1) the bound on the absolute value of the entries
of A (resp. on the sub-determinants of A of size n−1), one easily verifies that all the results discussed
above remain essentially unchanged, except that the statement of Lemma 3 becomes

D(Sv )

vol(Sv )
É∆1∆n−1n3

and the lower bound on vol(I0) becomes

vol(I0) Ê
1

n!nn/2∆n
1

.

This implies the following strengthened result:

Theorem 10. Let P = {x ∈ R
n : Ax É b} be a polyhedron, where the entries of A (respectively the sub-

determinants of A of size n − 1) are bounded in absolute value by ∆1 (respectively ∆n−1). Then the

diameter of P is bounded by O
(

∆1∆n−1n4 log n∆1
)

. Moreover, if P is a polytope, its diameter is bounded

by O
(

∆1∆n−1n3.5 log n∆1
)

.

4.2 A more general geometric setting

Since our result was first announced in [BDSE+12], Brunsch and Röglin [BR13] have found an algo-
rithm to compute a short path between two given vertices of a non-degenerate polyhedron P = {x ∈
R

n : Ax É b} that runs in expected polynomial time in n,m and 1/δ, where δ is a lower bound on the
sine of the angle of a row of A to the subspace of n −1 other rows of A. The expected length of the
path is O(mn2/δ2). If A ∈Z

m×n , then δÊ 1/(∆1∆n−1n), where ∆1 and ∆n−1 are, as before, bounds on
the absolute values of 1×1 and (n −1)× (n −1) sub-determinants.

Our proof technique applies in this setting as well. We have volume expansion since the normal
cones cannot be too flat. The parameterδ is a measure for this flatness. In this setting, Lemma 1 reads
as follows.

Lemma 11. Let P = {x ∈ R
n : Ax É b} be a polytope and let I ⊆ V be a set of vertices with vol(I ) É

(1/2) ·vol(Bn). Then the volume of the neighborhood of I is at least

vol(N (I )) Ê
√

2

π

(

δ/n1.5) ·vol(I ).
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The proof is along the lines of the proof of Lemma 1 and by adapting Lemma 3. Here one has now

D(Sv )/vol(Sv ) É n2/δ.

Theorem 2 is in the geometric setting now becomes the following.

Theorem 12. Let P = {x ∈ R
n : Ax É b} be a polytope where the sine of the angle of any row of A

to the subspace generated by n − 1 other rows of A is at least δ. The diameter of P is bounded by

O
(

n2.5/δ · ln(n/δ)
)

.

Again, the proof is along the lines of the proof of Theorem 2 where the volume of Sv is now lower
bounded byδn−1/n!. In fact, the diameter bound O

(

n2.5/δ · ln(n/δ)
)

holds already for non-degenerate
polytopes where each Sv contains a ball of radius δ. For polyhedra, we obtain a bound of

O
(

n3/δ · ln(n/δ)
)

on the diameter.
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