
Boten ELISA: A Novel Approach for Botnet C&C
in Online Social Networks

Alberto Compagno∗, Mauro Conti†, Daniele Lain†, Giulio Lovisotto† and Luigi Vincenzo Mancini∗
∗Department of Computer Science, Sapienza University of Rome. Via Salaria 113, 00198 Rome, Italy

Email: {compagno, mancini}@di.uniroma1.it
†Department of Mathematics, University of Padua. Via Trieste 63, 35121 Padua, Italy

Email: conti@math.unipd.it, {daniele.lain, giulio.lovisotto}@studenti.unipd.it

Abstract—The Command and Control (C&C) channel of mod-
ern botnets is migrating from traditional centralized solutions
(such as the ones based on Internet Relay Chat and Hyper Text
Transfer Protocol), towards new decentralized approaches. As an
example, in order to conceal their traffic and avoid blacklisting
mechanisms, recent C&C channels use peer-to-peer networks or
abuse popular Online Social Networks (OSNs). A key reason for
this paradigm shift is that current detection systems become quite
effective in detecting centralized C&C.

In this paper we propose ELISA (Elusive Social Army), a
botnet that conceals C&C information using OSNs accounts of
unaware users. In particular, ELISA exploits in a opportunistic
way the messages that users exchange through the OSN. Fur-
thermore, we provide our prototype implementation of ELISA.
We show that several popular social networks can be maliciously
exploited to run this type of botnet, and we discuss why current
traffic analysis systems cannot detect ELISA. Finally, we run a
thorough set of experiments that confirm the feasibility of our
proposal.

We have no evidence of any real-world botnets that use our
technique to create C&C channels. However, we believe that
finding out in advance potential new types of botnets will help
to prevent possible future malevolent applications.

I. INTRODUCTION

A botnet is a network of machines (bots) that are compro-
mised by a malware controlled by an attacker (botmaster) to
perform illegitimate actions. Information and identity theft,
denial of service attacks, unsolicited messaging and spreading
of new malware are just some examples of goals that botmasters
aim to achieve with their botnets. Since their first appearance
in 1990, botnets are considered one of the most serious threats
against cyber-security. They are difficult to detect, hard to
prevent, and their dimension can be as big as millions of
infected machines worldwide [1].

The Command and Control channel (hereafter C&C) is the
communication channel through which the botmaster sends
commands to the bots and coordinates its fraudulent activities.

Alberto Compagno and Luigi Vincenzo Mancini have been partially
supported by the European Commission Directorate General Home Affairs,
under the GAINS project, HOME/2013/CIPS/AG/4000005057, and by the
European Commission H2020 SUNFISH project, N. 644666.

Mauro Conti is supported by a Marie Curie Fellowship funded by
the European Commission under the agreement PCIG11-GA-2012-321980.
This work is also partially supported by the EU-India REACH Project
ICI+/2014/342-896, the TENACE PRIN Project 20103P34XC funded by the
Italian MIUR, and by the Project “Tackling Mobile Malware with Innovative
Machine Learning Techniques” funded by the University of Padua.

In the past, C&C channels were often built over the well known
IRC (Internet Relay Chat) and HTTP (HyperText Transfer
Protocol) protocols, which provided a centralized command and
control mechanism [2]. Today, such centralized C&C solutions
are considered ineffective and new botnets adopt a decentralized
communication mechanism. P2P (Peer-to-Peer) botnets [2] are
the first attempt of decentralized C&C communication. They
use the P2P protocol as C&C channel, which avoids the single
point of failure of centralized botnets (i.e., the C&C server).
P2P protocols do not provide any proper facility to hide botnets’
communications from the current detection techniques (e.g.,
behaviour-based detection and signature-based detection [3],
[4], [5]), forcing attackers to seek other undetectable solutions.

A promising direction to build novel C&C, that is resilient
to the aforementioned detection techniques, is the exploitation
and manipulation of existing communications on Online Social
Networks (OSN) [6]. At the very basis, OSNs allow users
to establish their own relationships with other users (such as
friendship on Facebook and circles on Google Plus), as well as
posting and sharing content of different nature (e.g., text and
pictures) with them. A social botnet leverages relationships and
social network communications in order to spread its messages
in a stealthy way.

There are many possible techniques that hide information
on OSNs [7], [8]. Mainly, these techniques provide privacy-
preserving mechanisms to hide user’s information from the
OSN and from unauthorized users. One of these methods
is to create covert channels using steganography techniques
(e.g., image steganography and text steganography) [6], [9],
[10]. An example of text steganography is given by Unicode
text steganography [11]. This technique exploits non-printable
characters and characters with identical visual representation in
order to hide information within text messages which remains
human-readable.

Contribution. In this paper we present ELISA (Elusive Social
Army), a novel method of botnet C&C communication. ELISA
takes advantage of the diffusion properties of the social network
to efficiently spread messages to the botnet, exploiting trust
relationships between users of the OSN.

Unlike other social botnets [6], ELISA uses Unicode
steganography to build a covert channel, by injecting non-
printable characters into the user-generated content that is



posted on OSNs. This prevents ELISA from generating
additional detectable network traffic, and guarantees ELISA to
be unnoticed by OSN users.

We implemented a prototype of ELISA, and we run a
thorough set of experiments that confirm the feasibility of
ELISA and the effectiveness of its communication channel.
In particular, our results show that a command message can
reach 75% of the botnet in 72 hours. This delivery rate is
higher than other social botnets [6], and it further confirms
that ELISA might be a real threat in the future. Moreover,
we argue that current detection techniques cannot be used to
detect ELISA, and possible countermeasures might have some
significant drawbacks on the user experience of the OSN.

We believe that this work is an important contribution in
the proverbial “fight” against the diffusion of botnets. To the
best of our knowledge, there is no evidence in the real world
of any botnet using ELISA C&C channel. However, we think
that discovering in advance new types of botnet will help in
preventing possible future implementations.

Organization. The rest of this work is organized as follows.
In Section II, we present the related work. In Section III we
present the system model and the adversary model considered
throughout the paper. In Section IV we present ELISA, we
analyze its C&C channel, and we show its feasibility. In Section
V, we describe the advantages of our solution. In Section VI,
we report on the results of our thorough set of experiments,
and analyze possible limitations and countermeasures of our
system. Finally, in Section VII we draw some conclusions.

II. RELATED WORK

Scientific literature and real-world malware have already
shown different C&C channel techniques. In this section we
provide a brief overview of notable examples of traditional
C&C protocols (Section II-A) and novel proposals (Section
II-B) of C&C over OSN.

A. Traditional C&C Protocol Botnets

In the first stages of development of botnets, the IRC protocol
was the C&C medium of choice, since it was widely deployed
all over the Internet. Agobot, Spybot and Sdbot [2] are some
well known IRC based botnets. Nowadays, IRC is not a viable
solution anymore, since its traffic is easily distinguishable from
normal traffic.

In the botnet evolution, the next protocol used for the C&C
communication was HTTP. Botnets like Rustock, Clickbot and
BlackEnergy [2] made use of HTTP server-based C&C. In
this type of communication, the bots contact C&C servers
periodically to fetch commands and report control information.
Using HTTP for the communication has some downsides. The
first is that the resulting botnet has a centralized structure that
is a single point of failure. The second drawback is that HTTP
traffic can be monitored and inspected, and consequently the
malicious communication can be easily identified.

To escape the drawbacks of HTTP communication, botnets
moved to C&C based on P2P, using existing P2P protocols

like BitTorrent, Gnutella and Overnet. Peacomm and Nugache
[2] are two recent examples of P2P botnets.

Modern approaches to C&C in recent real-world botnets use
fast-flux techniques [2] to prevent detection. However, detection
of fast-flux service network has been proved possible in works
such as [12].

B. Online Social Network Botnets

Exploiting online social network to create a botnet is not a
novel approach. Besides some real-world botnets, as Koobface
[13], Naz [14] and SocialNetworkingBot [15], there are several
works that address this topic [16], [17], [6], [18] and investigate
its potentiality [19]. We can discriminate OSN botnets by the
type of the account they rely on. Some solutions use fake
accounts to create C&C on the social network and control
the bots. In Naz [14], SocialNetworkingBot [15] and DR-
SNBot [17] the communication takes place by posting on –
and reading from – a known and pre-shared OSN account
that serves as a rendezvous-point. However, this approach has
several drawbacks: the rendezvous-point becomes a single point
of failure; the generation of network traffic makes it detectable
with correlation and behavioural analysis. Our proposal differs
from these since it is passive with respect to the network,
meaning that it does not generate new traffic.

Other proposals use real victims’ accounts to establish a
communication between bots and botmaster. For example,
Stegobot [6] uses image steganography techniques on the
pictures the victim uploads, and can only be detected using
ad-hoc entropy measures [20]. Unlike Stegobot, we leverage all
kind of contents the victims share, obtaining a faster message
transmission. SoCellBot [18] is a cellular botnet that aims
to propagate and communicate through the social network
instant messaging features by disguising the messages to make
them appear legitimate. The drawback of this approach is
the generation of additional suspicious traffic, which is easily
noticeable by the victims, while our proposal is unnoticeable
by infected users.

III. SYSTEM AND ADVERSARY MODEL

In this section, we describe the system model (Section III-A)
and the adversary model (Section III-B) considered throughout
this paper. On top of these models, we build ELISA, our
botnet proposal that stealthily communicates over existing
social networks.

A. System model

We consider a model of online social network as the one
defined in [21]. We assume the OSN is a centralized platform
where a user creates a profile u, and establishes relations with
other users, which form a list of profiles Fu. We assume
that every account is owned by one individual, and that
relationships are bidirectional, which means that if u ∈ Fv

then v ∈ Fu. Moreover, the transitive property does not hold
between relationships. A third profile z ∈ Fu needs to have a
direct relation with v to be in Fv .



Users share content or interests with all the other users in
their relationship list, and only with them. Therefore, a user u
can see the contents shared by every other user v ∈ Fu and
vice-versa. Conversely, u cannot see any content shared by a
user w /∈ Fu, since that content is private to w and the users in
Fw. This system can be precisely represented as an undirected
graph G = 〈V,E〉, where V is the set of nodes, and E is the
set of edges. Nodes represent users of the OSN and edges the
relationships between the users. Without loss of generality, we
do not take into account other social network entities for our
analysis (like public pages or public profiles in Facebook).

B. Adversary Model

Here we state the properties of the botmaster and address
how the malware will spread and establish the botnet.

Adversarial Properties. The attacker, or botmaster, is a
malicious entity (individual or system) who has access to
one or more social network accounts (henceforth botmaster
accounts). Through his accounts, the botmaster interacts with
the OSN. His actions are bounded by the set of legitimate
actions the OSN makes available to any users. In order to avoid
the botmaster’s identity to be easily tracked, each botmaster
account is a fake account (i.e., impersonates another person,
or a non existing one).

These fake accounts need to have at least one infected
neighbor (a friend on Facebook, someone in your circles on
Google Plus), either by establishing a relation with one of them,
or by spreading the malware over the social network itself. As
an alternative, the botmaster can buy fake friends [22] to get an
initial connection with the social network. For this reason, there
is no limit to the number of botmaster accounts the attacker
can introduce. Creating new accounts will always improve the
propagation speed of the messages. In fact, issuing messages
from different starting points in the graph of the social network
minimizes the number of hops needed for their transmission.
A public key scheme can be used to verify the authenticity of
the botmaster.

Malware Spreading. We assume that ELISA’s malware is
a software that can intercept and modify the information
exchanged between a user and the OSN (e.g., by installing
malicious browser extensions [23]). Such malware infects a
host by compromising the operating system or the web browser.

For the sake of simplicity, we assume that the malware
spreads only over the social network and it infects the machine
through which a user (henceforth victim) interacts with the
OSN. Therefore, the infection spreads along the pre-existing
relations (as friendship in Facebook), to later allow the malware
to communicate. This was proven possible both by research
efforts [24] and by real world malware like Koobface and
Asprox [25]. We observe that using other means (e.g., emails,
social engineering, file sharing) to spread the malware would
be possible too. These means could lead to infect some hosts
that cannot access the C&C channel, e.g., hosts where the
users do not use any OSN, or victims forming graphs that are
not connected to any botmaster account on the OSN. However,

such hosts would still be useful to perform multi-hop spreading
of the malware.

For ease of exposition, in the rest of the paper, we consider
the OSN as the only mean for spreading the malware. Therefore,
every infected host is used by a victim.

IV. ELISA

In this section we describe our proposal, ELISA, a botnet that
uses popular social networking platforms as means to spread
its messages. In particular, ELISA uses Unicode steganography
to hide its messages inside victims’ posts and relies on victims
interactions (e.g., a victim posts a message on another victim’s
wall), to allow communications between the master and his
bots. ELISA design meets the following goals (discussed in
Section V):
• Undetectability. ELISA is not detectable by the current

botnet detection techniques.
• Unawareness by user. A user is not able to realize if he

has been infected by ELISA.
• Reliability. ELISA exchanges command and control

messages in a reasonable time.
• Resilience. ELISA resists to random removal of nodes.
• Authenticated command messages. No one, other than

the botmaster, is able to issue commands to the botnet.
• Confidentiality. Only the botmaster and bots can encrypt

and decrypt ELISA’s messages.
In the following sections we detail ELISA. In particular,

in Section IV-A we describe ELISA’s architecture. In Sec-
tion IV-B we present the Unicode steganography technique used
by ELISA. Then, in Section IV-C we analyze how the C&C
channel is implemented in the botnet and, in Section IV-D, we
describe how ELISA manages C&C channel integrity. Finally,
we present our ELISA implementation in Section IV-E.

A. ELISA architecture

ELISA consists of two main components: botmaster and
bots. A botmaster is an entity who has the properties described
in Section III-B. A bot is a host infected by ELISA malware.
To become active in the botnet, a bot needs to be used by a
victim who interacts with some social networks.

Unlike C&C server-based botnets, in ELISA there are no
components specifically built to manage the C&C channel. The
relationships between victims form an overlay network over the
OSN which connects the botmaster and the bots together. Hence,
botmaster and bots communicate by exchanging command and
control messages on the overlay network. Command and control
messages are piggybacked on the honest content the victim
posts on the OSN, therefore the normal victims interactions on
the OSN deliver the messages to the whole botnet. Figure 1
shows the architecture of ELISA.

B. Unicode Steganography and ELISA alphabet

The Unicode standard differentiates between characters and
glyphs. Characters are abstract representation of the smallest
component of written language that have semantic value. Every
character has its own code point, which is the corresponding



value in the Unicode codespace. The glyphs represent the shape
that characters can have when they are displayed [26].

In Unicode, one can build two different types of covert
channels [26]. The first type of channel uses control code
points that have an invisible glyph and will not be displayed
during the rendering (i.e., non-printing character). The second
type of channel leverages the property that a single glyph can be
represented by multiple code points: sorting them in different
orders will lead to identical renderings, but the permutations
can encode the hidden information.

Our tests show that popular OSNs (e.g., Facebook and
Google Plus) are vulnerable to a covert channel that uses
control code points with invisible glyphs. These characters are
fundamental for internationalization (e.g., adapting web pages
such that people with different languages can use them). We
tested a set of such non-printing characters on the following
operating systems: Microsoft Windows 7 and 8.1, Apple OS X
10.9 and Ubuntu Linux 14.04. We found that 11 characters on
Facebook and 23 characters on Google Plus are not stripped
away by server-side validation, at the time of writing.

With this set of characters, we build ELISA’s alphabet for
every target social network. We use the n-ary Huffman algo-
rithm [27], where n is the number of non-printing characters
the target social network does not strip away.

Bot Bot Bot

Bot

Legend OSN user 
profile

Victim 
profile

Botmaster
account

Bot Infected
host

Uncompromised 
host

Botmaster

OSN profiles
and links 

Fig. 1: ELISA architecture.

C. C&C Channel

In ELISA, C&C channel is realized over the online social
network. The C&C messages are appended to the regular
content that users post on the OSN. The transmission is carried
out opportunistically piggybacking them on the normal user
interaction with the platform. As for any other botnet, ELISA
uses two different types of messages: command and control.
Command messages are messages containing a command for
the bots. Only the botmaster issues such messages. Control
messages contain information (e.g., status updates, notification
that an attack is started, error notification) that bots deliver to
the botmaster. In this case, only bots create control messages.

Communication between botmaster and bots is secured
by means of encryption and signature. In the following, we
assume that a pre-shared symmetric key is installed in every
bot and botmaster. Moreover, the botmaster owns a pair of
public/private key. Confidentiality is obtained by encrypting

every message with the symmetric key, while authenticity is
obtained by signing command messages with the botmaster’s
private key.

Communication in ELISA consists of three different phases:
1) Issuing phase. In this phase, the sender of a message

creates and injects the message on the botnet. Depending
on the message type (i.e., command or control), this phase
will take place on the botmaster or on a bot.

2) Receiving phase. This phase happens either on the
botmaster that notices a control message or on the bots
that notice a command or control message posted (by
other bots) on the OSN.

3) Forwarding phase. In this phase, a bot posts an incoming
message to the OSN, hence forwarding it towards the
destination.

In the following we describe in detail the three phases forming
the communication in ELISA.

Issuing phase. This phase takes place only once for each new
message. Depending on the type of message, this phase will
occur at the botmaster (commands) or at a bot (controls).

A botmaster creates a command message as follows:

cmd msg = encode(ENCsymk(cmd) | SIGNsk(cmd)),

where cmd is the command instruction the botmaster wants
to deliver to the bots. Therefore, cmd is encrypted with the
symmetric key symk and it is signed with the botmaster’s
private key sk. Then, encrypted command and signature
are both encoded using the ELISA’s alphabet described in
Section IV-B. Finally, the botmaster appends the encoded
command to some content, and posts it on the social network.

Control messages have a different structure from command
messages. Bots create a control message in the following way:

ctrl msg = encode(ENCsymk(ctrl, d)),

where ctrl is the control information and d is the bot distance
from the botmaster. Distance information will be used in the
forwarding phase to send the control message to the botmaster.
As for a command message, the content of a control message
ctrl is encrypted and encoded with ELISA’s alphabet. When
the victim user posts some content on the OSN, ELISA malware
intercepts the post, appends the control message to the content,
and posts the resulting new content to the OSN.

Receiving phase. The receiving phase can happen on both bots
and botmaster. In order to detect messages, ELISA’s malware
monitors the OSN while the victim is browsing it.

When a bot finds a command message on the OSN, it extracts
the message from the post, decrypts the message and verifies
the signature. In case the signature verification succeeds, the
bot stores the message in a dedicated queue Qcmd and it
executes the command. In case the signature verification fails,
the message is simply discarded. On the other hand, when the
botmaster finds a command message on the OSN, he simply
ignores it, since he forwarded it in the first place.



Finding a control message will cause the execution of this
phase too. However, if the message is received by a bot, the bot
will decrypt the received message and store it in the Qctrl queue.
If the message is received by the botmaster, the botmaster will
simply decrypt the control message and use the information for
its purposes (e.g., updating its knowledge on the botnet). Both
the botmaster and the bots keep a list of messages (control
and command) that have been already processed, to prevent
multiple executions and/or forwarding.

Forwarding phase. The forwarding phase only occurs at bots
and it follows the receiving phase. This phase is triggered in
a bot every time its victim posts a content on the OSN and
there are messages on Qcmd or Qctrl to be forwarded.

The main purpose of this phase is to forward command
and control messages by appending them to a victim post.
Depending on the type of the message, a bot uses two different
forwarding strategies: (i) broadcast and (ii) shortest path. The
(i) broadcast strategy is used to forward command messages,
while the (ii) shortest path strategy is used to forward control
messages towards the botmaster. Hence, when a victim tries
to post a content on the OSN, ELISA’s malware intercepts the
content and modifies it appending a message according to the
forwarding strategy.

While the broadcast strategy is easily implementable in
ELISA (every bot reposts the message in order to forward it
to all its neighbours), shortest path strategy needs a deeper
explanation. To implement the shortest path strategy, we need
to allow only the bot in the shortest path (from the bot issuing
the control message to the botmaster) to forward the message.
To this end, we assume that every bot knows its distance d
from the botmaster (e.g., when a bot is infected the malware
contains this information). Hence, before forwarding a message,
a bot compares its distance d with the distance d′ reported in
the message. If d < d′, then the bot is at least one hop closer
to the botmaster, hence it is in the shortest path from the bot
that issued the message and the botmaster. Otherwise it simply
discards the message.

D. C&C Channel Integrity Management

During the life of ELISA, it might happen that some events
change the topology of the botnet. Changing the topology of the
botnet can ruin the integrity of the C&C channel preventing in
some cases the normal forwarding of messages. This happens
for three main reasons: (i) a new bot joins the botnet; (ii) the
botmaster account gets banned; or (iii) a victim account is
no more available (e.g., account ban, malware removal, OSN
relationship changes).

As explained in Section IV-C, every bot uses distance
information from the botmaster for their forwarding decision.
Therefore, all the three aforementioned cases make the distance
value stored in the bots inconsistent, preventing, in some cases,
control messages from being forwarded.

In case (i), every new infection changes the topology of the
botnet which might create new shortest paths. Therefore, the
actual distance of bots might be different from the distance they

are currently storing. In order to keep up-to-date the distance
information, during the receiving phase each bot checks its
stored distance d with the distance d′ contained in the received
control messages. If d′ < d+ 1, the bot infers that it is part
of a new shortest path towards the botmaster, hence it updates
its new distance value with d′ + 1.

Cases (ii) and (iii) are even more dangerous for the C&C
channel integrity. In case (ii), the attacker needs to create
another account and get in contact with at least one bot. This
action will invalidate every bot’s distance. In case (iii), the
removal of a bot can make a shortest path no longer available,
therefore some control messages might not be forwarded. In
both the cases, bots are not able to reconstruct the right distance
to the botmaster. To address this problem, ELISA includes the
command reset distance. This command forces the bots at one
hop from the botmaster to set their distance to one, and all the
other bots to the greatest possible value (i.e., infinity). Then, as
for case (i), the distance d′ contained in the control messages
received after the reset will be used by every bot to update its
stored distance d at the new value d′+1. The check d′ < d+1
will force the update to start on the botmaster’s neighbours
and propagate towards the bot at the edge of the botnet.

To figure out if case (iii) occurs, botmaster needs to monitor
the status of the C&C channel. For this reason, bots periodically
report their infection state and distance to the botmaster. Then,
comparing the number of controls received with the number
of victims, the botmaster can estimate how many bots are
still reachable in the botnet. In case this number reaches an
alarmingly low level, botmaster will issue a reset distance
command.

E. Implementation

To show that an attacker can effectively set up ELISA’s
C&C channel, we realized a simple implementation of it that
can run on both Facebook and Google Plus. We assumed the
malware was already running on the hosts, therefore we only
implemented messages transmission.

To emulate the botmaster, we wrote a simple utility that
signs, encrypts and encodes the commands as defined in
Section IV. This utility generates a set of invisible (non-
printing) characters which can be pasted into the OSN post and
shared to begin the transmission. To emulate a bot, we created
a script which automatically receives and opportunistically
retransmits the command and control information. We wrote
the implementations in Javascript as a browser extension. The
script activates when the user browses any page on the domains
facebook.com or plus.google.com, respectively. We
used AES to encrypt the messages and RSA with SHA-2
hashing algorithm to sign the commands. Keys for encryption
and signing were both 256 bits length.

Bot script. This script runs on the infected hosts. When the
victim is online on the OSN, the script continuously parses the
DOM structure of the webpage, looking for C&C messages,
and waiting for the user to post content. When the script finds
the known invisible separator “|” in the page, it knows that the



separator will be followed in the HTML by a message. Then
the script fetches, decodes and decrypts the invisible characters
in the message. Finally, the command and the control messages
are added to the Qcmd and Qctrl respectively.

After processing the messages, the script looks for the
textarea where the user posts, and injects some code on the
keydown event of the share button. The injected code activates
when the keydown event is triggered. The code fetches the
victim’s post text, and then it performs three cleanup operations:

1) It updates bot’s distance with the rule described in the
previous section (by checking the distances reported by
the controls currently in its Qctr queue).

2) It removes from the control queue Qctr all the controls
which are not to be forwarded.

3) It removes from the command queue Qcmd all the
commands which have already expired, all the duplicated
ones (the bot keeps a list of the identifiers of the commands
which has already been processed), and those with an
invalid signature.

Finally, the script takes the messages left in the queues, encrypts
and encodes them, and appends the invisible output characters
to the original user post. Figure 2 shows an example of the
botmaster sending a command. Figure 3 depicts how the
corresponding post would look on the victim’s page (the
message from the botmaster is actually invisible), and what
the bot has actually received in the console.

Fig. 2: The botmaster posts a command in Facebook.

Fig. 3: A malicious message received on the victim’s wall: the
malicious message is not visible to the user (see top part of the
figure), while the bot reads the actual command (see bottom
part of the figure).

V. FEATURES OF ELISA
We now describe the main features and advantages of ELISA,

when compared to botnets which make use of other kinds of
C&C communication.

Undetectability. ELISA waits for the normal user interaction
with the OSN to forward the messages. This behaviour guaran-
tees the undetectability of the communication with respect to

the state-of-the-art C&C detection mechanism. To validate this
point, we discuss the ineffectiveness of the common defenses
against C&C channels using the taxonomy defined by Khattak
et al. [28]. As a prerequisite for the detection, the defender
(i.e., the entity who wants to detect the botnet) must be able to
access the network traffic. Detection techniques can be either
active or passive [28].

The active C&C detection aims to take part in the operations
of the botnet by injecting forged packets into suspicious network
flows and observing the replies, or by suppressing suspicious
packets. The defender then observes whether the potential
bots activate some known back-up mechanism (like backup
C&C servers, or use of DNS generation algorithms), in that
case confirming the infected state. Since the communication
in ELISA takes place through the OSN with SSL-encrypted
connections, both techniques would ruin the user experience
and disrupt his actions if applied on the real user’s traffic.
Furthermore, these techniques would not observe any active
action from the bot, since the communication is passive.

The passive C&C detection aims at observing the network
traffic, looking for known signatures, analyzing the traffic
behaviour, or analyzing the communication graph. Signature-
based detection systems would either fail to detect ELISA’s
C&C channel, or report a false positive. This is because a deep
packet inspection is not informative in HTTPS communication,
and the malicious content is mixed with the legitimate payload.

Detection systems based on traffic behaviour and correlation
also turn out to be ineffective. This kind of analysis consists in
extracting a number of features from the network flows, making
some assumptions based on a typical bot communications
behaviour, like timing patterns or reactions to the reception
of command messages. Network flows features can be either
based on temporal or size considerations. Once features have
been extracted, the system uses machine learning techniques to
either classify flows as malicious or legitimate (when training
data are available, or obtainable using prior information), or
to cluster together nodes which show similar behaviour, this
way obtaining one cluster of bots. Works as BotHunter [29],
BotFinder [30], Disclosure [31] use this kind of analysis, and
BotMiner [32] combines a signature based and traffic behaviour
approaches together to improve the detection rate. Although
they proved to be very effective on real world traffic, these
techniques are not able to detect the communication in ELISA.
In fact, in ELISA C&C flows are exactly the flows the user
generates with the OSN with his actions, so a system can
not discriminate between them and a legitimate flow using
communication features as described above. In that case, the
detection mechanism would always report a false positive,
because it would be reporting a real user action.

Another approach used by detection mechanisms is to build
a communication graph, where nodes are hosts and edges are
traffic flows from source node to destination node. Considering
the typical bot communication patterns, the defender applies
clustering techniques to the graph to find similar nodes, and
eventually one of the resulting clusters is composed of infected



hosts. BotTrack [33], BotGrep [3], Entelecheia [4] are works
that use this approach. BotyAcc [5] combines behaviour and
graph analysis techniques together, and uses a different graph
where nodes are traffic flows and edges are similarities between
flows, which takes into account spatial information. For the
same reasons stated above, these techniques are not able to
identify the C&C channel in ELISA. Since the communication
takes place through the user interaction with the OSN, the
system has no means to discriminate between actions of bots
or legitimate users. Therefore, the clustering techniques would
not produce a cluster of infected hosts.

Unawareness by users. Unawareness is mainly provided by
two different features of ELISA. First, ELISA does not need
to post any new content on the OSN, but appends messages
to content generated by the victim. This means that a victim
will not notice any unexpected content. Second, thanks to the
steganography technique described in Section IV-B, ELISA’s
messages will not be visible to the victim user. One might
think that simple operations as copy-pasting a post, inspecting
the HTML source code of the web page or a browser plugin
can reveal the hidden message. However, ELISA’s malware
intercepts any user action to the web page and removes the
hidden characters. This prevents a victim from knowing about
ELISA’s messages.

Reliability. Leveraging the OSN friendships graph we obtain
a channel that is very efficient in reaching the infected nodes
using a broadcasting technique. Our experimental results, which
we discuss in Section VI, prove that the average delivery time
for a message is adequately low, and that delivery is always
guaranteed for most of the network.

Resilience. Using the social network makes our system immune
to some common weaknesses of a botnet. First, as proved
by Albert et al. [34], the removal of as many as 5% of
random nodes in these kind of graphs does not affect the
retransmission of messages. Thus, the removal of the malware,
or the presence of inactive users do not significantly degrade
our system capabilities. Second, the disclosure of the infected
state of a bot does not allow the defender to gather relevant
information about the botnet topology. Third, the botmaster can
use multiple fake accounts to avoid exposure of his identity,
and this model is immune to the banning of one or more of the
botmaster’s fake accounts: bots verify his identity by checking
the command signature. Therefore, he could just create new
accounts, as long as he manages to get contact with at least
one bot that will start the retransmission.

Authenticated command messages. ELISA’s design guaran-
tees that botnet command messages can only be generated by
the botmaster. In particular, the botmaster is the only one being
able to issue command messages. This is obtained by signing
each command message with the botmaster private key. At the
reception of a command, bots verify the signature with the
botmaster public key.

Confidentiality. Using symmetric encryption for the control
messages ensures confidentiality to these information. This

prevents defenders from gathering control information, such
as the infection state. Even if a bot privacy is compromised,
and the symmetric key is discovered, defenders would only be
able to issue false control messages and read them, without
compromising the botnet operations.

VI. EVALUATION AND DISCUSSION

Analyzing the delivery time of a command message in our
C&C proposal is crucial in understanding the effectiveness of
the channel. This is somehow complex, because an accurate sim-
ulation of message propagation involves deep understandings of
user behaviour on social networks. In order to run an analysis
of the delivery time of the C&C channel in ELISA, we used
the WOSN Facebook dataset [35]. This dataset represents an
undirected graph G = 〈V,E〉, where nodes represent users, and
edges represent friendships between users. We also assumed
that interactions only take place between nodes connected
by an edge, as described in Section III. Table I reports the
following relevant properties of the corresponding graph: the
number of nodes, the number of edges, the average degree, the
diameter, and the effective diameter (i.e., the average number of
hops required to reach 90% of the other nodes from a starting
node [36]).

We describe the experiment in detail in Section VI-A. We
report the results of our experiment in Section VI-B, and
discuss them in Section VI-C.

Nodes Edges Average degree Diameter Effective diameter

63731 817035 25.640 15 4.97

TABLE I: Properties of the WOSN dataset.

A. Experiment design

One run of the experiment consists of the following steps:
(i) simulating a simple malware infection on the graph; (ii)
obtaining a new graph (botnet graph) by removing the non-
infected users from the initial graph; (iii) simulating the issuing
of a command message, its retransmission, and measuring the
delivery time in the botnet graph. We now describe the first
and the third phases in more detail.

Infection. To simulate the infection, we use the decreasing
cascade model [37] on the graph, with a decreasing factor that
reduces the probability of a node to be infected after every
attempt, and makes cascades fit empirical observation on real-
world social networks [38]. The seed nodes of the infection
process are one random node with a degree higher than the
average degree of the graph, selected as the botmaster, and 1/8
of his friends selected at random. We pick the transmissibility
factor λ (i.e, the probability for a node to be infected) randomly
in the range [0.041, 0.080]. In particular, the lower bound
0.041 guarantees that the transmissibility is larger than the
epidemic threshold, which means that the infection does not
die out quickly [39]. We set the decreasing factor f to 1.5.
When the infection process dies out, the nodes that have
been infected form the botnet graph. We report the averages



over 1000 runs of some relevant properties of the resulting
botnet graphs: (i) the average number of infected nodes was
1530; (ii) the average botmaster eccentricity was 6.759; and
(iii) the average botmaster effective diameter was 4.881. The
botmaster eccentricity is the maximum number of hops the
botmaster needs to reach any other node [36]. Botmaster
effective diameter is the effective diameter computed starting
from the botmaster.

Message retransmission. This phase is carried out in the
botnet graph created in the infection phase. We run a loop
over ten simulated days, starting from midnight of the first day.
We split the time of the day into fixed slices of 30 minutes,
to perform a discrete-event simulation. We observed that
increasing or decreasing the slices size does not significantly
alter the outcome. At the start of every day, we draw the
maximum number of daily posts for every victim from a
Poisson distribution with a mean of 0.6, which is the average
number of posts per day per user on Facebook [40]. To
compute on how many time slices every victim will be online,
we draw values from a Poisson distribution with a mean of
3. With this value, we represent an average online time of
3 ∗ 30 = 90 minutes, which rounds down the average time
spent on Facebook by users (around 100 minutes [41]). Finally,
to choose on which time slices every victim will be online, we
set the probability to be online in a determined slice accordingly
to the values measured in [40] for slices falling between hours
18-21 and 21-24. For the rest of the slices we set a very low
probability. For simplicity, we suppose that all the victims fall
into the same timezone.

To take into account that almost all of a user’s interactions
happen only with 60% of his friends, that we refer to as relevant
friends [35], we stochastically pre-compute for every node who
are the friends he will interact with. This does not change over
the simulation. We assume that every user reads all the news
feed posts from his relevant friends, and does not see posts
from his other friends. For every simulated day, the message
propagation is reproduced in the following way. We iterate
over the time slices. On every iteration, every victim who is
online reads what his relevant friends posted. If the bot has
not received a command yet, and some of the victim’s relevant
friends posted it previously in time, the bot will receive it as
soon as the victim is online. The victim will then post with
respect of his drawn daily maximum number of posts. If this
is the first time he posts since the reception of the command
message, the bot retransmits it.

B. Results

The results of the experiment over 1000 runs are averaged
and reported in Figure 4, along with standard deviation in
errorbars. Analyzing the results of the experiment, we can
see that the message spreading is reasonably fast. After 72
hours, the message already propagated to 75% of the botnet
on average. We can see how low user activity during the
nights and the first part of the days leads to plateaus on the
message propagation. Notable increments happen during the

evenings, when most of the users are online on the platform.
The convergence of the spreading towards 80% of the botnet is
fast, and happens on average on the fourth day of propagation,
while it takes some more time to reach 90% of the botnet.
However, the number of delivered messages is still notably
higher compared to other passive C&C approaches such as
StegoBot [6].

These results show that ELISA’s C&C channel is able to
deliver a command message in a relatively small time. We
recall this is a simulation on a simple case of a botnet with only
one botmaster account. Further investigation would be required
to analyze the effects of more botmasters on the delivery time,
and to test the channel on bigger datasets.

 0%

20%

40%

60%

80%

100%

 0

 2
4

 4
8

 7
2

 9
6

 1
2
0

 1
4
4

 1
6
8

 1
9
2

 2
1
6

 2
4
0

In
fe

c
te

d
 u

s
e
rs

 (
%

)

Hours

Fig. 4: Message reception on the infected component of the
WOSN dataset. Values are the cumulative percentage of the total
number of infected users who received the command message.

C. Discussions and Limitations

The C&C channel of ELISA has many advantages which
make it undetectable and resilient to disruption from external
observers. However, it is still vulnerable to countermeasures
that OSNs can adopt. The easiest countermeasure is filtering
the characters we use to build our covert channel. While
simple blacklisting would be an effective solution to block
ELISA, we argue that this is hardly the case. Many of the
characters we use can not be removed from OSNs without
impacting their features, in particular internationalization. For
example, the bi-directional characters (characters code 206a,
206b, 206c, 206d) are fundamental for right-to-left alphabets
like the Arabic and Hebrew ones. Other characters carry
semantic meaning, which substantially changes the visualization
of the surrounding characters (e.g., characters code 200c, 200d).
Therefore, removing all the possible characters is probably not
convenient to OSNs, since it may affect its functionalities.

Other possible countermeasures would then be more com-
plicated, and involve statistical analysis of every post. Even
though these techniques would be effective, we believe they
are computationally intensive approaches.

A defender might also consider that the size of every post
slightly increases due to the additional information we append.
Further analysis would be required to understand whether this
could be an effective detection method or if disguising the
increased packet size as photos and other media uploads would
suffice to prevent this countermeasure.

Finally, all of these actions need knowledge of the C&C chan-
nel we use. Given ELISA’s stealthy nature, even understanding



where the covert channel is would probably require reverse-
engineering, which is an expensive and difficult operation.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented ELISA, a new OSN based
botnet that propagates itself and the C&C messages using
victims’ social accounts. ELISA shows that this covert C&C
channel approach is both feasible and not easily detectable.
Our results demonstrate that the time needed for ELISA to
spread messages is relatively small and acceptable in practical
scenarios. In particular, our simulations reveal that in about
five days, a message is delivered to its destination. Using a
delayed approach, we think that a botmaster will be able to
use ELISA to perform destructive attacks on the Internet.

We argue that a simple filtering approach on characters is
not convenient. In fact, if such solution is implemented to
counter ELISA, it will also have a bad impact on fundamental
OSN functionalities such as internationalization.

As future work, we plan to empirically prove the undetectabil-
ity of ELISA’s covert channel by modern detection systems.
We want to test those systems using a real world IP traffic
dataset containing our malicious C&C packets. Moreover we
plan to provide a more detailed messages propagation analysis,
studying the impact of multiple botmaster accounts on the
command propagation, using real traffic and posts from OSNs,
analyzing the control messages propagation and comparing the
performance of ELISA to real botnets.

REFERENCES

[1] W. Chang, A. Mohaisen, A. Wang, and S. Chen, “Measuring botnets in
the wild: Some new trends,” in ASIACCS, 2015, pp. 645–650.

[2] S. S. C. Silva, R. M. P. Silva, R. C. G. Pinto, and R. M. Salles, “Botnets:
A survey,” Computer Networks, vol. 57, no. 2, pp. 378–403, 2013.

[3] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding p2p bots with structured graph analysis.” in USENIX Security,
2010, pp. 95–110.

[4] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia:
Detecting p2p botnets in their waiting stage,” in IFIP Networking, 2013,
pp. 1–9.

[5] S. Nagaraja, “Botyacc: Unified p2p botnet detection using behavioural
analysis and graph analysis,” in ESORICS, 2014, pp. 439–456.

[6] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal,
and N. Borisov, “Stegobot: A covert social network botnet,” in IH, 2011,
pp. 299–313.

[7] F. Beato, M. Conti, B. Preneel, and D. Vettore, “Virtualfriendship: Hiding
interactions on online social networks,” in CNS, 2014.

[8] M. Conti, A. Hasani, and B. Crispo, “Virtual private social networks and
a facebook implementation,” Transactions on the Web (TWEB), vol. 7,
no. 3, p. 14, 2013.

[9] F. Beato, E. De Cristofaro, and K. B. Rasmussen, “Undetectable
communication: The online social networks case,” in PST, 2014, pp.
19–26.

[10] J. Ning, I. Singh, H. V. Madhyastha, S. V. Krishnamurthy, G. Cao, and
P. Mohapatra, “Secret message sharing using online social media,” in
CNS, 2014, pp. 319–327.

[11] A. E. Ali, “A new text steganography method by using non-printing
unicode characters,” Eng. & Tech. Journal, vol. 28, no. 1, 2010.

[12] A. Caglayan, M. Toothaker, D. Drapeau, D. Burke, and G. Eaton, “Real-
time detection of fast flux service networks,” in CATCH, 2009, pp.
285–292.

[13] K. Thomas and D. M. Nicol, “The koobface botnet and the rise of
social malware,” in MALWARE, 2010, pp. 63–70.

[14] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu, “Social network-
based botnet command-and-control: emerging threats and countermea-
sures,” in ACNS, 2010, pp. 511–528.

[15] A. Singh, A. H. Toderici, K. Ross, and M. Stamp, “Social networking
for botnet command and control,” International Journal of Computer
Network and Information Security (IJCNIS), vol. 5, no. 6, p. 11, 2013.

[16] L. Cao and X. Qiu, “Asp2p: An advanced botnet based on social networks
over hybrid p2p,” in WOCC, 2013, pp. 677–682.

[17] T. Yin, Y. Zhang, and S. Li, “Dr-snbot: A social network-based botnet
with strong destroy-resistance,” in NAS, 2014, pp. 191–199.

[18] M. Faghani and U. T. Nguyen, “Socellbot: A new botnet design to infect
smartphones via online social networking,” in CCECE, 2012, pp. 1–5.

[19] J. Zhang, R. Zhang, Y. Zhang, and G. Yan, “On the impact of social
botnets for spam distribution and digital-influence manipulation,” in CNS,
2013, pp. 46–54.

[20] V. Natarajan, S. Sheen, and R. Anitha, “Detection of stegobot: A covert
social network botnet,” in SecurIT, 2012, pp. 36–41.

[21] N. B. Ellison et al., “Social network sites: Definition, history, and
scholarship,” Journal of Computer-Mediated Communication, vol. 13,
no. 1, pp. 210–230, 2007.

[22] M. Conti, R. Poovendran, and M. Secchiero, “Fakebook: Detecting fake
profiles in on-line social networks,” in ASONAM, 2012, pp. 1071–1078.

[23] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson,
“Hulk: Eliciting malicious behavior in browser extensions,” in USENIX
Security, 2014, pp. 641–654.

[24] G. Yan, G. Chen, S. Eidenbenz, and N. Li, “Malware propagation in
online social networks: nature, dynamics, and defense implications,” in
ASIACCS, 2011, pp. 196–206.

[25] R. Borgaonkar, “An analysis of the asprox botnet,” in SECURWARE,
2010, pp. 148–153.

[26] F. J. Mabry, J. R. James, and A. J. Ferguson, “Unicode steganographic
exploits: maintaining enterprise border security,” Security & Privacy,
vol. 5, no. 5, pp. 32–39, 2007.

[27] D. A. Huffman et al., “A method for the construction of minimum
redundancy codes,” IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[28] S. Khattak, N. Ramay, K. Khan, A. Syed, and S. Khayam, “A taxonomy
of botnet behavior, detection, and defense,” Communications Surveys
Tutorials, vol. 16, no. 2, pp. 898–924, 2014.

[29] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation.” in
USENIX Security, 2007, pp. 1–16.

[30] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots in
network traffic without deep packet inspection,” in CoNEXT, 2012, pp.
349–360.

[31] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: detecting botnet command and control servers through large-
scale netflow analysis,” in ACSAC. ACM, 2012, pp. 129–138.

[32] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security, 2008, pp. 139–154.

[33] J. François, S. Wang, T. Engel et al., “Bottrack: tracking botnets using
netflow and pagerank,” in NETWORKING 2011. Springer, 2011, pp.
1–14.

[34] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.

[35] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution
of user interaction in facebook,” in WOSN, 2009.

[36] C. R. Palmer, G. Siganos, M. Faloutsos, C. Faloutsos, and P. B. Gibbons,
“The connectivity and fault-tolerance of the internet topology,” NRDM,
2001.

[37] D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusion
model for social networks,” in ICALP, 2005, pp. 1127–1138.

[38] R. Ghosh and K. Lerman, “A framework for quantitative analysis of
cascades on networks,” in WSDM, 2011, pp. 665–674.

[39] G. Ver Steeg, R. Ghosh, and K. Lerman, “What stops social epidemics?”
in ICWSM, 2011.

[40] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in EuroSys, 2009,
pp. 205–218.

[41] R. Junco, “The relationship between frequency of Facebook use,
participation in Facebook activities, and student engagement,” Computers
and Education, vol. 58, no. 1, pp. 162–171, 2012.


