Heuristics for Mathematical Optimization

Prof. Domenico Salvagnin

1 Department of Information Engineering, Padova
email: dominiqs@gmail.com - domenico.salvagnin@unipd.it

Timetable: 20 hrs. see https://phd.dei.unipd.it/course-catalogues/

Enrollment: students must enroll in the course using the Enrollment Form on the PhD Program eLearning platform (requires SSO authentication).

Course requirements:
- Moderate programming skills (on a language of choice)
- Basics in linear/integer programming.

Examination and grading: Final programming project.

SSD: Information Engineering

Aim: Make the students familiar with the most common mathematical heuristic approaches to solve mathematical/combinatorial optimization problems. This includes general strategies like local search, genetic algorithms and heuristics based on mathematical models.

Course contents:
- Mathematical optimization problems (intro).
- Heuristics vs exact methods for optimization (intro).
- General principle of heuristic design (diversification, intensification, randomization).
- Local search-based approaches.
- Genetic/population based approaches.
- The subMIP paradigm.
- Applications to selected combinatorial optimization problems: TSP, QAP, facility location, scheduling.

References:
1. Gendreau, Potvin “Handbook of Metaheuristics”, 2010