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Outline

• The financial problem : credit risk and the modeling of

contagion

• The interacting particle system model

• The main results for the particle system

i) Asymptotics when the number of particles N →∞
ii) Equilibria of the limiting dynamics

iii) Finite volume approximations

• Back to Finance : large portfolio losses in a credit risky

environment with contagion and default clustering.



The financial problem : Credit risk

• Risk faced by a financial institution holding a portfolio

of positions issued by a (large) number of firms that

may default.

→ Problem compounded by the fact that :

i) Default may be contagious

ii) There may be a clustering of defaults

Losses may therefore be large and we want to address

this problem in the above context (contagion and

clustering).



General modeling context

• Default can be seen from two viewpoints :

i) From the management of a firm that has more detailed

information about the financial health of the firm and

may thus view default through the mechanism that

leads to it (structural approach)

ii) From the market to which the default may come as a

“surprise” (reduced-form or intensity-based approach).

→ Here we follow the latter (modeling default as a point

process).



Point processes and intensities

• A point process describes events (here : the default of

a given firm) that occur randomly over time.

It can be described in two equivalent ways :

i) 0 = T0 < T1 < T2 < · · ·
with Tn the n−th instant of occurrence of the event;

ii) Nt = n if t ∈ [Tn, Tn+1) ↔ Nt =
∑

n≥1 1Tn≤t

which is the associated counting process.



• A Poisson process is a point process where

Nt−Ns is Poisson distributed with parameter
∫ t

s
λudu

→ λt : intensity of the Poisson process;

→ E{Nt} =
∫ t

0
λudu (the larger the intensity, the

more events can be expected in a given time interval).

• The intensity may itself be a stochastic process (doubly

stochastic Poisson process) and it is characterized by

Nt−
∫ t

0

λudu a zero-mean martingale → E{Nt} =
∫ t

0

E{λu}du



Contagion (interacting intensities)

• To describe propagation of financial distress in a network

of firms linked (directly or indirectly) by business

relationships one possibility is via interacting intensities.

→ A natural way to obtain interacting intensities is

to let the default intensities depend on a common

exogenous macroeconomic factor process Xt, i.e. for

the generic j−th firm one postulates

λj
t = λj(Xt)



• Given λj
t = λj(Xt)

i) If Xt is observable and has jumps in common with

the point process counting the defaults → direct

contagion (counterparty risk)

ii) If Xt is unobservable, but its distribution is

successively updated on the basis of the observed

default history → information induced contagion.

→ Interacting intensity models are currently those mostly

investigated and they are motivated by the empirical

observation that default intensities are correlated with

macroeconomic factors.



• However (quoting from Jarrow and Yu (2001)):

“A default intensity that depends linearly on a set of

smoothly varying (exogenous) macroeconomic variables

is unlikely to account for the clustering of defaults

around an economic recession”.

• Furthermore, one might also want to describe the

general health of a network of firms by endogenous

financial indicators thereby viewing a credit crisis as a

microeconomic phenomenon and so possibly also arrive

at explaining default clustering.

→ Interacting particle system models from Statistical

mechanics may allow to adequately address the above

issues.



The interacting particle system model

• A mean-field interacting model of the Curie-Weiss type;

a simple model to describe dynamically the credit quality

of firms.

• The “credit state” of each firm is identified by two

variables (σ, ω) ((σi, ωi) : state of i−th firm i =
1, · · · , N).

→ σ : a “rating class indicator” (a low value reflects a

bad rating class, i.e. a higher probability of not being

able to pay back obligations).

→ ω : a “liquidity indicator” or “sign of the cash

balances” (a more fundamental indicator of the

financial health of the firm; it is typically not directly

observable from the market).



• At a first level assume (σi, ωi) ∈ {−1,+1}2
(generalization to a generic finite number of possible

values rather straightforward)

• No explicit “default state” (could be σi = −1).

Always need a positive probability that the firm can exit

from the state where σi takes its lowest possible value.



• For the time evolution on a generic interval

[0, T ] of the “state” of the particle system, i.e.

(σi(t), ωi(t))i=1,··· ,N ∈ D2N [0, T ] we need to specify

the stochastic dynamics for the transitions σi →
−σi, ωi → −ωi.

• The mean-field assumption leads to letting the

interaction depend on the global health indicator

(endogenous global factor)

m
σ
N(t) :=

1
N

N∑
i=1

σi(t)

• The vehicle of interaction/contagion is given by

ωi

fundam. indic.

→ σi

rating class

→ mσ
N

global health indic.

→ ωj



Continuous time finite state Markov processes

• A simple example. A point process (in form of counting

process): at an event time Tn only a transition n−1 →
n can take place.

• More generally : consider a system that may be in one

of a finite number of possible states, making transitions

from one state to another at random times. Assume

that, given an ordered pair of states, the transition

from one to the other corresponds to a Poisson process

and that these Poisson processes are independent (a

transition from one state to another is independent of

the past) → finite state Markov process

→ Instead of a single transition intensity λ, a matrix

of transition intensities.



Transition intensities for the particle system{
σi → −σi with intensity λi := e−βσiωi , β > 0
ωj → −ωj with intensity µj := e−γωjm

σ
N , γ > 0

β, γ are parameters indicating the strength of the

interaction.

→ The resulting transition intensity matrix can be taken

as infinitesimal generator L of a continuous-time

Markov chain with state space {−1,+1}2N that acts

on f : {−1, 1}2N → R as

Lf(σ, ω) =
N∑

i=1

λi∇σ
i f(σ, ω) +

N∑
j=1

µj∇ω
j f(σ, ω)

where ∇σ
i f(σ,ω)=f(σi,ω)−f(σ,ω) ; ∇ω

j f(σ,ω)=f(σ,ωj)−f(σ,ω)

and σi = (σ1, ..., σi−1,−σi, σi+1, ..., σN); analogously

for ωj.



Dynamics of the system for large N

• Unlike many mean field models in Statistical mechanics

our model is non-reversible.

→ An explicit formula for the stationary (in time)

distribution is not available.

→ We then shall rather

A. Look for the limit (N →∞) dynamics of the system on

the path space (via a LLN based on a Large Deviations

Principle);

B. Study the equilibria of the limiting dynamics;

C. Describe “finite volume approximations” (for large but

finite N) via a Central Limit type result.



A. Limit for N →∞ (Law of Large Numbers)

• Let (δ{·} denotes the Dirac measure)

ρN =
1
N

N∑
i=1

δ{σi[0,T ],ωi[0,T ]}

be the sequence of empirical (random) measures

on the space M1(D2[0, T ]) endowed with the weak

convergence topology.

• For a probability measure q ∈M1({−1, 1}2) let

mσ
q :=

∑
σ,ω=+1

σ q(σ, ω)

(expected health under q).



Theorem 1. Let (σ(t), ω(t)) be the Markov process

corresponding to the generator Lf(σ, ω) and with initial

distribution s.t. (σi(0), ωi(0)), i = 1, · · · , N are i.i.d.

with law `.

i) There exists Q∗ ∈ M1(D2[0, T ]) s.t. ρN → Q∗ a.s. in

the weak topology;

ii) if qt ∈ M1({−1, 1}2) is the marginal distribution of

Q∗ at time t, then it is the unique solution of the

McKean-Vlasov equation (MKV){
∂qt
∂t = Lqt , t ∈ [0, T ]
q0 = `

with Lq(σ, ω) = ∇σ
[
e−βσωq(σ, ω)

]
+∇ω

[
e−γωmσ

q q(σ, ω)
]



B. Large time behavior of the limiting (N →∞)
dynamics

• A measure µ on {−1, 1}2 is completely specified by

mσ
µ:=

P
σ,ω=+1 σ µ(σ,ω),mω

µ:=
P

σ,ω=+1 ω µ(σ,ω),mσω
µ :=

P
σ,ω=+1 σω µ(σ,ω)

Write mσ
t = mσ

qt
(analogously for mω

t , m
σω
t )

• (MKV) can be reduced to determining a solution of

(ṁσ
t , ṁ

ω
t ) = V (mσ

t ,m
ω
t ) (mkv) with

V (x, y) := (2 sinh(β)y−2 cosh(β)x, 2 sinh(γx)−2y cosh(γx))

→ To analyze in (MKV) equilibria and their stability it

suffices to analyze (mkv)



Theorem 2.

i) Suppose γ ≤ 1
tanh(β). Then equation (mkv) has (0, 0)

as a unique equilibrium solution, which is globally

asymptotically stable, i.e. for every initial condition

(mσ
0 ,m

ω
0 ), we have

lim
t→+∞

(mσ
t ,m

ω
t ) = (0, 0).

ii) For γ < 1
tanh(β) the equilibrium (0, 0) is linearly stable,

i.e. DV (0, 0) (the Jacobian matrix) has strictly negative

eigenvalues. For γ = 1
tanh(β) the linearized system has a

neutral direction, i.e. DV (0, 0) has one zero eigenvalue.



iii) For γ > 1
tanh(β) the point (0, 0) is still an equilibrium

for (mkv), but it is a saddle point for the linearized

system, i.e. the matrix DV (0, 0) has two nonzero

real eigenvalues of opposite sign. Moreover (mkv) has

two linearly stable solutions (mσ
∗ ,m

ω
∗ ), (−mσ

∗ ,−mω
∗ ),

where mσ
∗ is the unique strictly positive solution of the

equation

x = tanh(β) tanh(γx),

and

mω
∗ =

1
tanh(β)

mσ
∗



iv) For γ > 1
tanh(β), the phase space [−1, 1]2 is bi-

partitioned by a smooth curve Γ containing (0, 0) such

that [−1, 1]2\Γ is the union of two disjoint sets Γ+,Γ−

that are open in the induced topology of [−1, 1]2.
Moreover

lim
t→+∞

(mσ
t ,m

ω
t ) =


(mσ

∗ ,m
ω
∗ ) if (mσ

0 ,m
ω
0 ) ∈ Γ+

(−mσ
∗ ,−mω

∗ ) if (mσ
0 ,m

ω
0 ) ∈ Γ−

(0, 0) if (mσ
0 ,m

ω
0 ) ∈ Γ.



• The fact that the limiting (N → ∞) dynamics may

have multiple stable equilibria implies that our system

exhibits what is called phase transition.

→ One obtains different domains of attraction

corresponding to each of the stable equilibria.

→ The effects of phase transition for the system with

finite N can be seen on different time scales as

follows:



i) On a long time-scale, of the order of a power of eN , one

may observe what in Statistical mechanics is referred to

as metastability:

The system may spend a very long time in a small

region of the state space around a stable equilibrium of

the limiting dynamics and then switch relatively fast to

another region around a different stable equilibrium.

→ the time scale is too large to be of interest in financial

applications.



ii) On a time-scale of order O(1) the following occurs :

for certain values of the initial condition the system

is driven towards the asymptotic symmetric neutral

equilibrium state (0, 0) where half of the firms are in

good financial health.

After a certain time (depending on the initial condition)

the system is captured by an unstable direction of

this neutral equilibrium and moves towards a stable

asymmetric equilibrium. During this transition the

volatility of the system (will be defined below) increases

sharply before decaying to a stationary value.

→ This phenomenon can be interpreted as a credit crisis

and may account for default clustering.
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C. Analysis of the fluctuations

• Concerns the asymptotic distribution of (ρN −Q∗).

→ Recall that ρN(t), being a measure on {−1, 1}2, is

characterized by

mσ
ρN

(t), mω
ρN

(t), mσω
ρN

(t)

• With A(t), D(t) appropriate matrices depending on β, γ

and mσ
t ,m

ω
t ,m

σω
t one has the following



Theorem 3. Let
xN(t) =

√
N
(
mσ

ρN
(t)−mσ

t

)
yN(t) =

√
N
(
mω

ρN
(t)−mω

t

)
zN(t) =

√
N
(
mσω

ρN
(t)−mσω

t

)
Then (xN(t), yN(t), zN(t)) N→∞−→ (x(t), y(t), z(t)) in

the sense of weak convergence of stochastic processes,

where (x(t), y(t), z(t)) is a centered Gaussian process,

unique solution of the linear SDE dx(t)
dy(t)
dz(t)

 = A∗(t)

 x(t)
y(t)
z(t)

 dt+D(t)

 dB1(t)
dB2(t)
dB3(t)


where B1, B2, B3 are independent Brownian motions and

(x(0), y(0), z(0)) is a centered Gaussian.



→ The asymptotic, for N → ∞, distribution of

(xN(t), yN(t), zN(t)) is thus, for each fixed t, a centered

Gaussian with covariance matrix Σt - the volatility

referred to earlier - satisfying (asymptotics in t depend

upon γ)

dΣt

dt
= A(t) Σt + ΣtA

∗(t) +DD∗(t)

Corollary 1:
√
N
[
mσ

ρN
(t)−mσ

t

] D−→ N (0,Σx
t ) so

that (notice that m
σ
N(t) = mσ

ρN
(t))

P (mσ
N(t) ≥ α) ≈ Φ

(√
Nmσ

t −
√
Nα√

Σx
t

)

(Φ(·) cumulative standard Gaussian).



Portfolio losses

• A bank holds a portfolio of financial positions issued by

the N firms.

• Random loss for the i− th position at time t:

Li(t) ∈ R+ ; i = 1, ..., N

• Aggregated losses are LN(t) =
∑N

i=1Li(t)



• More specifically, let

Gx(u) := P{Li(t) ≤ u | σi(t) = x} , x ∈ {−1,+1}

(homogeneity with respect to i and t) and

`1 := E{Li(t) | σi(t) = 1} < E{Li(t) | σi(t) = −1} := `−1

→ one expects to loose more when in financial distress.

Furthermore,

v1 := V ar{Li(t) | σi(t) = 1}; v−1 := V ar{Li(t) | σi(t) = −1}



Example 1

• Portfolio consisting of N positions of 1 unit due at time

T (defaultable bonds).

Li(T ) = L(σi(T )) =
{

1 if σi(T ) = −1
0 if σi(T ) = 1

−→ LN(T ) =
∑N

i=1
1−σi(T )

2 = N(1−m
σ
N

(T ))

2

−→ P{LN(T ) ≥ α} = P
{
m

σ
N(T ) ≤ 1− 2α

N

}
apply Corollary 1



A further result

• Let

L(t) :=
(`1 − `−1)

2
mσ

t +
(`1 + `−1)

2

V (t) :=
(`1 − `−1)2Σx

t

4
+

(1 +mσ
t ) v1

2
+

(1−mσ
t ) v−1

2

Theorem 4: When the distribution of Li(t) depends on

σi(t),

√
N

(
LN(t)
N

− L(t)
)

D−→ N (0, V (t))

Corollary 2: In the setting of Theorem 4 it follows

P
{
LN(T ) ≥ α

}
∼ Φ

(
NL(T )− α√
N
√
V (T )

)



Example 2 (Bernoulli mixture model)

• As before but with

Li(T ) = L(σi(T );Ψ) =


1 with prob P (σi(T );Ψ)

0 with prob 1− P (σi(T );Ψ)

where Ψ is an exogenous random factor.

→ `1 = P (1;Ψ), v1 = P (1;Ψ)(1−P (1;Ψ))(analogously

for `−1, v−1)

• A possible specification is

P (σ; Ψ) = 1− exp{−k1Ψ− k2 (1− σ)/2− k3}

with ki ≥ 0 and Ψ ∼ Γ(α;κ).(The prob. for Li(T ) = 1
is bigger for σi(T ) = −1 than for σi(T ) = 1).



• Here `1, `−1, v1, v−1 and thus also L(t) and V (t) depend

on the value ψ taken by the Gamma-type r.v. Ψ.

Denote the latter by L(t;ψ), V (t, ψ).

→ by Corollary 2

P
{
LN(T ) ≥ α

}
∼
∫

Φ

(
N L(T ;ψ)− α√
N
√
V (T ;ψ)

)
dfΨ(ψ)

with fΨ(·) the Gamma-density of Ψ.
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