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Let k be a field, or a ring. Let F be a family of polynomials
f1, . . . , fr ∈ k[T1, . . . ,TN ].

The set of k-points of the corresponding (affine) algebraic variety
XF is the set of points in kN which are common zeroes of the
polynomials fi , that is,

XF (k) = {x = (x1, . . . , xn) ∈ kN : (∀i)(fi (x1, . . . , xN) = 0)}.
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For any ring K containing k, we can also consider the set of
K -points

XF (K ) = {x = (x1, . . . , xn) ∈ KN : (∀i)(fi (x1, . . . , xN) = 0)}.

In particular, if r = 0, we get the affine space AN with
AN(K ) = KN for every K containing k.
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When k = C, a lot of the information on X is already contained in
the set of complex points XF (C).

However the field C is naturally embedded in the ring C[[t]] of
formal power series with coefficients in C, and one of the main
purposes of the talk is to show that, for many problems,
considering the space

L(XF ) := XF (C[[t]]) ={(x1(t), . . . , xn(t)) ∈ C[[t]]N :

(∀i)(fi (x1(t), . . . , xN(t)) = 0)}.

of formal germs of arcs on XF may be extremely powerful.
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If F ′ = F ∪i∈I {gi}, we have

XF ′(K ) ⊂ XF (K )

for all K .

We write XF ′ ⊂ XF and we say XF ′ is a subvariety of XF .
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Do there exist similarly a family F̃ such that

XF̃ (K ) = XF (K ) \ XF ′(K )

for all K , so that we can set XF̃ = XF \ XF ′?

Yes, add new variables Ui for each gi and set

F̃ = (fi , giUi − 1).
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We have also a natural notion of products:

If we have two families F = (fi (T1, . . . ,TN)) and
F ′ = (f ′i (S1, . . . ,SN′)), with no variable in common, we may set

XF × XF ′ := XF∪F ′ .
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There is a natural notion of morphisms between algebraic varieties.

Essentially they are induced by“polynomial transformations”.

In particular, there is a notion of isomorphism of algebraic varieties.

For instance, T 7→ (T 2,T 3,T−2) induces an isomorphism between
A1 \ {0} and the variety defined by

X 3
1 − X 2

2 = 0 and X1X3 − 1 = 0.
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Let R be a ring, for instance R = Z.

By an additive R-valued invariant of k-algebraic varieties, we mean
the assignment to any k-algebraic variety X of an invariant λ(X )
in R such that:

Isomorphic varieties have the same invariant

Additivity: If X ′ is a subvariety of X ,

λ(X ) = λ(X ′) + λ(X \ X ′)

Multiplicativity:

λ(X × X ′) = λ(X ) · λ(X ′).
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Assume k = R. One may cut XF (R) into a finite number of cells
Ci , defined by polynomial equalities and inequalities and
diffeomorphic to an open ball Bdi of dimension di .

Convention: open balls of dimension 0 are points.
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Euler characteristic with compact support is defined as

Eu (XF (R)) :=
∑

i

(−1)di .

It can be shown to be independent from the cell decomposition.

Examples

Eu(Sd) = 1 + (−1)d

Eu(Rd) = (−1)d . In particular Eu(Cd) = 1.
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If k is a subfield of C and X is a k-algebraic variety, we set

Eu (X ) := Eu(X (C)).

Proposition

X 7→ Eu (X ) is an additive Z-valued invariant.
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Counting is additive.

So assume k is a finite field. Recall that for every prime number p,
and every f ≥ 1, there exists
a unique finite field Fq having q = pf elements.

Furthermore, for every e ≥ 1, Fqe is the unique field extension of
degree e of Fq.

If k = Fq and X is a k-algebraic variety, since X (Fqe ) is finite, we
may set

Nqe (X ) := |X (Fqe )|.

X 7→ Nqe (X ) is an additive invariant.
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When k = Q, and X is a variety over k, we may at the same time
consider Eu (X ) and reduce the equations of X mod p, for p not
dividing the denominators of the equations of f , in order to get a
variety Xp over Fp. For such a p, we may consider, via counting,
the number Npe (Xp).

Is there any relation between Npe (Xp) and Eu (X )?
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The following is a consequence of results by A. Grothendieck going
back to the 60’s:

Theorem (Crude Form)

Given a X , for almost all p,

lim
e 7→0

Npe (Xp) = Eu (X ).

More precisely:
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Theorem (Precise Form)

Given a X , for almost all p, there exists finite families of complex
numbers αi , i ∈ I , and βj , j ∈ J, depending only on X and p, such
that

Npe (Xp) =
∑

I

αe
i −

∑
J

βe
j

and
Eu (X ) = |I | − |J|.

So, Euler characteristics may be computed by counting in finite
fields!
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The ring of formal power series Fp[[t]] consists of series∑
i≥0

ai t
i

with ai in Fp

and its field of fractions Fp((t)) consists of Laurent
series ∑

i≥−α

ai t
i ,

with α ≥ 0.
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The ring of p-adic numbers is the set of series
∑

i≥0 aip
i , with ai

in {0, . . . , p − 1}.

Elements of Zp may be added and multiplied by rounding up to
the right.

Similarly, the field of p-adic numbers Qp is the set of series∑
i≥−α aip

i , with ai in {0, . . . , p − 1} and α ≥ 0.
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These two fields are quite different:

p = 0 in Fp((t)) while p 6= 0
in Qp, which is of characteristic zero (i.e. contains Q).

However, they are very much the same: by the Ax-Kochen-Eřsov
principle, we shall discuss later in the talk, they are asymptotically,
that is, for p � 0, the same.
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We assume k = C. We say X is smooth connected if X (C) is
smooth (= non singular) and connected in the usual way.

We consider a proper morphism h : Y → X between smooth
connected varieties and we assume h is an isomorphism outside a
subvariety F of Y , F 6= Y . Such a h is called a modification or a
birational morphism.

Proper means h−1(compact) = compact.
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We shall furthermore assume F is equal to the union of smooth
connected hypersurfaces (= of complex codimension 1) Ei , i ∈ A,
of Y , which are furthermore mutually transverse.

We call such a modification a DNC modification.

For I ⊂ A, we set

E ◦I := ∩i∈IEi \ ∪j /∈IEj .

Note that E ◦∅ = Y \ F and Y is the disjoint union of all the E ◦I ’s.
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For i in A, we set

ni = 1 + (order of vanishing of the jacobian of h along Ei )

and

nI =
∏
i∈I

ni .
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We can now state the following resulting, obtained in 1987 and
published in 1992:

Theorem (Denef and Loeser)

Let h : Y → X be a DNC modification. Then we have

Eu (X ) =
∑
I⊂A

Eu (E ◦I )

nI
.

Remark

The result also holds in the complex analytic setting.
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The proof was by no means direct.

Main steps:

1 Reduce to data defined over Q (or a number field)

2 For general p, evaluate the p-adic volume of X (Qp) as a
p-adic integral on Y (Qp) involving the order of jacobian of h
via“change of variables formula”

3 Express these integrals as number of points on varieties over a
finite field

4 Conclude by using Grothendieck’s result relating Eu to
number of points.

Challenging problem: Find a direct proof . . .

François Loeser Motivic Integration
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Inspired by mirror symmetry, physicists were led to conjecture the
following statement:

“Birational Calabi-Yau have the same Betti numbers.”

In 1995, this was proved by V. Batyrev by using p-adic integrals in
a way similar to Denef and Loeser and the part of the Weil
conjectures proved by Deligne (which allows for projective varieties
to deduce not only Euler characteristics, but also Betti numbers,
from counting in finite fields).
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Shortly afterwards, M. Kontsevich found a direct approach to
Batyrev’s Theorem, avoiding the use of p-adic integrals and
involving arc spaces,

which he explained in his seminal Orsay talk
of December 7, 1995, entitled“String cohomology”.

Motivic integration was born . . .
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Universal invariants
Motivic integration

We shall consider non degenerate additive invariants of algebraic
varieties over k, that is invariants λ such that λ(A1) is a unit.

Instead of considering all such invariants separately, it shows more
convenient to consider at once the universal non degenerate
additive invariant :

X 7→ [X ]

from the category of algebraic varieties over k to some universal
ring Mk .
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It is characterized by the fact that for every non degenerate
invariant λ with values in a ring R,

there exists a unique ring morphism α : Mk → R such that

λ(X ) = α([X ])

for every X .
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Let X = XF be a variety over the field k.

The arc space L(X ) is defined by

L(X )(K ) := X (K [[t]])

for any field K containing k.

Note that, in general L(X ) is infinite dimensional!
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Roughly speaking, motivic integration assigns to a reasonable class
of subsets A of L(X ), the arc space of a k-variety X , a volume
µ(A).

The most naive idea would be to construct a real valued measure
on L(X ) similarly as in the p-adic case.

Such attempts are doomed to fail immediately since, as soon as k
is infinite, k((t)) is not locally compact.
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Kontsevich’s real breakthrough was to realize that a reasonable
measure on k((t)) could in fact be constructed once R is replaced
by Mk (or its completion).

The motivic measure µ(A) will be an element of Mk , or of some
completion or localization of Mk .
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Depending on the context reasonable means

measurable,
semi-algebraic, definable, . . . ,

More generally, one can integrate functions in a way very similar to
the p-adic case.

In fact a very general theory of motivic integration within the
framework of“Constructible motivic functions”has been recently
developed by Cluckers and Loeser. It allows to consider integrals
with parameters and avoids using a completion Mk .
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The original construction uses a limiting process.

The basic idea is to use the truncation morphisms:

πn : L(X ) → Ln(X ),

with Ln(X ) defined similarly as L(X ) with K [[t]] replaced by
K [[t]]/tn+1.
For reasonable subsets A of L(X )

µ(A) := lim
n 7→∞

[πn(A)] [A1]−nd ,

with d the dimension of X .
Note that Ln(X ) is finite dimensional and [A1] is invertible in Mk .
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The most recent construction by Cluckers and Loeser is quite
different.

It uses a decomposition into“cells” for which one can define the
measure by induction on dimension.
This has the advantage of avoiding completion. The main difficulty
is to prove that it is well defined (independent of the
decomposition).
Once developed, this new framework is as easy to use and flexible
as standard Lebesgue integration, with Fubini theorems, change of
variable theorems, etc.
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Birational Geometry
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Milnor fiber
Ax-Kochen-Eřsov Principle for integrals

As we already mentioned, the very first application of motivic
integration was made by Kontsevich, who used it to get a proof of
Batyrev’s Theorem without p-adic integration.

Similarly, one can avoid the use of p-adic integration in the proof
of the Denef-Loeser Theorem.

What is the underlying idea?
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If h : Y → X is a birational morphism, one can express the motivic
volume of L(X ) as a motivic integral on L(Y ) involving the order
of vanishing of the jacobian.

This is achieved by using an analogue of the“change of variables
formula” in this setting.
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Why does it work?

A modification h : Y → X induces an isomorphism outside a
subset of finite positive codimension (usually one) F ⊂ Y .

At the level of arc spaces h induces a morphism between L(Y ) and
L(X ) which restricts to a bijection between L(Y ) \ L(F ) and
L(X ) \ L(h(F )).

But L(F ) is of infinite codimension in L(Y ), hence of measure
zero!

This is the reason why measure theoretic arguments seem to be so
well adapted to birational geometry.
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Let G be a finite group.

A linear action of G on a complex vector
space V has a canonical decomposition ⊕Vα parametrized by
characters.

Let now G act on a complex algebraic variety X .

There is no decomposition as above.

But there exists one at the level of arc spaces!
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Indeed, let x be a point of X and denote by G (x) the isotropy
subgroup at x ,

consisting of those elements of G fixing x .
Denote by L(X )x the space of arcs on X with origin at x .

There is a canonical decomposition

L(X )x =
⊔

γ∈ConjG(x)

L(X )γ
x t B,

with ConjG (x) the set of conjugacy classes in G (x) and B a
subset of infinite codimension in L(X )x .

François Loeser Motivic Integration
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Ax-Kochen-Eřsov Principle for integrals

This explains the use of motivic integration in relation with the
McKay correspondence between

1 certain resolutions of the quotient space X/G

2 group theoretical invariants of the action.

Work of Batyrev, Kontsevich, Denef-Loeser, Yasuda, . . .

François Loeser Motivic Integration



40/53

Preliminaries
Some (pre)history

So, what is motivic integration?
Motivic integration in action: 4 examples

Birational Geometry
Finite group actions
Milnor fiber
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Let X be a smooth complex algebraic variety

and f : X → C a
function (a morphism to the affine line).

Let x be a singular point of f −1(0), that is, such that df (x) = 0.

Fix 0 < η � ε � 1. The morphism f restricts to a fibration (the
Milnor fibration)

B(x , ε) ∩ f −1(B(0, η) \ {0}) → B(0, η) \ {0}.

Here B(a, r) denotes the closed ball of center a and radius r .

François Loeser Motivic Integration
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The Milnor fiber at x ,

Fx = f −1(η) ∩ B(x , ε)

has a diffeomorphism type that does not depend on η and ε and it
is endowed with an automorphism, the monodromy Mx , induced by
the characteristic mapping of the fibration.
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In particular one can consider the n-th Lefschetz number

Λn(Mx) :=
∑

j

(−1)j tr (Mn
x ;H j(Fx)).

Denote by Xn the set of arcs ϕ in Ln(X ) with ϕ(0) = x such that

f (ϕ(t)) = tn + (higher order terms).

François Loeser Motivic Integration
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Theorem (Denef-Loeser)

For n ≥ 1,
Λn(Mx) = Eu (Xn).

Challenging Problem: Find a direct, geometric proof.

In fact, the spaces Xn do contain much more information about
the Milnor fiber and the monodromy:
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Denef and Loeser proved that the series

Z (T ) :=
∑
n≥1

[Xn][A1]−dnT n,

with d the dimension of X , has a limit as T 7→ ∞, which is a
motivic incarnation of the Milnor fiber together with the
(semi-simplification of the) monodromy action on it.

Work of Denef-Loeser, Guibert, Bittner, Guibert-Loeser-Merle, etc.

François Loeser Motivic Integration
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A first order ring formula is a formula written with symbols 0, +,
−, 1, ×, =,

logical symbols ∧ (and), ∨ (or), ¬ (negation),
quantifiers ∃, ∀, and variables.

A (first order ring) sentence is a formula with no free variable.

François Loeser Motivic Integration
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Theorem (Ax-Kochen-Eřsov)

Let ϕ be a first order sentence. For almost all prime number p, the
sentence ϕ is true in Qp if and only if it is true in Fp((t)).

François Loeser Motivic Integration
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Let d be a positive integer. A field k is called C2(d) if every
homogenous polynomial of degree d in n > d2 variables with
coefficients in k has a non trivial solution in kn.

It is known (Tsen-Lang) that Fp((t)) is C2(d) for every d .

Question (E. Artin): Does Qp have the C2(d) property?

François Loeser Motivic Integration
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The answer is

No: Terjanian proved in 1965 Q2 is not C2(4) by producing a
homogenous polynomial of degree 4 in 18 variables with no non
trivial solution in Q2.

Almost Yes: Ax and Kochen proved in 1966 that, given a d ,
almost all fields Qp are C2(d).

Indeed, d being given, for a field to be C2(d) is expressible by a
sentence. Why?

François Loeser Motivic Integration
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Now consider a formula ϕ with n free variables.

If K is a field, we
may set

Xϕ(K ) :=
{

(x1, . . . , xn) ∈ Kn
∣∣∣ ϕ(x1, . . . , xn) holds

}
.

More generally one may extend the valued ring language which
admits symbols to express that the valuation is larger than
something, or the initial coefficient is equal to someting.

François Loeser Motivic Integration
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Theorem (Denef-Loeser)

Let ϕ be a formula in the valued ring language. Then, for almost
all p, the sets Xϕ(Qp) and Xϕ(Fp((t))) have the same volume.
Furthermore this volume is equal to the number of points in Fp of
a motive Mϕ canonically attached to ϕ.

When ϕ has not free variable, one recovers the original form of the
Ax-Kochen-Eřsov Theorem.

There is a similar statement for integrals.
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Do the previous results extend to integrals depending on
parameters?

By the above mentioned work of Cluckers and Loeser, all p-adic
integrals depending on parameters that are definable in a precise
sense may be obtained by specialization of canonical motivic
integrals for almost all p, and similarly for Qp replaced by Fp((t)).
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Furthermore,

Transfer Theorem (Cluckers-Loeser)

For almost all p, an equality of definable integrals depending on
parameters holds for Qp if and only if it holds for Fp((t)).

These results may be generalized in order to deal with integrals
involving exponential functions.

To conclude, let us note that integrals of the above type are
ubiquituous in harmonic analysis over non archimedean fields,
p-adic representation Theory and the Langlands Program.
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