p-ADIC DIFFERENTIAL EQUATIONS

 p-ADIC REPRESENTATIONS ANDp-ADIC DIFFERENCE EQUATIONS

Padova,
15 Mach, 2007
Summary :

- Introduction
- p-adic Representations
- (Abelian) p-adic differential equations
- p-adic difference equations
- Applications to p-adic Zeta function and to p-adic L functions

Introduzione

$\underline{\text { Absolute values over } \mathbb{Q} \text { : }}$
$\left\{|\cdot|_{\infty}=\right.$ Archimedean absolute value $:\left|\frac{m}{n}\right|_{\infty}=\max \left(\frac{m}{n},-\frac{m}{n}\right)$,
$\left\{|\cdot|_{p}=p\right.$ - adic absolute value
For all integer $k \in \mathbb{Z}, k=n p^{v},(n, p)=1$ let

$$
v_{p}(k):=v=\mathrm{N}^{\mathrm{o}} \text { of times that } p \text { divides } k .
$$

Let $0<\varepsilon_{p}<1$ be an arbitrary real number, then set $|p|_{p}:=\varepsilon_{p}$ and, for all $k \in \mathbb{Z}$ as above, set

$$
|k|_{p}=|p|_{p}^{v}=\varepsilon_{p}^{v_{p}(k)} \leq 1 .
$$

and more generally

$$
\left|\frac{m}{n}\right|_{p}:=\varepsilon_{p}^{v_{p}(m)-v_{p}(n)}
$$

$$
\begin{gathered}
\text { Introduction } \\
|\cdot|_{\infty}: \mathbb{Q} \leadsto \mathbb{R}=\left\{\begin{array}{l}
\text { complete } \\
\text { connected } \\
\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2
\end{array}\right. \\
|\cdot|_{p}: \mathbb{Q} \leadsto \mathbb{Q}_{p}=\left\{\begin{array}{l}
\text { complete } \\
\text { NON connected } \\
\operatorname{dim}_{\mathbb{Q}_{p}} \mathbb{C}_{p}=+\infty
\end{array}\right.
\end{gathered}
$$

Disks/Balls :

$$
\begin{aligned}
\mathrm{D}^{-}(a, r) & :=\left\{x \in \mathbb{Q}_{p}| | x-\left.a\right|_{p}<r\right\} \\
\mathrm{D}^{+}(a, r) & :=\left\{x \in \mathbb{Q}_{p}| | x-\left.a\right|_{p} \leq r\right\}
\end{aligned}
$$

Pathologies :

- If $|x-a|_{p}=r$, then $\mathrm{D}^{-}(x, r) \subset \mathrm{D}^{+}(a, r)$;
- We set $\mathbb{Z}_{p}:=\mathrm{D}^{+}(0,1)$. One has $\mathbb{Z} \subseteq \mathbb{Z}_{p}$, and is dense.

p-adic representations

Let k be an algebraically closed field of characteristic p.
The object of study is

$$
\mathrm{G}:=\operatorname{Gal}\left(k((t))^{\mathrm{sep}} / k((t))\right)
$$

- We wants to study G by classifying its representations, that is the groups homomorphisms

$$
\rho: \mathrm{G} \longrightarrow \mathrm{GL}_{n}(K) .
$$

where K / \mathbb{Q}_{p} is a finite extension of fields.

- Remarkable Fact : Every finite quotient of G is solvable, more precisely

$$
1 \rightarrow \mathcal{P} \rightarrow \mathrm{G} \rightarrow \mathrm{G} / \mathcal{P} \rightarrow 1 \quad, \quad \mathrm{G} / \mathcal{P}=\prod_{\ell=\text { prime }, \ell \neq p} \mathbb{Z}_{\ell}
$$

- \mathcal{P} is a pro- p-group essentially unknown.

The exemple of rank one representations of rank one of \mathcal{P}

 The theory of Artin-Schreier describes the caratters of \mathcal{P} :$$
0 \rightarrow \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbf{W}_{n}(k((t))) \underset{\mathrm{F}-1}{ } \mathbf{W}_{n}(k((t))) \rightarrow \operatorname{Hom}\left(\mathcal{P}, \mathbb{Z} / p^{n} \mathbb{Z}\right) \rightarrow 0
$$

- $\mathbf{W}_{n}(k((t)))$ is the group scheme of "Witt Vectors".

Its elements are vectors $\left(f_{0}(t), \ldots, f_{n}(t)\right)$, with $f_{i}(t) \in k((t))$.
Theorem 0.1 (Pulita) The group of characters $\mathrm{H}^{1}:=\operatorname{Hom}(\mathcal{P}, \mathbb{Q} / \mathbb{Z})$ is isomorphic to

$$
\mathrm{H}^{1} \cong \bigoplus_{(n, p)=1}\left(\underset{m \geq 0}{\lim }\left(\mathbf{W}_{m}(k) \xrightarrow{\mathrm{FV}} \mathbf{W}_{m+1}(k) \rightarrow \cdots\right)\right)
$$

The graduated of H^{1} is isomorphic to

$$
\operatorname{Gr}_{d}\left(\mathrm{H}^{1}\right):=\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\right) / \operatorname{Fil}_{d-1}\left(\mathrm{H}^{1}\right) \cong k .
$$

From Representations to Equations

$k((t))^{\text {sep }}$		$\widetilde{\mathcal{R}}_{K}$
\mid	\sim	\mid
$k((t))$		\mathcal{R}_{K}

- \mathcal{R}_{K} is the ring of (germs of) analytic functions on the wedge of the unit disk $\mathrm{D}^{-}(0,1)$, that is functions converging on an annulus $\left\{1-\varepsilon<|x|_{p}<1\right\}$ of \mathbb{C}_{p}.
- We have a functor which is fully faithful

$$
\begin{aligned}
\operatorname{Rep}_{K}^{\text {fin }}(\mathrm{G}) & \begin{array}{c}
\text { Diff.Eq./ } / \mathcal{R}_{K} \\
\text { witha Frob. } \\
\text { structuroe }
\end{array} \\
V & \left(V \otimes_{K} \widetilde{\mathcal{R}}_{K}\right)^{G}
\end{aligned}
$$

Obtained results :

- Computation of this functor in the Abelian case;
- Classification of all abelian Diff.Eq. over \mathcal{R}_{K};
- Criteria to say when a given differential Eq. comes From a repr.

p-adic Differential Equations

- The equations considered are linear, homogeneous, and in normal form : $L:=y^{(n)}+f_{n-1} y^{(n-1)}+\cdots+f_{1} y^{\prime}+f_{0} y=0$.
- Example : The equation $y^{\prime}=y$ has solution $\exp (T):=\sum \frac{T^{n}}{n!}$.
- Patology : The function $\exp (T)$ does not converge everywhere, but converges only in a disk $\mathrm{D}^{-}\left(0, \omega_{0}\right)$, with $\omega_{0}<+\infty$.
- Invariant : The radius of convergence of the Taylor solution in a point $c \in K$ is an invariant of the equation.
- If the equation is defined on an annulus $\left\{r_{1}<|T|<r_{2}\right\}$, we can consider the function :

$$
r \mapsto R(L, r):=\min _{|c|_{p}=r}\left\{\begin{array}{l}
\text { Radius of the Taylor } \\
\text { solution of } L \text { at } c
\end{array}\right\}
$$

- The log-slopes of this function are invariants of the equation.

DWORK'S EXAMPLE

Operator	Solution at ∞	Formal Irr.	p-adic Irr.
$L_{1}:=\partial_{T}+\pi_{0} T^{-1}$	$\exp \left(\pi_{0} T^{-1}\right)$	1	1
$L_{2}:=\partial_{T}+p \pi_{0} T^{-p}$	$\exp \left(\pi_{0} T^{-p}\right)$	p	1
$\partial_{T}:=T \frac{d}{d T}$		$\log (r)$	
$R_{r}:=R\left(L_{i}, r\right)$			

- Since $\theta(T):=\exp \left(\pi_{0}\left(T^{-p}-T^{-1}\right)\right)=\frac{\exp \left(\pi_{0} T^{-p}\right)}{\exp \left(\pi_{0} T^{-1}\right)}$ is overconvergent, then these two operators are isomorphic (over \mathcal{R}_{K}).

Theorem 0.2 (Pulita) The rank one differential equations coming from a representation have a solution at ∞ of the type :

$$
y=T^{a} \cdot \exp \left(\pi_{m} \phi_{0}(T)+\pi_{m-1} \frac{\phi_{1}(T)}{p}+\cdots+\pi_{0} \frac{\phi_{0}(T)}{p^{m}}\right)
$$

where $\phi_{j}(T)=f_{0}(T)^{p^{j}}+p \cdot f_{1}(T)^{p^{j-1}}+\cdots+p^{j} \cdot f_{j}(T)$, with $f_{1}, \ldots, f_{j} \in T^{-1} K\left[T^{-1}\right]$, and where $\left\{\pi_{0}, \ldots, \pi_{m}\right\}$ are p^{m}-torsion points of a Lubin-Tate group.

- This exponential converges for $|T|>1$.
- The isomorphism class of the equation is in bijection with the pair (\bar{a}, ρ) where $\bar{a} \in \mathbb{Z}_{p} / \mathbb{Z}$ is the residue, and $\rho \in \mathrm{H}^{1}$ is the character defined by the reduction of $\left(f_{0}, \ldots, f_{m}\right)$ in $\mathbf{W}_{m}(k((t)))$:
$\left(f_{0}, \ldots, f_{m}\right) \in \mathbf{W}_{m}\left(T^{-1} K\left[T^{-1}\right]\right)$
$\left(\bar{f}_{0}, \ldots, \bar{f}_{m}\right) \in$

p-adic difference Equations

- Let $q, h \in \mathbb{Q}_{p}$, be such that $|q-1|<1$ and $|h|<1$. Let

$$
\begin{aligned}
\sigma_{q, h}(f(T)) & :=f(q T+h), \quad \Delta_{q, h}(f):=\frac{f(q T+h)-f(T)}{(q-1) T+h} . \\
& \bullet\left\{\begin{array}{l}
q \rightarrow 1 \\
h \rightarrow 0
\end{array} \Longrightarrow \Delta_{q, h} \longrightarrow d / d T .\right.
\end{aligned}
$$

- Difference equations (matrix form) :

$$
\sigma_{q, h}(Y)=A(T) \cdot Y, \quad \Longleftrightarrow \quad \Delta_{q, h}(Y)=G(T) \cdot Y(T),
$$

where $G(T)=\frac{A(T)-\mathrm{I}}{(q-1) T+h}$.
Theorem 0.3 (Pulita) A function $Y(T)$ is solution of a differential equation if and only if it is solution of a difference equation.

In particular, for all differential equation, it exists an unique difference equation having the same solutions, and reciprocally.

Applications to p-adic Zeta and L functions
Complex Zeta function : Values of the Zeta function $\zeta:(\mathbb{C}-1) \rightarrow \mathbb{C}$ at negative integers are known :

$$
\zeta(1-n)=-\frac{B_{n}}{n}, \quad n \geq 1
$$

where $\left\{B_{n}\right\}_{n \geq 1}$ are the Bernulli numbers.

- Values of ζ at positive integers are unknown.
p-adic Zeta function : We know that $-\mathbb{N} \subseteq \mathbb{Z}_{p}$ is dense.
Theorem 0.4 (Kubota-Leopoldt, 1964) It exists a unique continuous function $\zeta_{p}:\left(\mathbb{Z}_{p}-\{1\}\right) \rightarrow \mathbb{Q}_{p}$ such that :

$$
\zeta_{p}(1-n)=-\left(1-p^{n-1}\right) \cdot \frac{B_{n}}{n}, \quad n \geq 1 .
$$

- We define analogously $L(s, \chi)$ (complex) and $L_{p}(s, \chi)$ (p-adic) associate to a Dirichlet character χ.

Theorem 0.5 (Morita 1975) It exists a unique continuous function $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$, verifying the functional equation

$$
\Gamma_{p}(x+1)=\left\{\begin{array}{ccc}
-x \Gamma_{p}(x) & \text { if }|x|_{p}=1 \\
-\Gamma_{p}(x) & \text { if } & |x|_{p}<1
\end{array} .\right.
$$

- $\Gamma_{p}(x+p)=A(x) \cdot \Gamma_{p}(x)$, with
$A(x)=-(x+1)(x+2) \cdots(x+p-1)$ is a difference equation, then :
Theorem 0.6 (Pulita) The function Γ_{p} is solution of a p-adic differential equation with coefficients converging on $\mathrm{D}^{-}(0,1)$:

$$
\Gamma_{p}(T)^{\prime}=g(T) \cdot \Gamma_{p}(T), \quad g(T) \text { converges on } \mathrm{D}^{-}(0,1) .
$$

- Interest of this: Let $\omega: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the Teichmüller char. Then
(Diamond 1979): $\quad g(T)=\lambda_{0}+\sum_{m \geq 1} L_{p}\left(1+2 m, \omega^{2 m}\right) \cdot T^{1+2 m}$
Corollary 0.1(Pulita) We obtain congruences involving values $L_{p}\left(1+2 m, \omega^{2 m}\right)$, in positive integers.

