Doctoral Program in Mathematical Sciences
Department of Mathematics “Tullio Levi-Civita”
University of Padova

Doctoral Program in Mathematical Sciences
Catalogue of the courses 2022-2023

Updated November 18th, 2022
INTRODUCTION

This Catalogue contains the list of courses offered to the Graduate Students in Mathematical Sciences for the year 2022-2023.

The courses in this Catalogue are of three types.

1. Courses offered by the Graduate School (= Courses of the Doctoral Program)
2. Courses offered by one of its curricula.
3. Other courses of the following types:
 a) selected courses offered by the Master in Mathematics;
 b) selected courses offered by the PhD school in Information Engineering;
 c) selected courses offered by other PhD schools or other Institutions;
 d) reading courses.

(This offer includes courses taught by internationally recognized external researchers. Since these courses might not be offered again in the near future, we emphasize the importance for all graduate students to attend them.)

Taking a course from the Catalogue gives an automatic acquisition of credits, while crediting of courses not included in the Catalogue (such as courses offered by the Scuola Galileiana di Studi Superiori, Summer or Winter schools, Series of lectures devoted to young researchers, courses offered by other PhD Schools) is possible, but it is subject to the approval of the Executive Board. Moreover, at most one course of this type may be credited.

We underline the importance for all students to follow courses, with the goal of broadening their culture in Mathematics, as well as developing their knowledge in their own area of interest.

REQUIREMENTS FOR GRADUATE STUDENTS

Within the first two years of enrollment (a half of these requirements must be fulfilled within the first year) all students are required to

- pass the exam of at least four courses from the catalogue, among which at least two must be taken from the list of “Courses of the Doctoral Program”, while at most one can be taken among the list of “reading courses”
- participate in at least one activity among the “soft skills”
- attend at least two more courses

Students are warmly encouraged to take more courses than the minimum required by these rules, and to commit themselves to follow regularly these courses. At the end of each course the instructor will inform the Coordinator and the Secretary on the activities of the course and of the registered students.

Students must register to all courses of the Graduate School that they want to attend, independently of their intention to take the exam or not. We recommend to register as early as possible: the Graduate School may cancel a course if the number of registered students is too low. If necessary, the registration to a Course may be canceled.

Courses for Master of Science in “Mathematics”

Students have the possibility to attend some courses of the Master of Science in Mathematics and get credits. The recommendation that a student takes one of these courses must be made by the supervisor and the type of exam must be agreed between the instructor and the supervisor.
Courses attended in other Institutions and not included in the catalogue. Students activities within Summer or Winter schools, series of lectures devoted to young researchers, courses offered by the Scuola Galileiana di Studi Superiori, by other PhD Schools or by PhD Programs of other Universities may also be credited, according to whether an exam is passed or not; the student must apply to the Coordinator and crediting is subject to approval by the supervisor and the Executive board. We recall that at most one course not included in the Catalogue may be credited.

Seminars

a) All students, during the three years of the program, must attend the Colloquia of the Department and participate regularly in the Graduate Seminar ("Seminario Dottorato"), within which they are also required to deliver a talk and write an abstract.

b) Students are also strongly encouraged to attend the seminars of their research group.

HOW TO REGISTER AND UNREGISTER TO COURSES

The registration to a Course must be done online. Students can access the online registration form on the website of the Doctoral Course http://dottorato.math.unipd.it/ (select the link Courses Registration), or directly at the address http://dottorato.math.unipd.it/registration/.

In order to register, fill the registration form with all required data, and validate with the command "Register". The system will send a confirmation email message to the address indicated in the registration form; please save this message, as it will be needed in case of cancellation.

Registration to a course implies the commitment to follow the course.

Requests of cancellation to a course must be submitted in a timely manner, and at least one month before the course (except for courses that begin in October and November) using the link indicated in the confirmation email message.

REQUIREMENTS FOR PARTICIPANTS NOT ENROLLED IN THE GRADUATE SCHOOL OF MATHEMATICS

The courses in this catalogue, although part of activities of the Graduate School in Mathematics, are open to all students, graduate students, researchers of this and other Universities. For organization reasons, external participants are required to communicate their intention (loretta.dallacosta@unipd.it) to take a course at least two months before its starting date if the course is scheduled in January 2022 or later, and as soon as possible for courses that take place until December 2021.

In order to register, follow the procedure described in the preceding section. Possible cancellation to courses must also be notified.
List of Courses
Courses of the Doctoral Program

1. Prof. Renzo Cavalieri
 Hurwitz theory, classical and tropical
 DP-1

2. Prof. Stefano De Marchi
 An introduction to multivariate approximation
 DP-4

3. Prof. Luis C. Garcia Naranjo
 Lie Groups and Symmetry
 DP-5

4. Prof. Giulio Giusteri
 Special Functions and Applications
 DP-6

5. Prof. Franco Rampazzo,
 Set separation and necessary conditions for minima
 DP-7

Courses of the “Mathematics” area

1. Dott. Federico Bambozzi
 Derived Geometry
 M-1

2. Dott.ssa Anna Barbieri,
 Bridgeland stability conditions in algebraic geometry and representation theory
 M-3

3. Prof. Jean-Paul Gauthier
 Stabilization with incomplete information
 M-5

4. Dott. Alessandro Goffi
 Qualitative and quantitative properties for elliptic equations
 M-6

5. Prof. Sergiy Plaksa
 Singular integral operators and boundary value problems for analytic functions
 M-8

Reading Courses

1. Prof.ssa Giovanna Carnovale, Prof. Francesco Esposito
 Representations of p-adic Groups
 RC-1

2. Proff. Rosanna Laking, Jorge Vitória
 Reading course: Torsion pairs in abelian categories
 RC-3

Courses of the “Computational Mathematics” area
1. Prof.ssa Beatrice Acciaio
 Stochastic optimal transport and applications in mathematical finance
 MC-1

2. Prof. Claude Brezinski
 Study the past if you would divine the future (Confucius)
 MC-2

3. Prof.ssa Alessandra Buratto
 Introduction to differential games
 MC-3

4. Prof.ssa Christa Cuchiero, Prof.ssa Sara Svaluto-Ferro
 Signatures in finance: life, death, and miracles
 MC-4

5. Prof. Giorgio Ferrari
 Theory and Applications of Singular Stochastic Control
 MC-6

6. Prof.ssa Maryam Mohammadi
 Meshless Approximation: Theory and Applications
 MC-7

7. Prof. Andrea Roncoroni
 Interface of Finance, Operations and Risk Management
 MC-8

8. Prof. Piergiacomo Sabino
 Monte Carlo Methods in Python with Financial Applications
 MC-10

9. Prof. Tiziano Vargiolu
 The Mathematics of Energy Markets
 MC-12

Soft Skills

1. Maths information: retrieving, managing, evaluating, publishing
 SS-1

2. Advanced LaTeX
 SS-2

3. Introduction to the use of "Mathematica" in Mathematics and Science
 SS-3

4. Delivering a Seminar
 SS-4

5. How to deliver an effective talk
 SS-5

6. A critical introduction to bibliometric indices and to their use and abuse in evaluations
 SS-6

7. Attending mandatory courses organised by the Unipd CA (for Tutor Junior or UNIPhD fellows)
 SS-7

8. Active participation in events organized by the Department devoted to the popularization of mathematics, like Science4all, Kidsuniversity and others.
 SS-8
Courses in collaboration with the Doctoral School in “Information Engineering”

Please check regularly the website of the Doctoral Course in Information Engineering at the URL https://phd.dei.unipd.it/course-catalogues/

Calendar of activities on

https://calendar.google.com/calendar/u/0/embed?src=fvs19bgkbnhhkkqp5mmqpiurn6c@group.calendar.google.com&ctz=Europe/Rome

1. Prof. Ruggero Carli, Dott. Mattia Bruschetta, Simone Del Favero
 Introduction to Model Predictive Control with Case Studies in Automotive and Biomedicine DEI-1

2. Prof. Subhrakanti Dey
 Distributed Optimization and Applications DEI-2

3. Prof. Giorgio Maria Di Nunzio
 Bayesian Machine Learning DEI-4

4. Prof. Fabio Marcuzzi
 Computational Inverse Problems DEI-6

5. Prof. Gianluigi Pillonetto
 Applied Functional Analysis and Machine Learning DEI-7

6. Prof. Domenico Salvagnin
 Heuristics for Mathematical Optimization DEI-8

7. Prof. Gian Antonio Susto
 Elements of Deep Learning DEI-9
Courses of the Doctoral Program
Hurwitz theory, classical and tropical

Prof. Renzo Cavalieri

1Department of Mathematics, Colorado State University, USA
Email: renzo@math.colostate.edu

Timetable: 24 hrs. First lecture on October 11, 2022 14:00, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements:

Examination and grading:

SSD: MAT/03

Aim: The goal of the course is to explore the interactions of tropical and logarithmic geometry with Hurwitz theory, concerned with the enumeration of maps of Riemann surfaces.

The main question in Hurwitz theory dates all the way back to the late 1800s: how many maps of Riemann Surfaces does one have when fixing all the available discrete invariants? Over the last century, this question has experienced a wealth of translations (to topology, combinatorics, group theory, representation theory...) and found itself contributing to the most disparate areas of mathematics (integrable systems, mathematical physics, string theory...).

This course focuses on how Hurwitz theory interlaces with the geometry of moduli spaces of curves. The basic connection is that Hurwitz numbers are naturally interpreted as the degrees of appropriate branch morphisms among moduli spaces of covers and moduli spaces of target curves. After appropriately compactifying the moduli spaces, such degree is accessed through intersection theory. Tropical and logarithmic geometry allow for a combinatorial approach to such intersection theoretic questions. In recent year, this dictionary has provided fruitful applications that have improved our understanding of both the algebraic structre of Hurwitz number as well as the tautological intersection theory of moduli spaces of curves.

Course contents: The course will be structured in four modules, each of approximately six hours.

Classical Hurwitz Theory: basic notions on Riemann Surfaces, and the representation theory of symmetric groups; the Hurwitz problem, counting maps of Riemann Surfaces, or monodromy representations; the simisimplicity of the class algebra and the Burnside character formulas.

Tropical Hurwitz Theory: basic notions in tropical geometry, and connection to degenerations of curves. The definition of tropical Hurwitz numbers, and the connection with monodromy representations. The piecewise polynomiality structure of double Hurwitz numbers and their wall-crossing formulas.

Hurwitz Numbers from Moduli Spaces: basic notions on moduli spaces of curves and maps. Tautological morphisms. Hurwitz number as a degree of appropriate branch morphisms. The
ELSV formula for simple Hurwitz numbers.

Web of Connections: a very quick primer to toric varieties and a dirty introduction to logarithmic geometry as a generalization of toric geometry. Degeneration formulas, and connections between tropical and classical Hurwitz numbers through degeneration formulas. Hurwitz numbers as intersection cycles on moduli spaces of curves.

References:

The first part of the course will follow the textbook [CM16]. For the remaining part, the lecture notes [CMR21] will be made available to participants. Material will be drawn from several research articles, including, but not restricted to [ELSV01, GJV03, CJM10, CJM11, BBM11, CM14, CMR16].

References:

An introduction to multivariate approximation theory and applications

Prof. Stefano De Marchi

Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova
Email: demarchi@math.unipd.it

Timetable: 24 hrs. First lecture on December 5th, 2022, 10:30 (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: students should have acquired the classical notions of functional analysis and numerical analysis from the corresponding courses for the degree and master in mathematics and/or applied mathematics and/or mathematical engineering.

Examination and grading: final oral test or a seminar to deepen some of the topics introduced.

SSD: MAT/08

Aim: the course will give an overview of the approximation of functions and data in several variables. More recent approximation methods are also introduced and discussed.

Course contents:
Course contents: The course will consists of three Parts (P1-P3) of about 8h each.

P1 Polynomial spaces, projections, Lebesgue constant, best approximation, modulus of continuity, optimal and near-primal interpolation points on compacts or surfaces.

Bibliography:

- Lecture notes of the teacher on "Multivariate Polynomial Approximation" and "Lectures on Radial Basis Functions" (updated)
Lie Groups and Symmetry

Prof. Luis C. García-Naranjo

1Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: luis.garcianaranjo@math.unipd.it

Timetable: 24 hrs. First lecture on November 9th, 2022, 13:00, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: (very) basic knowledge in differential geometry. The course is addressed to all students.

Examination and grading: oral examination on the topics covered during the course

SSD: MAT/07

Aim: The course aims at providing an introduction to the theory of Lie groups and their actions, which is a topic of broad interest but almost completely absent from the courses of our Laurea Magistrale. After covering the fundamentals of the subject, the course will provide some examples of use of Lie groups in the study of ODE with symmetry.

Course contents: Synopsis: Lie groups and their differential - and group - structure (left and right trivializations, Lie algebra of a Lie group, exponential map, maximal tori, (co)adjoint action, structure of compact Lie groups). The classical matrix groups and their properties. Differentiable actions of Lie groups on manifolds, quotient spaces (for proper actions), invariant vector fields. Reduction of invariant vector fields. Applications to ODEs with symmetry (reduction and reconstruction; integrability).

References:
3. T. Bröcker and T. tom Dieck, Representations of compact Lie groups. (Springer 1985)
Special Functions and Applications

Prof. Giulio G. Giusteri

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: giulio.giusteri@unipd.it

Timetable: 24 hrs. First lecture on October 17th, 2022, 10:30, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Basic notions of analysis and algebra, ordinary differential equations and partial differential equations.

Examination and grading: Oral examination on the program and on a student’s project.

SSD: MAT/07

Aim: To present various families of special functions, their emergence and usefulness in applied mathematics contexts.

Course contents:

- The Probability Integral function: from error estimates to heat conduction and vibrations.
- Cylindrical coordinates and Bessel functions: electrostatic field and the bi-harmonic Stokes problem.
- Polar coordinates and spherical harmonics: Schrödinger equation and the orbitals of the hydrogen atom.
- Further applications (or functions) can be selected based on the audience (possible topics in fluid mechanics, potential theory, stochastic analysis, numerical solution of PDEs).

References:

Set separation and necessary conditions for minima (with applications, in particular, to Optimal Control Theory)

Prof. Franco Rampazzo

Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova
Email: rampazzo@math.unipd.it

Timetable: 24 hrs. First lecture on February 28, 2023 14:00, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Basic Calculus, Basic Lebesgue measure theory. (Other prerequisites – for instance fixed point theorems, absolutely continuous maps, – will be recalled during the course).

Examination and grading: An oral exam based on lectures contents and/or a scientific article preventively chosen.

SSD: MAT/05

Aim: This course, which does not require any particular prerequisite, aims primarily to frame the general notion of constrained minimum (in finite and infinite dimension) within the elementary concept of separation of sets: roughly speaking, a point is of local minimum if it locally separates the set of profitable states from the set of reachable states. Most of classical and more recent minimum problems can be seen under this perspective.

Through open mappings arguments (which will give us the occasion to see some notions of generalized differentiation and of approximating cone), necessary conditions for set separation can be translated into necessary conditions for minima: after immediately recognizing some of the more standard results in Calculus, we will apply the set-separation approach to Optimal controls of ODE’s (so, in particular, to Calculus of Variations).

Time permitting, some connections with Differential Geometric Controllability or Hamilton-Jacobi equations will be treated as well.

Course contents:

1. Brower fixed point theorem and a parameterized version of Banach fixed point theorem.
 A directional ’open mapping’ theorem with low regularity. Set separation and cone separability
2. Review of ODE’s with vector fields measurable in time: local and global existence, uniqueness, continuity and differentiability with respect to initial conditions.
3. An abstract constrained minimum problem.
4. The Pontryagin Maximum Principle (PMP) with end-point constraints, with applications.
5. Controllability of control systems, at the first or higher order (Lie brackets).
6. If time permits: basic elements of Hamilton-Jacobi PDE’s.
Courses of the “Mathematics” area
Derived Geometry

Dott. Federico Bambozzi

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: federico.bambozzi@unipd.it

Timetable: 16 hrs. April-May, dates to be determined Torre Archimede, Room 2AB40.

Course requirements: A basic knowledge of category theory and commutative algebra. The knowledge of the basics of algebraic topology and algebraic geometry is helpful but not necessary as the required material from these subject will be recalled in the course, mainly as key examples.

Examination and grading: Oral presentation of an argument related to the topics presented during the lectures.

SSD: MAT/02, MAT/03

Aim: The notion of derived geometry is a natural extension of the classical notion of geometry. This extension can be phrased in the abstract categorical language of geometry relative to a closed symmetric monoidal category. When this is done it soon becomes clear that not only algebraic geometry has a derived extension but also analytic geometry, differential geometry and more. In the course we will recall the categorical language needed to define the closed symmetric monoidal categories that are well-suited for defining derived geometries. If time permits it will be explained how derived geometry can interpreted as a specific example of an Algebraic Theory in the sense of Lawvere. Then, some basic constructions will be discussed: derived schemes, derived stacks, cotangent complex, loop space. If time permits a geometric version of the Hochschild-Kostant-Rosenberg in this context will be discussed. The focus will be on presenting abstract notions via a good amount of key examples.

Course contents:
- Localization of categories, model categories and 1-categories.
- Monoidal categories and monoidal 1-categories.
- HAG and DAG contexts.
- Derived schemes and derived stacks.
- The cotangent complex and derived de Rham cohomology.
- The tangent space and the loop space.

Optional topics:
- Derived Geometry as an algebraic theory.
- The Hochschild-Kostant-Rosenberg Theorem.
- Ind-coherent sheaves.
- Derived enhancement of moduli spaces.
Tensor triangulated geometry.

Bibliography:

Bridgeland stability conditions in algebraic geometry and representation theory

Dott.ssa Anna Barbieri

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: anna.barbieru@unipd.it

Timetable: 16 hrs. First lecture on January-February 2023, Torre Archimede, Room 2BC30.

Course requirements: Familiarity with notions of categories, manifolds, vector bundles, possibly sheaves; basis of algebra.

Examination and grading:

SSD: MAT/02, MAT/03

Aim: The notion of Bridgeland stability for triangulated categories has become a very active research theme, with applications in algebraic and birational geometry, representation theory, mirror symmetry, and mathematical physics. The aim of the course is to give an introduction to Bridgeland stability conditions and the stability manifold associated to a category. We will see examples of stability for geometric and algebraic categories. Time permitting, we will review other notions of stability (Gieseker and slope stability) for abelian categories and the problem of constructing moduli spaces, and recent research directions in the field of stability conditions in algebra and geometry. The course is oriented towards students in geometry and algebra and can be considered complementary to a previous course by Mistretta-Fiorot which, however, is not a prerequisite.

Laura Pertusi, currently RTD-a at the University of Milano, will deliver a few lectures on stability conditions in purely geometric context and on the problem of constructing moduli spaces, as invited speaker or lecturer.

Course contents:

• review of categories, sheaves, cohomology, the derived category.
• triangulated categories, bounded t-structures, examples.
• optional: the problem of constructing moduli spaces.
• Bridgeland stability conditions for triangulated categories.
• the stability manifold and main properties.
• stability manifold for relevant categories: curves, (K3 surfaces), quiver categories.
• optional: modern research directions.

Bibliography:

- Ringel, Keller, Keller-Yang research papers
Stabilization with incomplete information

Prof. Jean-Paul Gauthier

1 University of Toulon
Email: gauthier@univ-tln.fr

Timetable: 16 hrs. First lecture on May 2nd, 2023, Torre Archimede, Room 2BC30.

Course requirements: Basic knowledge of Ordinary Differential Equations

Examination and grading: Oral examination

SSD: MAT/05

Aim: In the context of control theory, the course provides the basis of observability for nonlinear systems and its application to problems of stabilization.

Course contents:

1. Preliminaries
 - Stability theory, direct and inverse Lyapunov’s theorems
 - Center manifold theory
 - Transversality theorems

2. Nonlinear observability
 - Observability results (generic and singular cases)
 - Nonlinear observers, including deterministic Kalman filter

3. Stabilization with incomplete information
 - Strongly observable situation
 - Singular situation.

Bibliography:

Qualitative and quantitative properties for elliptic equations

Alessandro Goffi

Università degli Studi di Padova, Dipartimento di Matematica
Email:alessandro.goffi@unipd.it

Timetable: 16 hrs. First lecture on September 26, 2022, 11:00 (date already fixed, see the Calendar of activities at https://dottorato.math.unipd.it/calendar) Torre Archimede, Room 2BC30.

Course requirements: Basic knowledge of linear elliptic PDEs, Sobolev and Hölder spaces.

Examination and grading: The exam will be oral and tailored on the basis of the students’ interests.

SSD: MAT/05

Aim: Introduce some classical and modern methods to study qualitative and quantitative properties for elliptic problems, such as Liouville and regularity theorems.

Course contents:

- Basic concepts in the theory of partial differential equations (PDEs): quick review on the classification of linear and nonlinear equations, various notions of solutions and useful function spaces;
- Review of some basic tools for harmonic, sub- and superharmonic functions. Mean-value properties, strong and weak maximum principles, Harnack inequalities, Caccioppoli inequalities, Bernstein-type gradient bounds and some consequences: Hölder regularity, Liouville-type theorems under various a priori conditions on the solution (L^∞, L^p, finite Dirichlet energy, one-side bounds). Characterization of harmonic functions through touching functions: the notion of viscosity solution;
- Nonlinear equations (mostly driven by the Laplacian):
 - PDEs with gradient dependent terms:
 * Hölder/Lipschitz regularity for semi-solutions/solutions via integral/maximum principle methods;
 * Liouville properties for elliptic equations and inequalities via maximum principle and integral methods respectively.
 - PDEs with zero-th order nonlinearities:
 * Liouville properties for solutions using integral approaches and for semi-solutions via maximum principle methods.
 - If time permits, some discussions and extensions to problems driven by p-Laplacian, mean-curvature, fully nonlinear second order operators.
Bibliography:

Singular integral operators and boundary value problems for analytic functions

Prof. Sergiy Plaksa

Institute of Mathematics of the National Academy of Sciences of Ukraine
Email: plaksa@imath.kiev.ua

Timetable: 12 hrs. First lecture on December 5th, 2022, 14:00, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: the training course is a continuation of the classical course of the analytic function theory in the complex plane

Examination and grading:

SSD: MAT/02-03

Aim:

Course contents:

- Singular Cauchy integral on a rectifiable Jordan curve. Sufficient conditions for the existence of singular Cauchy integral. The Zygmund estimate for the singular Cauchy integral.
- Cauchy type integral. Sokhotski–Plemelj formulas for limiting values of the Cauchy type integral.
- Singular integral equations with the Cauchy kernel on a rectifiable Jordan curve
Reading Courses
Reading course:
Representations of p-adic Groups

Giovanna Carnovale1, Francesco Esposito2

1 Dipartimento di Matematica, Università degli Studi di Padova
Email: Carnoval@math.unipd.it
2 Dipartimento di Matematica, Università degli Studi di Padova
Email: esposito@math.unipd.it

Timetable: 16 hrs. First lecture on November 3rd, 2022, 14.30 Torre Archimede, Room 2BC30, then on thursdays at 14.30 from november 17 on. A schedule of content, speaker, and related references will be discussed and settled during the first meeting. Interested students are invited to contact the teachers beforehand.

Course requirements: The prerequisites are reduced to the minimum; the concepts of local field, reductive group and their classification will be will be discussed in detail during the first lectures.

Examination and grading: Students are supposed to deliver lectures during the course and credits will be awarded on the grounds of active participation.

SSD: MAT02/03

Aim: A p-adic group is the group of F -points of a connected reductive group over a non-archimedean local field F. They are located at the croassroads of Group Theory, Geometry, Representation Theory, Harmonic Analysis and Number Theory, as it is apparent for instance in the Langlands program. This reading course aims at introducing the student to the basic concepts in the structure of p-adic groups and their admissible representations.

Course contents:

I. Local fields: Definition, examples, ring of integers, residue field, integration.

II. Reductive groups: Definition, examples, root systems and root data, classification over algebraically closed fields, forms.

III. Reductive groups over local fields: Examples, compact open subgroups, Bruhat-Tits buildings, classification.

IV. Representations of p-adic groups: Smooth and admissible representations, indution and restriction; classification.

V. Examples: GL$_2$, GL$_n$

Bibliography:

1. “Representations of p-adic groups” notes by Jessica Fintzen.

5. “Algebraic Number Theory” Cassels and Frohlich, Chapter 1 by Frohlich.

Reading course:
Torsion pairs in abelian categories

Rosanna Laking¹, Jorge Vitória²

¹Dipartimento di Informatica - Settore di Matematica, Università degli Studi di Verona
Email: rosanna.laking@univr.it
²Dipartimento di Matematica, Università degli Studi di Padova
Email: jorge.vitoria@unipd.it

Timetable: 24 hrs. First lecture on 25/11/2022, 16.00, alternating between Torre Archimede, Room TBA (Padova) or Ca’ Vignal 2, Room TBA (Verona), with a zoom link for the participants outside the institution in which the lecture takes place. There will be regular meetings following the 25/11/2022: those dates will be discussed in the first meeting. A schedule of speakers, and related references will also be discussed during the first meeting. Interested participants are invited to contact the organisers beforehand.

Course requirements: Participants in this reading seminar should be familiar with some elementary aspects on rings, modules, categories and homological algebra. Complementary materials may be provided upon request to cover any specific topic for which participants feel they need further preparation.

Examination and grading: Participants are expected to attend the lectures in a participative way and to deliver at least one lecture covering part of the program.

SSD: MAT/02

Aim: A torsion pair in an abelian category is a decomposition of it into two parts: a torsion and a torsion-free part. It turns out that both the study of individual torsion pairs and the study of the whole collection of torsion pairs often provides us with useful information on the category. This is a recurring technique both in representation theory and in algebraic geometry (see also the course of Anna Barbieri in our PhD School).

In this reading course, structured through a series of seminars, we aim to provide participants with a wide range of techniques and examples concerning the study of torsion pairs in abelian categories. The course will focus both on categorical aspects as well as on two particular contexts where examples are well-understood: in the representations theory of finite-dimensional algebras and in the study of modules over commutative noetherian rings.

Course contents:

2. Elements of approximation theory. Functorially finite torsion classes. Elements of support τ-tilting theory. τ-tilting finiteness.
3. Torsion pairs in length categories, lattice structure, brick labelling, completely join/meet irreducible torsion classes, semi-bricks, mono-bricks.
4. Definability and torsion pairs.
6. Torsion pairs for commutative noetherian rings: Matlis’s correspondence, support and Gabriel’s theorem.

If time allows we may discuss research directions and further recent developments, which may include silting/cosilting theory and torsion pairs in triangulated categories.

Bibliography:
Courses of the “Computational Mathematics” area
Stochastic optimal transport and applications in mathematical finance

Prof. Beatrice Acciaio, ETH Zurich

Department of Mathematics, ETH Zurich
Email: beatrice.acciaio@math.ethz.ch

Timetable: TBD

Course requirements: Probability and Stochastic Calculus (basic)

Examination and grading: oral examination on the topics covered during the course

SSD: MAT/06, SECS-S/06

Aim: This course aims at introducing the required basis on optimal transport, to then focus on recent developments of stochastic transport with applications to mathematical finance. In particular we will discuss: weak transport, martingale transport and model-independent finance, causal and adapted transport and model uncertainty.

Course content: We will motivate the introduction of different kinds of optimal transport in order to deal with several problems in mathematical finance. Specifically, to price and hedge in a model-independent setting, to gauge the distance between financial models, to account for model uncertainty. We will see how results from classical transport theory modify to account for a generalization of the cost or the introduction of constraints. We will appreciate how tools from optimal transport find wide applications in mathematical finance and stochastic analysis. Special attention will be devoted to the constraint of causality, that takes into account the flow of information arriving in time, and turns out to be the suitable one in order to account for model uncertainty in stochastic optimization.

The organization of the course will be as follows:

- Classical optimal transport: recall of main concepts and results (existence, duality, cyclical-monotonicity).
- Weak optimal transport: introduction of the problem, expositions of main results, application to robust pricing in fixed-income markets, analysis of special cases: entropic transport, barycentric transport.
- Martingale optimal transport: introduction of the problem, expositions of main results, model-independent pricing and hedging, Skorokhod Embedding problem.
- Causal and adapted optimal transport: introduction of the problem, expositions of main results, stability in mathematical finance, applications to: filtration enlargement, equilibrium problems, quantification of arbitrage.
Study the past if you would divine the future
(Confucius)

Claude Brezinski

Université de Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France.
E-mail: Claude.Brezinski@univ-lille.fr.
http://math.univ-lille1.fr/~brezinski/

Timetable: 12 hrs. First lecture during Spring 2023, Torre Archimede.

Course requirements: None

Examination and grading: Reading and analysis of an historical paper (only for PhD students that need credits).

SSD: MAT

Aim: This course is devoted to the study of the historical roots of some ideas and methods used in analysis, numerical analysis and applied mathematics. The themes addressed will also serve as an introduction to research topics.

Course contents:

The scientific context in which some specific methods used in analysis, numerical analysis and applied mathematics appeared will be described and the original works of the mathematicians involved will be studied. Since a mathematical discovery could not be separated from its social and cultural environments, the epoch of each of them will be evoked. Since the life of a mathematician also plays a role in her/his work, we will also present their biography.

The topics covered will be

- A panorama of numerical analysis during the 20th century: Runge-Kutta method, Remez algorithms, Monte-Carlo method, splines, the simplex algorithm, Romberg method, finite elements, QR-algorithm, fractals and chaos, A-stability, fast Fourier transform, singular value decomposition, wavelets, GMRES, etc. (3 hours).
- The method of Cholesky: its origin, Gauss decomposition, the methods of Banachiewicz and others, the discovery of the original manuscript, the family and the life of André Louis Cholesky (1 hour).
- The history of continued fractions: definition and properties, the antiquity and the first steps, the works of Bombelli, Cataldi, Euler, Lambert, Lagrange, Stieltjes and others will be reviewed (2 hours).
- Padé approximants: their history before Henri Padé, his life and his work, the transcendence of the numbers e and π by Hermite and Lindemann, their developments by Borel, Hilbert, and others (1 hour).
• Extrapolation methods from Archimedes to the present days: Snellius, Huygens, Richardson (an independent mind who is the father of fractals), Romberg, Aitken, Steffensen, Shanks, Wynn among others (2 hours).

• The Stein-Rosenberg theorem for relaxation methods: the theorem of Perron and Frobenius, the convergence of the methods of Jacobi and Gauss-Seidel, the lives of Perron, Frobenius, Stein and Rosenberg (1 hour).

• The history of projection methods for solving linear systems: their approaches by linear algebra and by orthogonal polynomials, Krylov subspaces, Lanczos method, the conjugate gradient algorithm, the implementation of the methods, and the lives and work of Lanczos, Hestenes, Stiefel and Fletcher (2 hours).

Claude Brezinski is Professor Emeritus at the University of Lille, France, where he had been the head of the Laboratory of Numerical Analysis and Optimization for 30 years. He is the founder and Editor-in-Chief of the journal Numerical Algorithms. He was the advisor of 60 Ph.D. thesis in France and in foreign countries. He is the authors of 22 books and 250 research papers. In 1988, he received the Special Prize of the Jury Seymour Cray for his work and, in 2002, he was elected as a foreign member of the Royal Academy of Sciences of Zaragoza, Spain.
Introduction to differential games

Prof.ssa Alessandra Buratto

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: alessandra.buratto@unipd.it

Course requirements: Basic notions of Differential equations and Optimal control

Examination and grading: Homework assignments during classes + final presentation of a research paper selected from the literature on differential games.

SSD: SECS-S/06

Aim: Differential games are very much motivated by applications where different agents interact exhibiting an inter-temporal aspect. Applications of differential games have proven to be a suitable methodology to study the behaviour of players (decision-makers) and to predict the outcome of such situations in many areas including engineering, economics, military, management science, biology and political science. This course aims to provide the students with some basic concepts and results in the theory of differential games.

Course contents:
- Recall of basic concepts of game theory, equilibrium (Nash ...)
- Dynamic games: formalization of a differential game
- Simultaneous and competitive differential games (Nash Equilibrium)
- Hierarchic differential games (Stackelberg equilibrium)
- Time consistency and perfectness

References:
Signatures in finance: life, death, and miracles

Prof.ssa Christa Cuchiero1, Prof.ssa Sara Svaluto-Ferro2

1 Department of Statistics and Operations Research University of Vienna
Email: christa.cuchiero@univie.ac.at
2 Department of Economics, University of Verona
Email: sara.svalutoferro@univr.it

Timetable: 12 hrs. Torre Archimede.

- 5.9: 10:00 - 11:30 Room 2BC30,
- 6.9: 10:00 - 11:30 Room 2BC30,
- 7.9: 10:00 - 11:30 Room 2BC30,
- 19.9: 10:00 - 11:30, 14:00-15:30 Meeting Room 702,
- 20.9: 10:00 - 11:30, 14:00-14:45 Meeting Room 702.
- 21.9: 10:00 - 11:30 Meeting Room 702

Course requirements: Probability and Stochastic Calculus (basic)

Examination and grading: seminar

SSD: MAT/06, SECS-S/06

Aim: This course aims at introducing the signature of a stochastic process, to then focus on recent development and application to Mathematical Finance, with a special emphasis on numerical aspects relative to its computation.

Course contents:
Signature methods represent a non-parametric way for extracting characteristic features from time series data which is essential in machine learning tasks. This explains why these techniques become more and more popular in Econometrics and Mathematical Finance. Indeed, signature based approaches allow for data-driven and thus more robust model selection mechanisms, while first principles like no arbitrage can still be easily guaranteed.

In this course we shall therefore focus on the use of signature as universal linear regression basis of continuous functionals of paths for financial applications. We first give an introduction to continuous rough paths and show how to embed continuous semimartingales into the rough path setting. Indeed our main focus lies on signature of semimartingales, one of the main modeling tools in finance. By relying on the Stone-Weierstrass theorem we show how to prove the universal approximation property of linear functions of the signature in appropriate topologies on path space. In view of calibration of financial models, we shall also point out in which situations the signature approximation can be tricky. To cover models with jumps we shall additionally introduce the notion of cadlag rough paths, Marcus signature and its universal approximation properties in appropriate Skorokhod topologies.

MC-5
In the financial applications that we have in mind one key quantity that one needs to compute is the expected signature of some underlying process. Surprisingly this can be achieved for generic classes of jump diffusions (with possibly path dependent characteristics) via techniques from affine and polynomial processes. More precisely, we show how the signature process of these jump diffusions can be embedded in the framework of affine and polynomial processes. These classes of processes have been – due to their tractability – the dominating process class prior to the new era of highly over-parametrized dynamic models. Following this line we obtain that, in generic cases, the infinite dimensional Feynman Kac PIDE of the signature process can be reduced to an infinite dimensional ODE either of Riccati or linear type. This then allows to get power series expansions for the expected signature and its Fourier-Laplace transform.

In terms of financial applications, we shall treat two main topics: stochastic portfolio theory and signature based asset price models.

In the context of stochastic portfolio theory we introduce a novel class of portfolios which we call linear path-functional portfolios. These are portfolios which are determined by certain transformations of linear functions of a collections of feature maps that are non-anticipative path functionals of an underlying semimartingale. As main example for such feature maps we consider signature of the (ranked) market weights. Relying on the universal approximation theorem we show that every continuous (possibly path-dependent) portfolio function of the market weights can be uniformly approximated by signature portfolios. Besides these universality features, the main numerical advantage lies in the fact that several optimization tasks like maximizing expected logarithmic utility or mean-variance optimization within the class of linear path-functional portfolios reduces to a convex quadratic optimization problem, thus making it computationally highly tractable. We apply our method to real market data and show generic out-performance on out-of-sample data even under transaction costs.

In view of asset price models we consider a stochastic process whose dynamics are described by linear functions of the time extended signature of a primary underlying process, which can range from a (market-inferred) Brownian motion or a Lévy process to a general multidimensional semimartingale. The framework is universal in the sense that classical models can be approximated arbitrarily well and that the model’s parameters can be learned from all sources of available data by simple methods. We provide conditions guaranteeing absence of arbitrage as well as tractable option pricing formulas for so-called sig-payoffs, exploiting the polynomial nature of generic primary processes. One of our main focus lies on calibration, where we consider both time-series and implied volatility surface data, generated from classical stochastic volatility models and also from S&P 500 index market data. For both tasks the linearity of the model turns out to be the crucial tractability feature which allows to get fast and accurate calibrations results. We also consider an adaptation of the model that allows to price and calibrate VIX options fast and accurately.
Theory and Applications of Singular Stochas-
tic Control

Prof. Giorgio Ferrari

1Bielefeld University
Center for Mathematical Economics (IMW)
Email: giorgio.ferrari@uni-bielefeld.de

Timetable: 16 hrs. All lectures in Torre Archimede, Room 2BC/30.
Lectures on March, timetable still to finalize.

Course requirements: A previous knowledge of stochastic calculus with respect to standard Brownian motion is required.

Examination and grading: Seminar.

SSD: MAT/06 Probability and Mathematical Statistics

Course contents:
In this class we will introduce the theory of singular stochastic controls and examples of applications arising in Economics, Finance and Operations Research. In particular, we will investigate the intimate relation to optimal stopping theory and free-boundary problems, as well as to reflected diffusion processes.

Week 1 (4 hours)
1. Motivation of singular stochastic controls via an example;
2. Formalization of a general class of Markovian singular stochastic control problems in \(\mathbb{R}^n \).

Week 2 (4 hours)
1. Dynamic Programming Principle Equation and Verification Theorem for Markovian singular stochastic control problems in \(\mathbb{R}^n \);
2. The optimal policy in terms of the solution to a Skorokhod reflection problem.

Week 3 (4 hours)
1. An application to optimal irreversible investment;
2. Relation to a problem of optimal stopping.

Week 4 (4 hours)
1. Non-Markovian settings and the method of Bank-El Karoui;
2. An application to optimal irreversible investment and comparison to the dynamic programming principle method.
Meshless Approximation: Theory and Applications

Dott.ssa Maryam Mohammadi

Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave., Tehran 1561836314, Iran
Email: m.mohammadi@khu.ac.ir

Timetable: 16 hrs. First lecture on January 9th, 2023, 14:00, (dates already fixed, see Calendar of Activities at https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Advanced Numerical Analysis, Real Analysis, Functional Analysis.

Examination and grading: final oral exam.

SSD: MAT/08

Aim: The objective of this course is to teach in a unified manner the fundamentals of the scattered data approximation methods. The course will emphasize the radial basis function approximations. Students will learn the key concepts of multivariate scattered data approximation with kernel-based methods and learn how to apply these methods to the solution of partial differential equations (PDEs) and applications to real world problems.

Course contents:

- An overview on multivariate approximation with Radial Basis Function (RBF)
- Reproducing kernel Hilbert spaces
- Error bounds in Sobolev norms
- Stability and trade-off principles
- Weighted Residual Methods
- RBF collocation method to solving some classical PDEs
- New applications of RBF approximation

Material: Lecture Notes provided by the teacher.
Interface of Finance, Operations and Risk Management

Andrea Roncoroni

ESSEC Business School, Cergy-Pontoise, France
Email: roncoroni@essec.edu

Timetable: 16 hrs. First lecture on June 5, 2022, Torre Archmede, Room 2BC30.

Course requirements: Introductory financial derivatives and arbitrage pricing theory

Examination and grading: Project work

SSD:

Aim: This course offers an introduction to the Interfaces of Finance, Operations, and Risk Management (iFORM) with a focus on Integrated Risk Management (IRM). This is a relatively new research area dealing with timely, complex, and boundary-spanning issues in a variety of commercial and industrial setups. iFORM research work addresses ways to better integrate physical, financial, and informational flows by combining the operational choices of the firm with its financial decisions and merging information flows between the firm and its customers and suppliers with informational flows between the firm and its investors. We highlight the main standing, emerging, and forthcoming contributions in IRM.

Course contents:

Bibliography:
Monte Carlo Methods in Python with Financial Applications

Dott. Piergiacomo Sabino

Quantitative Risk Management, EON SE, Essen, Germany and Department of Mathematics and Statistics, University of Helsinki, Pietari Kalmin katu 5, 00014, Helsinki
Email: piergiacomo.sabino@helsinki.fi

Timetable: 16 hrs.

Course requirements:
- Knowledge of the basic concepts of stochastic processes.
- Knowledge of basic mathematical finance could be helpful but not required.
- Basic programming experience with Python as well as basic knowledge of object-oriented programming.
- Visual Studio Code (preferable) or Pycharm (non-professional edition) will be used as editors.

Examination and grading: Project in Python.

Course contents:

Day 1 **Principles of Monte Carlo and simulation of basic processes (4 hours)**
- Crude Monte Carlo: central limit theorem and law of large numbers.
- Methods for the generation of random variables: inverse transform, rejection sampling.
- Examples: simulation from the exponential law, mixture laws, discrete distributions.
- Examples: simulation from the multidimensional Gaussian law. Cholesky decomposition, PCA.
- Examples: generation of the skeleton of the multidimensional Brownian motion and the Ornstein-Uhlenbeck process.
- Examples: Brownian bridge and basic subordination (Stretch).

References: Glasserman [Glass2004], Devroye [?].

Day 2 and day 3 **Python Applications (6 hours):**
- Python, virtual environments, and notebooks.
- Projects setting: cookiecutters, poetry, isort, flake8, mypy and all of that.
- All the way to pydantic and Utests.
- Examples: simulation of basic processes and the pricing of some financial contracts.
References: https://www.python.org/

Day 4 **Variance Reduction Techniques (3 hours):**

- Principles and rationale.
- Control Variates and importance sampling.
- Stratification and Latin Hypercube Sampling, some words on Quasi-Monte Carlo.
- Examples: application to some common financial contracts.

References: Glasserman [?], Niederreiter [?].

Day 5 **Lévy-Processes and non-Gaussian Ornstein-Uhlenbeck processes (Stretch). (3h):**

- Simulation of Poisson and compound Poisson processes.
- Simulation of gamma, inverse Gaussian and tempered stable processes.
- Simulation of variance gamma and normal inverse processes.
- \(D \)-OU vs OU-\(D \) processes (Stretch).
- Examples: \(\Gamma \)-OU, OU-\(\Gamma \), IG-OU, OU-IG, VG-OU, OU-VG, NIG-OU, OU-NIG and their simulation (Stretch).

References: Glasserman [?], Cont and Tankov [?], Schoutens [?], Sabino and Cufaro Petroni [?], Sabino [?, ?]
The Mathematics of Energy Markets

Prof. Tiziano Vargiolu

Department of Mathematics "Tullio Levi-Civita", University of Padova
Email: vargiolu@math.unipd.it

Course requirements:

- Knowledge of the basic concepts of stochastic processes.
- Knowledge of basic mathematical finance could be helpful but not required.

Examination and grading: Seminar.

Course contents: The program (with emphasis on the mathematical sophistication) will be fixed with the audience according to the mathematical level of the students. A tentative list of contents is the following:

- An overview of financial and energy markets. Basic contracts (forwards, call and put options) and their evaluation.
- Structured contracts: swing and virtual storage contracts.
- Stochastic control and evaluation of structured contracts.
- Optimal installation of power plants and impulsive/singular control.
Soft Skills
(To be confirmed)
Abstract: This course deals with the bibliographic databases and the resources provided by the University of Padova; citation databases and metrics for research evaluation; open access publishing and the submission of PhD theses and research data in UniPd institutional repositories.

Language: The Course will be held in Italian or in English according to the participants

Timetable: 5 hrs. First lecture will be held online on November 11th, 2022 (in presence: Room 2BC30 and online: link zoom will be sent from Organizer) as follow:

10:30 Preliminary meeting and presentation of the Course

 Title: Information literacy for Maths Phd students: 1 - Digital Library, GalileoDiscovery and the advanced services of the library
 Contents: The physical and electronic resources of the University libraries, remote access, document delivery and interlibrary loan.

11:30 Seminar “Open access” (see poster below)

The complete calendar will be communicated as soon as possible or, in any case, during the first lecture.
IL SISTEMA BIBLIOTECARIO DI ATENEÒ INVITA A PARTECIPARE AL SEMINARIO ONLINE

OPEN ACCESS
il contesto, le proposte e i servizi (anche economici) per gli autori dell'Università di Padova

L’ incontro è destinato principalmente a docenti, ricercatori, assegnisti e borsisti.

E’ gradita preiscrizione

30 settembre 2022
ore 11.30 - 13.00

per i dipartimenti del Polo "Vallisneri", Scienze Chimiche, Scienze del Farmaco

11 novembre 2022
ore 11.30 - 13.00

per i dipartimenti di Fisica e Astronomia, Matematica e Geoscienze

Per ulteriori informazioni contattare la Biblioteca
Doctoral Program in Mathematical Sciences
a.a. 2022/2023

SOFT SKILLS

Advanced LaTeX skills
Prof. Enrico Gregorio (University of Verona)

Timetable: 6 hrs. Lectures on:

Course Content:
1. Major TeX errors and introduction to presentations
2. TikZ
3. Beamer
Doctoral Program in Mathematical Sciences
a.a. 2022/2023

SOFT SKILLS

Introduction to the use of “Mathematica”
in Mathematics and Science
Prof. Francesco Fassò

Timetable: 5 hrs. Lectures on

Course content:
The aim of this course is to provide the basic competences to use the symbolic, numerical and graphical capabilities of Mathematica, with a focus on the needs of mathematicians and scientists. The course is a hands-on course, which takes place entirely in a computer lab, and is organized in two sessions.

If there were students interested in the more advanced (functional) programming capabilities of Mathematica, it might be possible to organize a second part of the course devoted to these topics.
Delivering a Seminar

Timetable: TBC

Course Content: TBD
Doctoral Program in Mathematical Sciences
a.a. 2022/2023

SOFT SKILLS

How to deliver an effective talk

Timetable: TBC

Course Content: TBD
A critical introduction to bibliometric indices and to their use and abuse in evaluations

Timetable: TBC

Course Content: TBD
Courses in collaboration with the Doctoral School on “Information Engineering”

for complete Catalogue and class schedule see on

https://phd.dei.unipd.it/course-catalogues/

Please check regularly the website of the Doctoral Course

Calendar of activities on

https://calendar.google.com/calendar/u/0/embed?src=fvs19bgkbnhhkqp5mmqpiurn6c@group.calendar.google.com&ctz=Europe/Rome
Introduction to Model Predictive Control with Case Studies in Automotive and Biomedicine

Prof. Ruggero Carli¹, Dr. Mattia Bruschetta², Dr. Simone Del Favero³

¹Department of Information Engineering, University of Padova
email: carlirug@dei.unipd.it
²Department of Information Engineering, University of Padova
email: mattia.bruschetta@dei.unipd.it
³Department of Information Engineering, University of Padova
email: simone.delfavero@unipd.it

Timetable: 20 hrs. (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Basic Calculus and Linear Algebra.

Examination and grading: Homework and take home exam

SSD: Information Engineering

Aim: To provide the methodological tools needed to understand model-based control algorithms and to design a Model Predictive Control algorithm for a linear dynamical system. The course is tailored on students who have not received an extensive training on control theory. As case studies, the course focus on Automotive and Bioengineering applications.

Course contents:
1. Introduction to model-based control.
2. State Space Models: driving the state with inputs.
3. State Space Model: estimating the state form the output.
4. Linear Quadratic Regulator (finite and infinite horizon).
7. Elements of Nonlinear MPC.

References:
Other material and research papers will be available online for download.
Distributed Optimization and Applications

Prof. Subhrakanti Dey

Signals and Systems, Uppsala University, Sweden
Email: Subhra.Dey@signal.uu.se

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Advanced calculus, and probability theory and random processes.

Examination and grading: A project assignment for students in groups of 2 requiring about 20 hours of work.

SSD:

Aim: The aim of this course is to introduce postgraduate students to the topical area of Distributed Optimization. As we enter the era of Big Data, engineers and computer scientists face the unenviable task of dealing with massive amounts of data to analyse and run their algorithms on. Often such data reside in many different computing nodes which communicate over a network, and the availability and processing of the entire data set at one central place is simply infeasible. One needs to thus implement distributed optimization techniques with message passing amongst the computing nodes. The objective remains to achieve a solution that can be as close as possible to the solution to the centralized optimization problem. In this course, we will start with some history on the origins of distributed optimization algorithms such as the Alternating Direction Method of Multipliers (ADMM), discuss its properties, and applications to both convex and non-convex problems, and explore distributed statistical machine learning methods, and finish with discussions on very recent and largely open areas such as networked optimization. This course will provide a glimpse into this fascinating subject, and will be of relevance to graduate students in Electrical, Mechanical and Computer Engineering, Computer Science students, as well as graduate students in Applied Mathematics and Statistics, along with students dealing with large data sets and machine learning applications to Bioinformatics.

Course contents:

- Lectures 1-3: Precursors to distributed optimization algorithms: parallelization and decomposition of optimization algorithms (dual decomposition, proximal minimization algorithms, augmented Lagrangian and method of multipliers), The Alternating Direction Method of Multipliers (ADMM): (Algorithm, convergence, optimality conditions, stopping criteria, constrained convex optimization)
- Lectures 4-5: Applications of ADMM to machine learning problems: L1 norm problems, ADMM based methods for solving consensus and sharing problems, ADMM for non-convex problems and examples
- Lectures 6-8: Applications of distributed optimization to distributed machine learning, Federated Learning, distributed Newton methods
- Lectures 9-10: Networked Optimization (e.g. over a graph) and fully distributed optimization under communication constraints

References:

DEI-2

Relevant recent papers will be referred to and distributed during the lectures.
Bayesian Machine Learning

Giorgio Maria Di Nunzio

Department of Information Engineering
Email: dinunzio@dei.unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Examination and grading: Homework assignments and final project.

SSD: Information Engineering

Aim: The course will introduce fundamental topics in Bayesian reasoning and how they apply to machine learning problems. In this course, we will present pros and cons of Bayesian approaches and we will develop a graphical tool to analyse the assumptions of these approaches in classical machine learning problems such as classification and regression.

Course contents:

1. Introduction of classical machine learning problems.
 - Mathematical framework
 - Supervised and unsupervised learning
2. Bayesian decision theory
 - Two-category classification
 - Minimum-error-rate classification
 - Bayes decision theory
 - Decision surfaces
3. Estimation
 - Maximum Likelihood Estimation
 - Expectation Maximization
 - Maximum A Posteriori
 - Bayesian approach
4. Graphical models
 - Bayesian networks
 - Two-dimensional visualization
5. Evaluation
 - Measures of accuracy

References:

2. Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer 2007
Computational Inverse Problems

Prof. Fabio Marcuzzi

Dipartimento di Matematica “Tullio Levi-Civita”, Università Padova
e-mail: marcuzzi@math.unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements:
- basic notions of linear algebra and, possibly, numerical linear algebra.
- the examples and homework will be in Python (the transition from Matlab to Python is effort-
less).

Examination and grading: Homework assignments and final test.

SSD: INF/01 Information Engineering

Aim: We study numerical methods that are of fundamental importance in computational in-
verse problems. Real application examples will be given for distributed parameter systems
in continuum mechanics. Computer implementation performance issues will be considered as
well.

Course contents:

- definition of inverse problems, basic examples and numerical difficulties.
- numerical methods for QR and SVD and their application to the square-root implemen-
tation in PCA, least-squares, model reduction and Kalman filtering; recursive least-squares;
High Performance Computing (HPC) implementation of numerical linear algebra algo-

- regularization methods;
- underdetermined linear estimation problems and sparse recovery;
- numerical algorithms for nonlinear parameter estimation: nonlinear least-squares (Levenberg-
Marquardt), back-propagation learning;
- underdetermined nonlinear estimation problems and deep learning;
- examples with distributed parameter systems in continuum mechanics: reconstruction of
forcing terms and parameters estimation;

References:
1 F.Marcuzzi "Computational Inverse Problems", lecture notes (will be posted on the moodle page of the course)
2 G. Strang, "Linear Algebra and Learning From Data”, Wellesley - Cambridge Press, 2019

DEI-6
Applied Functional Analysis and Machine Learning: from regularization to deep networks

Prof. Gianluigi Pillonetto¹

¹Department of Information Engineering, Univ. Padova
e-mail: giapi@dei.unipd.it

Timetable: 28 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Enrollment: add the course to the list of courses you plan to attend using the Course Enrollment Form (requires SSO authentication) and, if you are taking the course for credits, to the Study and Research Plan.

Course requirements: The classical theory of functions of real variable: limits and continuity, differentiation and Riemann integration, infinite series and uniform convergence. The arithmetic of complex numbers and the basic properties of the complex exponential function. Some elementary set theory. A bit of linear algebra.

Examination and grading: Homework assignments and final test.

SSD: Information Engineering

Aim: The course is intended to give a survey of the basic aspects of functional analysis, machine learning, regularization theory and inverse problems.

Course contents:

References:
Heuristics for Mathematical Optimization

Prof. Domenico Salvagnin

1 Department of Information Engineering, Padova
email: dominiqs@gmail.com - domenico.salvagnin@unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Enrollment: students must enroll in the course using the Enrollment Form on the PhD Program eLearning platform (requires SSO authentication).

Course requirements:
- Moderate programming skills (on a language of choice)
- Basics in linear/integer programming.

Examination and grading: Final programming project.

SSD: Information Engineering

Aim: Make the students familiar with the most common mathematical heuristic approaches to solve mathematical/combinatorial optimization problems. This includes general strategies like local search, genetic algorithms and heuristics based on mathematical models.

Course contents:
- Mathematical optimization problems (intro)
- Heuristics vs exact methods for optimization (intro)
- General principle of heuristic design (diversification, intensification, randomization)
- Local search-based approaches
- Genetic/population based approaches
- The subMIP paradigm
- Applications to selected combinatorial optimization problems: TSP, QAP, facility location, scheduling.

References:
1. Gendreau, Potvin “Handbook of Metaheuristics”, 2010
Elements of Deep Learning

Prof. Gian Antonio Susto

1Department of Information Engineering, Univ. Padova
e-mail: gianantonio.susto@dei.unipd.it

Timetable: 24 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Enrollment: students must enroll in the course using the Enrollment Form on the PhD Program eLearning platform (requires SSO authentication).

Course requirements: Basics of Machine Learning and Python Programming.

Examination and grading: Final project.

SSD: Information Engineering

Aim: The course will serve as an introduction to Deep Learning (DL) for students who already have a basic knowledge of Machine Learning. The course will move from the fundamental architectures (e.g. CNN and RNN) to hot topics in Deep Learning research.

Course contents:

• Introduction to Deep Learning: context, historical perspective, differences with respect to classic Machine Learning.
• Feedforward Neural Networks (stochastic gradient descent and optimization).
• Convolutional Neural Networks.
• Neural Networks for Sequence Learning.
• Elements of Deep Natural Language Processing.
• Elements of Deep Reinforcement Learning.
• Unsupervised Learning: Generative Adversarial Neural Networks and Autoencoders.
• Laboratory sessions in Colab.
• Hot topics in current research.

References:

