
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Critical Point Theory
and

Nonlinear Problems

A. AMBROSETTI
SISSA, Trieste.

Padova, 16 Marzo 2007



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Introduction

Let E be a Hilbert space and let J ∈ C1(E,R) be a functional.

A critical (or stationary) point of E is an u ∈ E such that dJ(u)[v] = 0
for all v ∈ E,

or, using the gradient J ′ of J , (J ′(u) | v) = 0 for all v ∈ E.

Critical points are weak solutions of (variational) differential equations.

Similarly, the critical points of a functional J constrained on a Hilbert man-
ifold M give rise to solutions of eigenvalue variational problems.

For ex. if M is the unit sphere in the Hilbert space E, we find the solutions
of J ′(u) = λu, with ‖u‖ = 1 (λ is nothing but the Lagrange multiplier).
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Direct Methods in Calculus of Variations and Critical Point Theory

The Direct Methods (Hilbert, Tonelli, etc.), highlighted the fundamental
role of the search of global minima of functionals in order to solve variational
problems.

On the other hand, there are problems in which looking for minima of their
Euler functional is not satisfactory. Roughly, there are:

• problems in which the minima give rise to trivial solutions;

• problems in which one expects many solutions;

• problems in which the global minimum does not exist because the func-
tional in not bounded from below.

For ex. a case in which the first difficulty arises is the search of closed
geodesics on a compact smooth manifold M ⊂ Rn.
A closed geodesic on M is a closed loop γ(t) which makes stationary the
length

∫
|γ̇|.
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Clearly the minimum is achieved at the trivial loop γ(t) ≡ p ∈M .
The non-trivial closed geodesics are saddle points and have to be found with
a procedure different than minimization.

Birkhoff in 1917 proved the following result:

Theorem. On any compact surface M ⊂ R3 which is C3 diffeomorphic to
the the standard sphere, there exists a non-trivial (i.e. non-constant) closed
geodesic.

The geodesic is found by an appropriate min-max method.

Later, Lusternik and Schnirelman (1929) proved that there exist at least 3
geometrically distinct closed geodesics without self-intersections.

These results marked the beginning of the Critical Point theory.
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Lusternik and Schnirelman developed a general abstract theory in which the
number of critical points of a functional on a compact manifold is evaluated
by means of the topological properties of M .

As a specific application, Lusternik and Schnirelman proved the following
celebrated result

Theorem. Any smooth functional on the unit sphere Sn = {x ∈ Rn+1 :
|x| = 1} has at least n pairs of distinct critical points.

In the same years, M. Morse also developed an elegant theory (the Morse
theory) in which the homological properties of M play their role. This
theory gives rise to more precise results, provided J is smooth and all its
critical points are non-degenerate.

This a-priori requirement is a severe restriction for applications to variational
problems.
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Extensions to infinite dimension

Critical point theory has been extended to infinite dimension.

Ref.: Vainberg, Krasnoselski, Palais, Smale, F.Browder.

The main new ingredient is a ”compactness” condition.

Precisely, one assumes:

Every sequence un such that

(i) J(un) → c,

(ii) J ′(un) → 0,

has a converging subsequence.

If (i− ii) hold, we say that J satisfies the (PS)c condition ( Palais-Smale
condition at level c).
The sequences satisfying (a)− (b) are called (PS)c sequences.
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For example, if (PS) holds and J is bounded from below, then the steepest
descent flow, namely the solutions of the Cauchy problem


d
dt
σ = −J ′(σ)

σ(0) = u

converges to a critical point of J as t→ +∞. This could be false if (PS)
does not hold.

If J is bounded from below and (PS) holds, then J the infimum is attained.

This could be false if (PS) does not hold.



• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit

A typical result is the following one.

Theorem. Let E be a separable infinite dimensional Hilbert space and
suppose that J ∈ C1(E,R) is even, bounded from below on the sphere
S = {u ∈ E : ‖u‖ = 1}, and satisfies the (PS)c condition for every
c < supS J .
Then J has infinitely many critical points on S.



• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Indefinite functionals: the Mountain-Pass Theorem

A functional J : E 7→ R is said indefinite if

inf
E
J(u) = −∞, sup

E

J(u) = +∞

The Mountain-Pass theorem provides the existence of saddle points under
suitable geometric assumptions + compactness.

Let J ∈ C1(E,R) satisfy the following two ”geometric” assumptions:

A1. J has a local strict minimum at, say, u = 0: there exist r, ρ > 0 such
that J(u) ≥ ρ for all u ∈ E with ‖u‖ = r.

A2. ∃ v ∈ E, ‖v‖ > r, such that J(v) ≤ 0 = J(0).
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Let J ∈ C1(E,R) be a functional that satisfies the assumptions (A1-A2).
Without loss of generality, we can also assume (to simplify notation) that
J(0) = 0.

Consider the class of all paths joining u = 0 and u = v:

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = v}
and set

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Remark: c ≥ ρ > 0

Theorem (Mountain-Pass) If J ∈ C1(E,R) satisfies (A1-A2) and (PS)c

holds, then c is a positive critical level for J . Precisely, there exists z ∈ E
such that J(z) = c > 0 and J ′(z) = 0. In particular z 6= 0 (and z 6= v).
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Remarks. (a) J can be indefinite.

(b) The M-P critical point is a saddle point: if it is non-degenerate, then
its Morse index is 1.

(c) The MP theorem can be extended to handle cases in which u = 0 is
not a local minimum (Linking thms). The corresponding critical point will
have Morse index greater than 1.

(d) The following example shows that, even on Rn, the geometric assump-
tions (A1-2) alone, without the (PS) condition, do not suffice for the exis-
tence of a M-P critical point.

Let E = R2 and J(x, y) = x2 + (1− x)3y2. It is easy to see that (0, 0) is
a strict local minimum and that J(2, 2) = J(0, 0) = 0.

•The only critical point of J is (0, 0).

•The M-P critical level is c = 1 and (PS)c does not hold for c = 1.
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As a typical application, one can show that the BVP

(1)

{
−∆u = λu + F ′(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

has a positive solution provided F ' |u|p+1, with 2 < p + 1 < 2∗.

(2∗ is the limit exponent for the embedding of W 1,2
0 (Ω) in Lq(Ω): 2∗ =

2n/(n− 2) if n ≥ 3)

One can also extend to indefinite functionals the Lusternik-Schnirelman
theory. Roughly, if J has the MP geometry and is even, then there exist
infinitely many critical points.
For ex. if F is even, (1) has infinitely many solutions.

Remark. If λ ≤ 0, F = |u|2∗ and Ω is star-shaped with respect to the
origin, (1) has only the trivial solution u ≡ 0 (Pohozaev).
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Problems with lack of compactness

1. Elliptic problems on bounded domains, with critical exponent

(2)

{
−∆u = λu + u2∗−1, x ∈ Ω,
u = 0, x ∈ ∂Ω,

H.Brezis and L.Nirenberg proved the following result.

Theorem. There exists λ∗ ∈ [0, λ1[ such that (2) has a positive solution
provided λ ∈]0, λ1[. Furthermore, if n ≥ 4 then λ∗ = 0, while if n = 3, λ∗

might be zero.

For ex. if Ω is the unit ball and n = 3, then λ∗ = λ1/4.
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λ0 λ1

Figure 1: Bifurcation diagram of positive solutions of (2) when λ∗ = 0 and
Ω is star-shaped (solid curve). The dashed line represents the branch of
positive solutions of the subcritical equation −∆u = λu+up, u ∈ H1

0(Ω),
1 < p < 2∗ − 1.

Roughly, one shows:

1) there exists a threshold C∗ = 1
n
Sn/2 such that (PS)c holds for c < C∗.

2) the MP critical point cλ is smaller than C∗ provided λ∗ < λ < λ1.
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2. Equations on Rn

(3)

{
−∆u + u = a(x)up in Rn,
u(x) → 0 as |x| → +∞.

We assume that 1 < p < n+2
n−2, and that a is positive, smooth and such that

lim
|x|→+∞

a(x) = `.

Moreover, we suppose that either

a(x) > ` for every x ∈ Rn; or

`− Ce−δ|x| < a(x) < ` for |x| � 1.

If the above conditions hold, then (3) has a solution.

Ref.: A.Bahri, P.L.Lions, Y.Y.Li, etc.
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3. Perturbation Problems

Let
Jε(u) = J0(u) + εG(u)

We assume that there is a smooth d-dimensional manifold Z such that
J ′0(z) = 0, for all z ∈ Z. Z is called critical manifold (of the unperturbed
functional J0).

Let TzZ denote the tangent space to Z at z ∈ Z. Since J ′0(z) = 0 for all
z ∈ Z, differentiating along Z we get

(J ′′0 (z)[v] | φ) = 0, ∀ v ∈ TzZ, ∀φ ∈ E.

This shows that TzZ ⊆ Ker[J ′′0 (z)].

We say that Z is Non-Degenerate (ND) if

(ND) TzZ = Ker[J ′′0 (z)]
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We also suppose that J ′′0 (z) is a 0−Fredholm map.

If Z is ND, one can use a suitable finite dimensional reduction proving

Theorem. (AA- M.Badiale) Suppose that Z which is non-degenerate and
let Γ(z) = G(z). Then any ”stable” critical point z0 of Γ gives rise, for ε
small enough, to a critical point uε of Jε, with uε ∼ z0.

As an application, it is possible to show:

Theorem. (AA-Garcia Azorero-Peral) Suppose that h ∈ L∞(Rn) and h→ 0
as |x| → ∞. Then the problem

−∆u + u = (1 + εh(x))up, u ∈ W 1,2(Rn), 1 < p <
n + 2

n− 2
,

has, for ε small enough, a positive solution.
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Here,

J0(u) = 1
2

∫
(|∇u|2 + u2)− 1

p+1

∫
|u|p+1,

G(u) = 1
p+1

∫
h(x)|u|p+1.

The unperturbed problem has a ND critical manifold given by

Z = {U(x + ξ) : ξ ∈ Rn},

where U is the unique positive radially symmetric function in W 1,2(Rn)
satisfying

−∆U + U = U p
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4. Semiclassical states of NLS
Consider

(NLSε)

{
−ε2∆u + V (x)u = up, in Rn

u > 0, u ∈ W 1,2(Rn),

where p > 1 is subcritical and V is a smooth bounded function.

Problem (NLSε) arises in the study of the Nolinear Schrödinger Equation

i~
∂ψ

∂t
= −~2∆ψ + Ṽ (x)ψ − |ψ|p−1ψ in Rn,

where ψ : R×Rn → C is the wave function, Ṽ : Rn → R is the potential
and ~ is the Planck constant.

Making the ”Ansatz” ψ(t, x) = e−i ωt
~ u(x), the function u satisfies (NLSε),

with V = Ṽ − ω and ε = ~. Since ε = ~ is very small, one is interested
is the asymptotic behavior of solutions in the limit ε → 0, the so-called
semiclassical limit.
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We assume the following conditions on the potential V

(V1) V ∈ C2(Rn), and ‖V ‖C2(Rn) < +∞;

(V2) infRn V > 0.

Theorem. (Floer-Weinstein) Let n = 1, let (V 1) and (V 2) hold, and
suppose x0 is a non-degenerate max or min of V . Then there exists a
solution v̄ε of (NLSε) which concentrates at x0 as ε→ 0.

We say that a solution vε of (NLSε) concentrates at x0 (as ε→ 0) provided

(4) ∀ δ > 0, ∃ ε0 > 0, R > 0 : vε(x) ≤ δ, ∀ |x− x0| ≥ εR, ε < ε0.

By the change of variable x 7→ εx + x0, (NLSε) becomes

−∆v + V (εx + x0)v = vp

which fits into the preceding perturbative setting with
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J0(v) = 1
2

∫
(|∇v|2 + V (x0)v

2)− 1
p+1

∫
|v|p+1

while the perturbation is given by

G(ε, v) = 1
2

∫
(V (εx + x0)− V (x0))v

2dx

Other results

• joint papers with:
- Badiale-Cingolani
- Malchiodi-W.M. Ni (concentration on a sphere in the radial case)
- Felli, Malchiodi, Ruiz (weakening of (V 2))
- Ruiz (systems of NLS, or systems of a NLS with a Poisson eq.)

• Further references: YY. Li, DelPino-Felmer, Malchiodi, etc.
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5. Elliptic equations on Rn with critical exponent

(5) −∆u = (1 + εk(x))u
n+2
n−2 , u ∈ D1,2(Rn), u > 0, n ≥ 3.

Assumptions on k(x). Let Cr[k], denote the set of critical points of k.

(k.0) k ∈ L∞(Rn) ∩ C2(Rn);

(k.1) k is a Morse function and ∆k(x) 6= 0, ∀x ∈ Cr[k].

(k.2) ∃ ρ > 0 such that 〈∇k(x), x〉 < 0, ∀ |x| ≥ ρ

(k.3) 〈∇k(x), x〉 ∈ L1(Rn),
∫

Rn〈∇k(x), x〉dx < 0;

For every x ∈ Cr[k], m(∇k, x) will denote the Morse index of x.
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Theorem. (AA-Garcia Azorero-Peral) Let (k.0− 3) hold and suppose that

(6)
∑

x∈Cr[k],∆k(x)<0

(−1)m(∇k,x) 6= (−1)n.

Then (5) has at least a solution, provided |ε| � 1.

Solutions of (5) are the critical points of

Jε(u) = 1
2‖u‖

2 − 1

2∗

∫
|u|2∗ − ε

2∗

∫
k(x)|u|2∗,

where u ∈ D1,2(Rn) and ‖u‖2 =
∫
|∇u|2.

Once more, the lack of compactness is bypassed by taking advantage of the
fact that the problem is perturbative.
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For ε = 0 the unperturbed problem −∆u = u
n+2
n−2 has a ND critical manifold

(in D1,2(Rn)) given by

Z = {zµ,ξ(x) = µ−(n−2)/2U

(
x− ξ

µ

)
: µ > 0, ξ ∈ Rn},

where (up to an unifluent constant)

U(x) =

(
1

1 + |x|2

)(n−2)/2

.

According to the previous abstract result we are lead to find the ”stable”
critical points of

Γ(µ, ξ) =

∫
k(x)|zµ,ξ|2

∗
dx, µ > 0, ξ ∈ Rn
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One has:

Γ(µ, ξ) = µ−n

∫
Rn

k(x)U 2∗
(
x− ξ

µ

)
dx =

∫
Rn

k(µy + ξ)U 2∗(y)dy.

As a consequence, we can extend Γ to all of Rn by setting Γ̃(0, ξ) = a0k(ξ)

and Γ̃(µ, ξ) = Γ(−µ, ξ) if µ < 0. The extended function is of class C1 and

ξ ∈ Cr[k] ⇐⇒ (0, ξ) ∈ Cr[Γ̃],

Moreover, we find

D2
µµΓ̃(0, ξ) = a1∆k(ξ), D2

µξi
Γ̃(0, ξ) = 0, i = 1, . . . , n.

Thus the Hessian matrix Γ̃′′(0, ξ) at any ξ ∈ Rn has the form

Γ̃′′(0, ξ) =

 a0D
2k(ξ) 0

0 a1 ∆k(ξ)

 .
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Since the critical points of k are non-degenerate and ∆k(ξ) 6= 0, it follows
that (0, ξ) is a non-degenerate critical point of Γ̃.

Moreover, one has:

m(∇Γ̃, (0, ξ)) =

 m(∇k, ξ) if ∆k(ξ) > 0

m(∇k, ξ) + 1 if ∆k(ξ) < 0

Using also (k.2− 3) one finds that there exists R > 0 such that

deg(∇Γ̃, Bn+1
R , 0) = (−1)n+1

If, by contradiction, Γ̃ has no other critical points but (0, ξ), then

deg(∇Γ̃, Bn+1
R , 0) = (−1)n+1 =

∑
ξ∈Cr[k]

(−1)m(∇Γ̃,(0,ξ)).
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(−1)n+1 =
∑

ξ∈Cr[k]

(−1)m(∇Γ̃,(0,ξ))

=
∑

∆k(ξ)>0

(−1)m(∇Γ̃,(0,ξ)) +
∑

∆k(ξ)<0

(−1)m(∇Γ̃,(0,ξ))

=
∑

∆k(ξ)>0

(−1)m(∇k,ξ) −
∑

∆k(ξ)<0

(−1)m(∇k,ξ).

On the other hand, from (k.2) it immediately follows that deg(∇k,Bn
R, 0) =

(−1)n and hence∑
ξ∈Cr[k]

(−1)m(∇k,ξ) =
∑

∆k(ξ)>0

(−1)m(∇k,ξ) +
∑

∆k(ξ)<0

(−1)m(∇k,ξ) = (−1)n

This and the preceding equation yield∑
ξ∈Cr[k],∆k(ξ)<0

(−1)m(∇k,ξ) = (−1)n,

a contradiction.
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6. The scalar curvature problem

Let (Sn, g0) denote the n-dimensional sphere endowed with the standard
metric. Given a function R, the scalar curvature problem amounts to finding
a metric g conformally equivalent to g0 such that the scalar curvature of
(Sn, g) is R.

A necessary condition for the existence is that maxSn R > 0. Other integral
necessary conditions have been found by Kasdan and Warner.

Consider, for simplicity, the case n = 3.

Theorem. Suppose that R > 0 is a C2 Morse function such that ∆g0
R(y) 6=

0 for all y ∈ Cr(R). Furthermore, let us assume that∑
y∈Cr[R],∆g0

R(y)<0

(−1)m(∇R,y) 6= −1.

Then the SC problem has a solution.
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Setting g = u4/(n−2)g0 (n ≥ 3), and using stereographic co-ordinates with
north pole the point of minimum of R on Sn, one finds that u satisfies the
equation

−∆u = K(x)u
n+2
n−2 , u ∈ D1,2(Rn), u > 0,

where K(x) = R ◦ π−1 and π : Sn 7→ Rn denotes the ster. proj.

First, one considers the case K = 1+εk. It is easy to check that k satisfies
the assumptions made before and one applies the previous theorem.

Next, one performs an homotopy between ε ∼ 0 and ε = 1. This involves
difficult a-priori estimates. In dimension n > 3 this last step requires further
restrictions.

Ref.: Moser, A.Chang-P.Yang, Gursky, Y.Y.Li, Bahri-Coron, A.A-YY.Li-
Malchiodi, etc.

Recent trends: prescribing the Paneitz Curvature (a 4th order invariant) on
S4 (A.Chang-P.Yang, A.Malchiodi)
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7. Vortex Rings in an Ideal Fluid

Consider a perfect fluid filling all of R3 and suppose it is cylindrically sym-
metric.
In terms of the stream function Ψ(r, z) defined on Π = {(r, z) : r > 0, z ∈
R}, the velocity is given by

q =

(
− Ψz

r
, 0 ,

Ψr

r

)
.

A vortex is a toroidal region R, such that curl(q) 6= 0 if and only if
(r, z) ∈ R.Let A, the vortex core, denote the cross section of the vortex
R. One is lead to the look for a bounded set A ⊂ Π and Ψ such that

−LΨ = −
(
r

(
1

r
Ψr

)
r

+ Ψzz

)
=

{
r2Ψ in A

0 in Π \ A.

where
curl(q) = (0,−LΨ/r 0).
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The preceding equation is completed by suitable boundary conditions.

We require

Ψ(0, z) = −k, ∀ z ∈ R, and Ψ(r, z) = 0, ∀ (r, z) ∈ ∂A,

and
q → (0, 0,−W ), as r2 + z2 → +∞.

The first condition prescribes the amount k ≥ 0 of fluid flowing between
the stream surfaces r = 0 and ∂A.
The second boundary condition demands that Ψ → −1

2Wr2−k at infinity.

Introducing the Heaviside function H and setting

ψ(r, z) = Ψ(r, z) + 1
2Wr2 + k,

the preceding problem becomes

(7)


−Lψ = r2H(ψ − 1

2Wr2 − k) (r, z) ∈ Π,
ψ = 0 on r = 0,
ψ → 0 as r2 + z2 → +∞,

|∇ψ|/r → 0 as r2 + z2 → +∞.
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By a solution of (7) we mean a function ψ of class C1(Π) ∩ C2(Π \ ∂A)
which solves (7) almost everywhere.

Theorem. (A.A.-M.Struwe) For all k,W > 0 there exists a solution ψ(r, z) =
ψ(r,−z) of (7) such that the corresponding vortex core A = {(r, z) ∈ Π :
ψ(r, z) > 1

2Wr2 + k2} is non-empty and bounded.

Roughly, we approximate (7) Dirichlet problems on balls BR. The corre-
sponding Euler functional JR behaves as follows.

u0

JR

u0

JR

uR

vR

(0 < R� 1) (R� 1)

Figure 2: Behavior of JR
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For R� 1, JR has a local minimum vR and a mountain pass critical point
uR.

• the minimum vR ”blows up” as R→∞,

while

• the MP critical point uR converges to the solution of (7).

Roughly, the MP critical level c(R) is non-increasing and hence almost
everywhere differentiable. Taking a sequence Rk → +∞ where c′(Rk)
exists, one shows that

‖uRk
‖2

H1
0 (BRk

) ≤ 5 [c(Rk) + 2R|c′(Rk)| + 4] ≤ Const.

Then uRk
converges to a solution u of (7) with the properties listed before.


