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INTRODUCTION 
 
This Catalogue contains the list of activities offered to the Graduate Students in Mathematical 
Sciences for the year 2023-2024. 
The activities in this Catalogue are of three types. 

1. Courses offered by the Graduate School (= Courses of the Doctoral Program)  
2. Courses offered by one of its curricula.  
3. Other activities:  

a) selected courses offered by the PhD school in Information Engineering; 
b) selected courses offered by other PhD schools or other Institutions;  
c) reading courses 

(This offer includes courses taught by internationally recognized external researchers. Since these 
courses might not be offered again in the near future, we emphasize the importance for all 
graduate students to attend them.) 
Taking a course from the Catalogue gives an automatic acquisition of credits, while crediting of 
courses not included in the Catalogue (such as courses offered by the Scuola Galileiana di Studi 
Superiori, Summer or Winter schools, Series of lectures devoted to young researchers, courses 
offered by other PhD Schools) is possible but it is subject to the approval of the Executive Board. 
Moreover, at most one course of this type may be credited. 
We underline the importance for all students to follow courses, with the goal of broadening their 
culture in Mathematics, as well as developing their knowledge in their own area of interest. 
 

REQUIREMENTS FOR GRADUATE STUDENTS 
 
Within the first two years of enrollment all students are required to 
 

 pass the exam of at least four courses from the catalogue, among which at least two must 
be taken from the list of “Courses of the Doctoral Program”, while at most one can be 
taken among the list of “reading courses” 

 participate in at least one activity among the “soft skills” 
 attend at least two more courses (for such activities the PhD student must produce a brief 

summary on what she/he learned. These summaries should be attached to the annual 
report)  

Students are warmly encouraged to take more courses than the minimum required by these rules, 
and to commit themselves to follow regularly these courses. It is also recommended that one half 
of the exams are taken during the first year. At the end of each course the instructor will inform the 
Coordinator and the Secretary on the activities of the course and of the registered students.  
 
Students must register to all courses of the Graduate School that they want to attend, 
independently of their intention to take the exam or not. We recommend to register as early as 
possible: the Graduate School may cancel a course if the number of registered students is too low. 
If necessary, the registration to a Course may be canceled. 
 
Courses for Master of Science in “Mathematics” 
Students have the possibility to attend some courses of the Master of Science in Mathematics and 
get credits. The recommendation that a student takes one of these courses must be made by the 
supervisor and the type of exam must be agreed between the instructor and the supervisor. 



 
Courses attended in other Institutions and not included in the catalogue.  
Students activities within Summer or Winter schools, series of lectures devoted to young 
researchers, courses offered by the Scuola Galileiana di Studi Superiori, by other PhD Schools or by 
PhD Programs of other Universities may also be credited, according to whether an exam is passed 
or not; the student must apply to the Coordinator and crediting is subject to approval by the 
supervisor and the Executive board. We recall that at most one course not included in the 
Catalogue may be credited. 

Seminars 
a) All students, during the three years of the program, must attend the Colloquia of the 

Department and participate regularly in the Graduate Seminar (“Seminario Dottorato”), 
whithin which they are also required to deliver a talk and write an abstract. 

b) Students are also strongly encouraged to attend the seminars of the research groups that 
are relevant for their work. 

 
HOW TO REGISTER AND UNREGISTER TO COURSES 

 
The registration to a Course must be done online. 
Students can access the online registration form in the dedicated page of the Doctoral Course 
website at https://dottorato.math.unipd.it/current-activity/FutureActivities clicking on “click to 
enroll” of the chosen courses. The registration lists can be reached also via the website of the 
Department of Mathematics at https://prev-www.math.unipd.it/userlist/   
In order to register, fill the registration form with all required data, and validate with the command 
“Subscribe”. The system will send a confirmation email message to the address indicated in the 
registration form; please save this message, as it will be needed in case of cancellation. 
 
Registration to a course implies the commitment to follow the course. 
 
Requests of cancellation to a course must be submitted in a timely manner, and at least one 
month before the course (except for courses that begin in October and November) using the link 
indicated in the confirmation email message. 
 
 

REQUIREMENTS FOR PARTICIPANTS NOT ENROLLED IN THE  
GRADUATE SCHOOL OF MATHEMATICS 

 
The courses in this catalogue, although part of activities of the Graduate School in Mathematics, 
are open to all students, graduate students, researchers of this and other Universities. 
For organization reasons, external participants are required to communicate their intention 
(loretta.dallacosta@unipd.it) to take a course at least two months before its starting date if the 
course is scheduled in January 2024 or later, and as soon as possible for courses that take place 
until December 2023.  
In order to register, follow the procedure described in the preceding section. 
Possible cancellation to courses must also be notified. 



List of Courses



Courses of the Doctoral Program

1. Prof.ssa Cristiana Bertolin
Elliptic curves and Periods DP-1

2. Prof.ssa Laura Caravenna
Introduction to Optimal Transport DP-2

3. Prof. Ramon Codina
Mixed and stabilised finite element methods DP-3,4

4. Prof. Christos Efthymiopoulos
Perturbative methods in dynamical systems DP-5,6

5. Prof. Francesco Esposito
Introduction to Harmonic Analysis on Semisimple Groups DP-7,8

6. Prof. Massimo Lanza de Cristoforis,
Integral operators in Hölder spaces DP-9

Courses of the “Mathematics” area

1. Prof. Alexandr Buryak
Integrable Systems of PDEs and their infinite dimensional algebra of symmetries M-1,2

2. Dott. Alessandro Goffi, Giulio Tralli
Nonlinear methods for linear equations: the low-regularity theory M-3,4

3. Dott. Elio Marconi
Flows of Sobolev vector fields M-5

4. Prof.ssa Gabriella Pinzari
Introduction to Kolmogorov-Arnold-Moser theory M-6,7

5. Prof. Sergiy Plaksa
Monogenic functions and basic elliptic equations of mathematical physics M-8,9

6. Prof. Fulvio Ricci
Harmonic analysis on nilpotent groups M-10

7. Prof. Eric Sommers
Introduction to Hessenberg Varieties M-11,12



Courses of the “Computational Mathematics” area

1. Dr. Manuel Francesco Aprile,
Linear and non-linear formulations for Combinatorial Optimization MC-1

2. Prof. Martin Buhmann
Kernels and Partitions of Regular Domains and Compact Sets MC-2

3. Dott.Alekos Cecchin
Stochastic and mean field optimal control MC-3

4. Dr. Alberto Chiarini, Prof. Giovanni Conforti
A renormalisation group approach to log-Sobolev inequalities MC-4

5. Prof. Andrea Roncoroni
Interface of Finance, Operations and Risk Management MC-5,6

6. Prof. Simone Scotti
Hawkes processes: from theory to (financial) practice MC-7,8

Soft Skills

1. Maths information: retrieving, managing, evaluating, publishing SS-1

2. Introduction to the use of ”Mathematica” in Mathematics and Science SS-2

3. Our experience in writing a successful post-doctoral application SS-3

Courses in collaboration with the Doctoral School
in “Information Engineering”

Please check regularly the website of the Doctoral Course in Information
Engineering at the URL https://phd.dei.unipd.it/course-catalogues/

To be confirmed

Calendar of activities on
https://calendar.google.com/calendar/u/0/embed?src=

fvsl9bgkbnhhkqp5mmqpiurn6c@group.calendar.google.com&ctz=Europe/Rome

1. Prof. Subhrakanti Dey
Distributed Machine Learning and Optimization: from ADMM to Federated
and multiagent Reinforcement Learning DEI-1,2



2. Prof. Giorgio Maria Di Nunzio
Bayesian Machine Learning DEI-3,4

3. Prof. Marco Fabris
Analysis and Control of Multi-agent Systems DEI-5,6

4. Prof. Gianluigi Pillonetto
Applied Functional Analysis and Machine Learning DEI-7,8

5. Prof. Domenico Salvagnin
Heuristics for Mathematical Optimization DEI-9

6. Prof. Gian Antonio Susto
Elements of Deep Learning DEI-10,11

Courses in collaboration with the Doctoral School on
“Economics and Finance”

University of Verona

for complete Catalogue and class schedule see on
https://www.dse.univr.it/?ent=oi&ava=&cs=1008&id=746&lang=en

1. Prof.ssa Sara Svaluto-Ferro
Stochastic Processes in Finance VR-1
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Elliptic curves and Periods

Cristiana Bertolin1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: cristiana.bertolin@unipd.it

Timetable: 24 hrs. First lecture on Thursday October 12th, 2023, 10:30 (dates already fixed,
see on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Algebra, Calculus, Geometry, of the first level degree in mathematics

Examination and grading: Please contact the teacher of the course by e-mail

SSD:

Aim:
To discover the geometrical origin of some transcendental conjectures

Course contents:

• Introduction to algebraic curves

• Elliptic curves over the field of complex numbers

• Geometrical description of the law group on elliptic curve

• The Weierstras ”p”-function, the Weierstrass ζ- function, and the Serre fq-function with
their doubly periodicity

• The differential forms of the first, the second and the third kind

• The periods of an elliptic curves and their transcendence properties

eventual: Seminar of Prof. Michel Waldschmidt

Bibliography:

• Silverman, J.H. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Vol.
106. Springer-Verlag (1986). ISBN 0-387-96203-4.

• Silverman, J.H. An Introduction to the Theory of Elliptic Curves (PDF) (2006). Summer
School on Computational Number Theory and Applications to Cryptography. University
of Wyoming.

• Waldschmidt, M. Algebraic independence of periods of elliptic functions. (PDF)(2016).
Winter School on modular functions in one and several variables, Goa University, Decem-
ber 2014. From notes by R. Thangadurai.

DP-1



Introduction to Optimal Transport

Laura Caravenna1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: laura.caravenna@unipd.it

Timetable: 24 hrs. First lecture on Monday October 23rd, 2023, 10:30 (dates already fixed,
see on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Some functional analysis functional analysis, and some notions of basic
PDEs. The essential required notions will be recalled in the course. Contact me for doubts.

Examination and grading: Oral examination on the content of the course, or presentation of a
related research paper or research topic, according to the preferences of each student.

SSD: MAT/05

Aim: With the first part of the course, of about 16 hours, students will learn the main features
of the theory of optimal transport. The last part will discuss selected applications to PDEs.

Course contents:
Monge formulation of Optimal Transport Problems and its limits. Kantorovich Formula-

tion of Optimal Transport Problem, existence of optimal plans, Kantorovich- Rubinstein du-
ality for general cost functions. Necessary and sufficient optimality conditions for transport
plans, c-cyclical monotonicity, c-concavity, c-transforms in special cases. Optimal transport
plans versus optimal transport maps and existence of optimal maps, with a special focus on
Brenier’s theorem for the quadratic cost function. Connection with the Monge- Amp‘ere equa-
tion. Wasserstein distances and basic properties. Selected applications to be sorted. Curves in
the Wasserstein spaces and relation with the continuity equation, geodesics, Benamou-Brenier
dynamical formulation, AC curves in theWasserstein spaces. Introduction to gradient flows in
metric spaces and the JKO minimization scheme for some evolution equation.

eventual The selection of which applications we focus on will be fixed during the first week of
the course, depending on the interests of the students.

Bibliography:

• L. Ambrosio, E. Brué and D. Semola: Lectures on Optimal Transport, Springer, 2022

• A. Figalli, F. Glaudo: An Invitation to Optimal Transport, Wasserstein Distances and &
Gradient Flows, 2022

• F. Santambrogio: Optimal Transport for Applied Mathematicians, Birkhauser (2015)

• C. Villani: Topics in Optimal Transportation, American Mathematical Society (2003)

• L. Ambrosio, N. Gigli, G. Savaré: Gradient Flows in Metric Spaces and in the Space of
Probability Measures, Birkhauser (2005)

• F. Santambrogio: Euclidean, Metric, and Wasserstein Gradient Flows: an overview, Bul-
letin of Mathematical Sciences, available online (2017).

DP-2



Mixed and stabilised finite element methods

Ramon Codina
Universitat Politècnica de Catalunya
Email: ramon.codina@upc.edu

Timetable: 24 hrs. First lecture on November 6, 2023 (dates already fixed see calendar on:
https://dottorato.math.unipd.it/calendar) (6 hours a week for 4 weeks: 3 hours on Monday af-
ternoon; 3 hours on Tuesday morning), Torre Archimede, 2BC30.

Course requirements: Analysis and Linear Algebra of any degree in Mathematics. An intro-
duction to Functional Analysis.

Examination and grading: 50% homeworks, 50% written exam or, alternatively if the student
wishes, presentation of a recent research paper (to be agreed with the instructor)

Aim: To introduce several mixed problems in linear partial differential equations and to explain
how to approximate them using the finite element method.

Course contents:

• Introduction to the finite element method - 6 hrs. Introduction to the theory and practice
of conforming Galerkin FEM methods for elliptic equations.

• Introduction to mixed methods - 2 hrs. Some examples: Darcy’s problem, Stokes’
problem, Maxwell’s problem, Elasticity, Reissner-Mindlin plates. Finite element approx-
imation. Matrix structure.

• Finite element approximation of mixed problems: general theory - 2 hrs. Babuška-
Lax-Milgram’s theorem. Generalised Céa’s lemma. Ladyzhenskaya-Babuška-Brezzi’s
theorem. de Rham’s complex.

• Stabilised finite element methods - 2 hrs. Basic concept. The variational multi-scale
approach. Application to mixed problems.

• Darcy’s problem - 2 hrs. Primal form, dual form. Inf-sup conditions and examples of
compatible approximations. Stabilised finite element approximation.

• Stokes’ problem - 2 hrs. Two-field formulation. Three-field formulation. Inf-sup con-
ditions and examples of compatible approximations. Stabilised finite element approxima-
tion.

• Maxwell’s problem - 2 hrs. Kikuchi formulation. An example of inf-sup stable approxi-
mation. Augmented stabilised finite element approximation.

• Elasticity - 2 hrs. Stress-displacement formulation. Stress-strain-displacement formula-
tion. Inf-sup conditions. Stabilised finite element approximation.

• Reissner-Mindlin plates - 2 hrs. Derivation of the problem. Inf-sup conditions and
examples of compatible approximations. Stabilised finite element approximation.

• Introduction to hybrid methods - 2 hrs. Hybridisation of Poisson’s problem. Inf-sup
conditions. Stabilised finite element approximation.
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Bibliography:

• S.C. Brenner and L.R. Scott.
The mathematical theory of finite element methods (Springer–Verlag, 1994).

• D. Boffi, F. Brezzi and M. Fortin.
Mixed Finite Element Methods and Applications (Springer-Verlag, 2013).

• A. Ern and J.-L. Guermond.
Theory and Practice of Finite Elements (Springer-Verlag, 2004)
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Perturbative methods in dynamical systems

Christos Efthymiopoulos1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: christos.efthymiopoulos@unipd.it

Timetable: 24 hrs. First lecture on Thursday November 2nd, 2023, 14:30 (dates already fixed,
see on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements:

Examination and grading: After the fourth lecture, students will be asked to choose a project
to develop using mathematica.
An oral exam will take place at the end of the course, including presentation of the project
results and questions on the course material.

SSD: MAT/07

Aim:
This ourse aims to provide a self-contained introduction to the use of the methods of perturba-
tion theory in the study of both regular and chaotic motions in dynamical systems. After a short
review of basic definitions pertinent to dynamical systems’ theory, the course will present two
types of perturbative methods, both of use in the study of the characterization of the solutions
and of the local structure of the phase space in the neighborhood of a basic solution of a dy-
namical system such as a fixed point or a periodic orbit:
i) direct methods (for example, Lindstedt), which aim to construct the solutions directly under
the form of a power series in a suitably defined small parameter, and
ii) indirect or normal form methods (for example, the Poincaré normal form), which aim at in-
troducing a transformation of the variables in the form of series in the small parameter.
The presentation will be example-driven, starting from a simple dynamical system representing
a nonlinear oscillator with dissipation and external driving. The students will be motivated to
make computations in perturbation theory using mathematica and solve some project problems.
Some rigorous estimates on the dependence of the size of the perturbative terms as a function
of the order of the theory, based on suitable norm definitions in functional spaces related to the
dynamical system under study, will be given in the last part of the course.

Lectures plan:

Lectures 1-2: Introduction to dynamical systems Basic definitions. Integrability. Equilibria.
The characterization of linear stability. Periodic orbits. Floquet stability. Nonlinear stability.
Invariant manifolds in (partially) hyperbolic equilibria or periodic orbits. Chaos, Lyapunov ex-
ponents.

Lectures 3-5: Introduction to basic methods of perturbation theory part I: direct methods The
example of the Duffing oscillator with dissipation and external driving. Perturbative (series)
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representation of the solutions in the neighborhood of the stable fixed point using Lindstedt
series. Perturbative (series) representation of the invariant manifolds emanating from the unsta-
ble fixed point using the parametrization method. Study of the intersections of the stable and
unstable manifolds by the Poincaré - Melnikov method.

Lectures 6-7: Introduction to basic methods of perturbation theory part II: indirect methods
Linear normal forms and their classification. The Poincaré normal form in the neighborhood of
a stable fixed point. The Moser normal form in the neighborhood of an unstable fixed point.

Lectures 8-9: Normal Forms in Hamiltonian dynamical systems Basic review of Hamiltonian
mechanics. Symplectic transformations and Poincaré invariants. The method of generating
functions. Near-to-identity canonical transformations with the method of Lie series. The nor-
mal form of Birkhoff. A review of stability in nearly-integrable Hamiltonian systems. Lecture
10: Rigorous estimates in perturbation theory Norms for polynomial and for real-analytic func-
tions. Divisors. Norm estimates on the basis of iterative lemmas.

Lectures 11-12: The passage to systems with many (or infinitely many) degrees of freedom.
Perturbation theory in the example of a system with N non-linearly coupled oscillators, with
N large. The limit of 1+1 (space and time) field equations. Perturbative computation of the
spectrum of the Schrōdinger equation in a one-dimensional nonlinear oscillator model, and in
the perturbed hydrogen atom.

Bibliography:

1. J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical sys-
tems 2d ed., Springer-Verlag, Appl. Math. Sciences vol. 59, 2007, 451 pp

2. S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Appl. Math.
Sciences vol. 2, Springer-Verlag, 2003.

Additional bibliography: Parts of openly available lecture notes by i) G. Benettin, ii) F. Fasso‘,
iii) M. Guzzo. Some lecture notes tailored to the needs of the course will be provided by the
insegnant.
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Introduction to Harmonic Analysis
on Semisimple Groups

Francesco Esposito1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: francesco.esposito@unipd.it

Timetable: 24 hrs. First lecture on Tuesday May 7th, 2024, 14:00 (dates already fixed, see on
https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: The prerequisites are reduced to the minimum:
- standard notions from first and second year courses in analysis
- elementary linear algebra
All other needed concepts will be illustrated in the course.

Examination and grading: Lectures will be complemented with exercise sheets which may
be handed in for grading. Alternatively, the exam may consist in an oral examination where the
the student is supposed to deliver a lecture on a chosen argument.

SSD: MAT02/03/05

Aim:
Classically, harmonic analysis deals with the expansion of functions of one or more real vari-
ables as series or integrals of simple harmonics. A natural setting of the theory is that of lo-
cally compact commutative topological groups. Applications range from number theory to
differential equations. Noncommutative harmonic analysis on Lie groups is more recent and
was initially forged for the needs of invariant theory and quantum mechanics. It studies pos-
sibly infinite-dimensional representations of a Lie group, the special functions on the group
afforded by the matrix coefficients, and the expansion of functions on the group in terms of
these. The course is meant as an introduction to the representation theory and harmonic anal-
ysis on semisimple Lie groups. The introduction will succintly survey the commutative theory
and some of its applications. Next, theory for compact groups will be dealt in greater detail, up
to the Peter-Weyl theorem. Finally, the course will concentrate on infinite-dimensional repre-
sentations of semisimple Lie groups, representations of its Lie algebra, and characters of these.
The basic example will be the group SL(2,R).

Course contents:

1. Introduction

2. Compact groups

3. Unitary representations of locally compact groups

4. Parabolic induction, principal series and characters

5. Representations of the Lie algebra

6. Plancherel formula
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7. Invariant eigendistributions

8. Harmonic analysis on the Schwartz space

Bibliography:

1. An introduction to harmonic analysis on semisimple Lie groups” V.S. Varadarajan.

2. “Representation theory of semisimple Lie groups” A.W. Knapp.
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Integral operators in Hölder spaces

Massimo Lanza de Cristoforis1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: mldc@math.unipd.it

Timetable: 24 hrs. First lecture on October 5th, 2023, 16:45 (date already fixed, see calendar
on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30

Course requirements: Calculus, basics of real and functional analysis.

Examination and grading: Written/oral questions.

SSD: MAT/05

Aim: Develop basic skills in the theory of integral operators and their applications to potential
theory and partial differential equations.

Course contents: Weakly singular integral operators in spaces on measured spaces. A con-
ditions of Ahlfors regularity. Weakly singular potential operators. Conditions of action into
generalized Hölder spaces for weakly singular potential operators. Singular integral operators
on subsets of Rn in spaces of Hölder continuous functions. Applications to differential equa-
tions.

Bibliography:

1 M. Dalla Riva, M. Lanza de Cristoforis, and PaoloMusolino, Singularly Perturbed Bound-
ary Value Problems. A Functional Analytic Approach, Springer, Cham, 2021.

2 G.B. Folland, Real analysis. Modern techniques and their applications, Second edition.
John Wiley & Sons, Inc., New York, 1999.

3 A. E. Gatto. Boundedness on inhomogeneous Lipschitz spaces of fractional integrals sin-
gular integrals and hypersingular integrals associated to non-doubling measures. Collect.
Math. 60, 1 (2009), 101–114.

4 S. Mikhlin, Multidimensional singular integrals and integral equations. Translated from
the Russian by W. J. A. Whyte. Translation edited by I. N. Sneddon Pergamon Press,
Oxford-New York-Paris 1965.

5 M. Lanza de Cristoforis, Student hand-outs, Academic Year 2022/23.
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Courses of the “Mathematics” area



Integrable Systems of PDEs and their
infinite dimensional algebra of symmetries

Alexandr Buryak1

1Faculty of Mathematics National Research University Higher School of Economics, Moscow
Email: aburyak@hse.ru

Timetable: 24 hrs. First lecture on June 2024,... , Torre Archimede, Room 2BC30.

Aim: The goal of this course is to introduce the students to the notion of integrable system
of evolutionary PDEs, study their properties and illustrate several examples and some of their
applications in very diverse branches of mathematics.

Classical integrable systems find their origin in analytical mechanics and can be formalized
as Hamiltonian systems of ODEs (i.e. Hamiltonian vector fields on a symplectic manifold)
possessing sufficiently many (globally defined) conserved quantities in involution to give rise to
a Lagrangian torus foliation in their phase space. This geometry makes it possible to solve these
systems in a remarkably explicit form. One can generalize the notion of integrable system to
a non-Hamiltonian setting, considering dynamical systems (i.e. vector fields on any manifold)
with a rich algebra of infinitesimal symmetries.

The modern theory of integrable systems, which is the object of this course, deals with
analogous concepts when transported to the context PDEs. Started in the second half of the
20th century mostly with motivations from mathematical physics, it had a resurgence in the
last 30 years in light of the discovery of several surprising connections with entirely different
branches of mathematics, with the notable example of algebraic geometry (in particular the
theory of algebraic curves and the intersection theory of their moduli spaces).

This course will mainly concentrate on the notion of integrable system as a system of partial
differential equations possessing an infinite dimensional algebra of infinitesimal symmetries.
Our approach will be mostly formal, with next to no prerequisites, from analysis or other fields.
Regarding the class of partial differential equations, we will consider systems of evolutionary
PDEs with one spatial variable. We will discuss classical examples of such integrable systems,
like the Korteweg-de Vries (KdV) equation, and we will prove general theorems on their be-
haviour and properties, focusing in the second half of the course on the theory of the famous
Kadomtsev–Petviashvili (KP) hierarchy. In the final lectures we will prove Okounkov’s the-
orem, which states that the generating function of simple Hurwitz numbers (the number of
coverings of the Riemann sphere, of given genus and degree, with simple ramification points)
solves the KP hierarchy

Course contents: The course will be structured in five modules, each of approximately 4/5
hours.

Motivations and the KdV equation: The Korteweg-de Vries equation is the main and histor-
ically most relevant example of integrable evolutionary PDE. It describes surface waves in
shallow water. We will derive it from Euler equations and the continuity equation. It will
serve as running example and motivation for the first part of the course.

M-1



Algebraic formlism for evolutionary PDEs: Here we start developing the algebraic tools for
studying evolutionary PDEs in the language of differential polynomials and local func-
tionals, for one and several independent space variables.

The KP hierarchy: The Kodomtsev-Petviashvili hierarchy of integrable PDEs is a system in
one space variable and infinite unknown functions. It is defined through a Lax representa-
tion using pseudodifferential operators. Its importance lies in the fact that in contains, as
its reductions, an infinite famility of other integrable hierarchies (including KdV).

Tau functions of KP and Sato Grassmannian: We introduce technical tools to study the KP
hierarchy and its solutions, namely dressing operators, tau functions, the Fock space and
the Sato Grassmannian.

Okounkov theorem on KP and Hurwitz numbers: After a very quick reminder of Hurwitz
theory, we prove Okounkov famous result that the generating series of simple Hurwitz
numbers (the number of covers of given degree of the Riemann sphere by a Riemann
surface of given genus with simple ramification) is a tau function of the KP hierarchy.

Reference for the Course:
Detailed notes of the course, based on the notes [Bur22] for a similar PhD course delivered

at the Faculty of Mathematics of the HSE University in Spring 2022, will be made available for
participants. Material will be drawn from several research articles, including, but not restricted
to [BRZ21, DKJM83, Dic03, Dor78, LL87, Ok00, SG69].

Reference:

Bur22 A. Buryak. Integrable systems as systems of PDEs with an infinite dimensional algebra
of symmetries. Notes for a PhD course delivered at the Faculty of Mathematics of the
HSE University in Spring 2022.
Available at https://sites.google.com/site/alexandrburyakhomepage/home.

BRZ21 A. Buryak, P. Rossi, D. Zvonkine. Moduli spaces of residueless meromorphic differ-
entials and the KP hierarchy. arXiv:2110.01419.

DKJM83 E. Date, M. Kashiwara, M. Jimbo, T. Miwa. Transformation groups for soliton
equations. Nonlin- ear integrable systems – classical theory and quantum theory (Kyoto,
1981), 39–119, World Sci. Publishing, Singapore, 1983.

Dic03 L. A. Dickey. Soliton equations and Hamiltonian systems. Second edition. Advanced
Series in Mathematical Physics, 26. World Scientific Publishing Co., Inc., River Edge, NJ,
2003.

Dor78 I. Ya. Dorfman. Formal variational calculus in the algebra of smooth cylindrical func-
tions. Functional Analysis and Its Applications 12 (1978), 101–107.

LL87 L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Second edition. Course of Theoretical
Physics, Volume 6, Butterworth-Heinemann Ltd, 1987.

Ok00 A. Okounkov. Toda equations for Hurwitz numbers. Mathematical Research Letters
(2000), 7 (4).

SG69 C. H. Su, C. S. Gardner. Korteweg–de Vries equation and generalizations. III. Derivation
of the Korteweg–de Vries equation and Burgers equation. Journal of Mathematical Physics
10 (1969), 536–539.
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Nonlinear methods for linear equations:
the low-regularity theory

Alessandro Goffi1, Giulio Tralli2

1Università degli Studi di Padova
Dipartimento di Matematica
Email:alessandro.goffi@unipd.it
2Università degli Studi di Padova
Dipartimento di Ingegneria Civile, Edile e Ambientale (DICEA)
Email:giulio.tralli@unipd.it

Timetable: 16 hrs First lecture on Tuesday March 5th, 2023, 10:30 (dates already fixed, see on
https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30..

Course requirements: Basic knowledge of classical functional spaces, without PDE require-
ments.

Examination and grading: The exam will be oral and tailored on the students’ interests.

SSD: MAT/05

Aim: Introduce some classical and modern methods to study regularity properties of solutions
to the Laplace equation, focusing on nonvariational techniques based mostly on the maximum
principle.

Course contents:
• Introduction and motivations: the importance of the regularity theory for elliptic equations;

• Review of maximum principles and applications;

• Weak-Harnack inequalities via Aleksandrov-Bakel’man-Pucci techniques;

• Harnack inequalities and Hölder a priori estimates;

• The notion of viscosity solution;

• The Bernstein technique to obtain a priori gradient estimates;

• Hölder/Lipschitz regularity estimates via doubling variables: the Ishii-Lions method;

• Lipschitz regularity estimates via doubling variables: the weak Bernstein method.

Bibliography:
1. L. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, American Mathematical

Society, Providence, RI, 1995.

2. X. Fernández-Real and X. Ros-Oton, Regularity theory for elliptic PDE, Zurich Lectures
Notes in Advanced Mathematics, European Mathematical Society, 2022.

3. L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence,
RI, 2010.
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4. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, Berlin, 2001.

5. Q. Han and F. Lin, Elliptic partial differential equations, second edition, Courant Lecture
Notes in Mathematics, American Mathematical Society, Providence, RI, 2011.

M-4



Flows of Sobolev vector fields

Elio Marconi1

1Dipartimento di Matematica “Tullio Levi-Civita”
Email: elio.marconi@unipd.it

Timetable: 16 hrs.; First lecture on Wednesday November 29th, 2023, 14:30 (dates already
fixed, see on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Sobolev spaces, measure theory, weak formulation of PDEs.

Examination and grading: seminar about a research paper on the subject.

Aim: The aim of this course is to provide an introduction to the theory of the ODE and the
associated continuity equation for weakly differentiable vector fields, and to illustrate some
research directions in this domain.

Course contents:
1. Preliminaries on ODEs and the continuity equation (PDE) in the classical setting: regular-

ity estimates of the flow and the method of characteristics.

2. Duality ODE-PDE for irregular vector fields: Ambrosio superposition principle.

3. The Eulerian point of view: the uniqueness theorem by Di Perna and Lions.

4. The Lagrangian point of view: the a priori regularity estimate by Crippa and De Lellis.

Bibliography:
L. Ambrosio & G. Crippa: Continuity equations and ODE flows with non-smooth velocity.

Proceedings of the Royal Society of Edinburgh: Section A, 144 (2014), 1191–1244.
R.J.DiPerna & P.L.Lions: Ordinary differential equations, transport theory and Sobolev

spaces. Invent. Math., 98 (1989), 511–547.
G. Crippa & C. De Lellis: Estimates and regularity results for the DiPerna-Lions flow. J.

Reine Angew. Math. 616 (2008), 15–46.
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Introduction to Kolmogorov-Arnold-Moser theory

Gabriella Pinzari1

1Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: gabriella.pinzari@math.unipd.it

Timetable: 16 hours. First lecture on April 3rd, 2023, 11:00 (dates already fixed, see on:
https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: minimal knowledge of Hamiltonian systems (canonical coordinates;
symplectic transformations; Liouville-Arnold Theorem)

Examination and grading: 45’-1 hr seminar by the candidate

SSD: MAT/07 and MAT/05.

Aim: to present the ideas of Kolmogorov-Arnold-Moser theory

Course contents:

• Recap on Hamiltonian systems; canonical coordinates; canonical transformations; Liouville-
Arnold Theorem. Focus on holomorphic Hamiltonians; Cauchy inequalities; decay of
Fourier coefficients of holomorphic periodic functions.

• Diophantine inequalities.

• Perturbative schemes: norms; Normal Form Theory; KAM algorithm and convergence;
measure of the Kolmogorov set.

• Generalization to properly—degenerate hamiltonians;

if there is time enough

• Lower-dimensional quasi-periodic motions (whiskered tori).

• If there is time: generalization to vector-fields; some application

References:

1) V.I. Arnold. Small denominators and problems of stability of motion in classical and celes-
tial mechanics. Russian Math. Surveys, 18(6):85–191, 1963.

2) Benettin G., Galgani L., Giorgilli A., Strelcyn, J. M. (1984), A proof of Kolmogorov’s the-
orem on invariant tori using canonical transformations defined by the Lie method. Nuovo
Cimento B 79(11):201–223.

3) L. Chierchia, A. N. Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems. A
comment on: “On conservation of conditionally periodic motions for a small change in
Hamilton’s function” [Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530; MR0068687],
Regul. Chaotic Dyn., 13 (2008), no. 2, 130–139.
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4) L. Chierchia and G. Pinzari. Properly–degenerate KAM theory (following V.I. Arnold).
Discrete Contin. Dyn. Syst. Ser. S, 3(4):545–578, 2010.

5) A. N. Kolmogorov, On the conservation of conditionally periodic motions under small per-
turbation of the Hamiltonian, Dokl. Akad. Nauk. SSR 98 (1954), 527-530

6) J. K. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad.
Wiss. Göttingen, Math. Phys. Kl. II 1 (1962), 1-20

7) J. Pp̈schel. Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z., 213(2):
187–216, 1993.
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Monogenic functions and basic elliptic
equations of mathematical physics

Prof. Sergiy Plaksa
1Institute of Mathematics of the National Academy of Sciences of Ukraine
Email: plaksa62@gmail.com

Timetable: 12 hrs. First lecture on November 6th, 2023, 12:30 (dates already fixed see on
https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Basic notions on holomorphic functions in the complex plane and of
elementary functional analysis.

Examination and grading: exam

Aim: studying properties of monogenic functions of a hypercomplex variable and their appli-
cations for constructing solutions of equations of mathematical physics

Course contents:
Determination of hypercomplex algebras associated with the three-dimensional Laplace

equation and the biharmonic equation. Commutative harmonic algebras. A biharmonic algebra.
Differentiation in Banach algebras. The Lorch derivative and the Gâteaux derivative. The

principal extension of analytic functions of a complex variable into a commutative Banach
algebra.

Monogenic functions in a three-dimensional commutative algebra: constructive description
by means of analytic functions of a complex variable. Analogues of Cauchy–Riemann condi-
tions.

Integral theorems in a three-dimensional commutative algebra. Gauss–Ostrogradsky for-
mula and Cauchy theorem for a surface integral. Stokes formula and Cauchy theorem for a
curvilinear integral. Morera theorem. Cauchy integral formula. Power series. Equivalent defi-
nitions of monogenic functions

and possibly also:
Monogenic functions in infinite-dimensional vector spaces associated with the three-dimensional

Laplace equation.

Bibliography:

Main:
1. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Amer. Math. Soc.,

Providence, R.I. (1957)
2. Lorch, E.R.: The theory of analytic function in normed abelin vector rings. Trans. Amer.

Math. Soc. 54, 414–425 (1943)
3. Blum, E.K.: A theory of analytic functions in Banach algebras. Trans. Amer. Math. Soc.

78, 343–370 (1955)
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4. Plaksa, S.A.: Commutative algebras associated with classic equations of mathematical
physics. In: Rogosin, S.V., Koroleva, A.A. (eds) Advances in Applied Analysis, Trends in
Mathematics, pp. 177–223. Springer, Basel (2012)

5. Plaksa, S.A., Gryshchuk, S.V., Shpakivskyi, V.S.: Commutative algebras of monogenic
functions associated with classic equations of mathematical physic. In: Agranovsky, M., Ben-
Artzi, M., Galloway, G., Karp, L., Reich, S., Shoikhet, D., Weinstein, G., Zalcman, L. (eds.)
Complex Analysis and Dynamical Systems IV, pp. 245–258. Contemporary Mathematics, 553,
Amer. Math. Soc., Providence, RI (2011)

6. Plaksa, S.A., Shpakovskii, V.S.: Constructive description of monogenic functions in a
harmonic algebra of the third rank. Ukr. Math. J., 62 (8), 1251–1266 (2011)

7. Grishchuk, S.V., Plaksa, S.A.: Monogenic functions in a biharmonic algebra. Ukr. Math.
J., 61 (12), 1865–1876 (2009)

8. Grishchuk, S.V., Plaksa, S.A.: Basic properties of monogenic functions in a biharmonic
plane. In: Agranovsky, M., Ben-Artzi, M., Galloway, G., Karp, L., Maz’ya, V., Reich, S.,
Shoikhet, D., Weinstein, G., Zalcman, L. (eds.) Complex Analysis and Dynamical Systems V,
pp. 127–134. Contemporary Mathematics, 591, Amer. Math. Soc., Providence, RI (2013)

Additional:
1. Shpakivskyi, V.S.: Constructive description of monogenic functions in a finite-dimensional

commutative associative algebra. Adv. Pure Appl. Math., 7 (1), 63—75 (2016)
2. Plaksa, S.A., Shpakivskyi, V.S.: Cauchy theorem for a surface integral in commutative

algebras. Complex Variables and Elliptic Equations. 59 (1), 110–119 (2014)
3. Plaksa, S.A., Shpakovskii, V.S.: On the logarithmic residues of monogenic functions in

a three-dimensional harmonic algebra with two-dimensional radical. Ukr. Math. J., 65 (7),
1079–1086 (2013)

4. Tkachuk, M.V., Plaksa, S.A.: An analog of the Menchov–Trokhimchuk theorem for
monogenic functions in a three-dimensional commutative algebra. Ukr. Math. J. 73 (8), 1299–
1308 (2022)

5. Plaksa, S.A., Shpakivskyi, V.S.: Limiting values of the Cauchy type integral in a three-
dimensional harmonic algebra. Eurasian Math. J.. 3 (2), 120–128 (2012)

6. Gryshchuk, S.V., Plaksa, S.A.: Monogenic functions in the biharmonic boundary value
problem. Mathematical Methods in the Applied Sciences. 39 (11), 2939–2952 (2016)
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Harmonic analysis on nilpotent groups

Fulvio Ricci1

1Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa
Email: fulvio.ricci@sns.it

Timetable: 16 hrs. First lecture on January 29, 2024, 15:30 (dates already fixed, see on
https://dottorato.math.unipd.it/calendar/), Torre Archimede, Room 2BC30.

Course requirements: Functional Analysis, Fourier series and Fourier transform in Rn

Examination and grading: Seminar and interview

Aim: Fundamental notions and properties of analysis on Lie groups. Analysis of sublaplacians
on nilpotent groups.

Course contents:
Vector fields on manifolds and their flows. Lie groups and Lie algebras. Convolution on
Lie groups. Dilations and homogeneous groups. Hypoelliptic operators on manifolds and
Lie groups. Sub-elliptic estimates on homogeneous groups. Hörmander’s systems of vector
fields. Hypoellipticity of sublaplacians: preliminaries. Fundamental solutions and subelliptic
estimates.

Bibliography: Notes to be distributed during the course.
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Introduction to Hessenberg Varieties

Eric Sommers
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
Email address: esommers@umass.edu

Timetable: 12 hours. First lecture on Monday, October 9, 2023, 14:00 (dates already fixed,
see on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course Requirements: A year of abstract algebra, some exposure to algebraic varieties.

Examination and Grading: Students will give a talk on an aspect of the subject using a
research article as a basis for the talk.

SSD: MAT/02 and MAT/03

Aim: Hessenberg varieties are projective subvarieties of the flag variety, which appear as fibers
of proper maps to affine subvarieties of the Lie algebra. They are generalizations of the Springer
varieties that play a central role in the representation theory of finite Chevalley groups, as well
as the infinite-dimensional representation theory of real Lie algebras. Hessenberg varieties are
smooth in the regular semisimple case and their cohomology carries a still mysterious repre-
sentation of the Weyl group, but it is the geometry of the regular nilpotent Hessenberg varieties
that play a more direct role in the singularities of the nilpotent cone and their local intersec-
tion cohomology groups. Hessenberg varieties are also interesting due to their connections to
algebraic combinatorics via chromatic quasisymmetric functions. The aim of this course is to
supply some of the background in Lie theory and combinatorics to read the current literature
on Hessenberg varieties and their applications to representation theory and algebraic combina-
torics.

Course contents:
1. Roots systems, Weyl groups, and related invariant theory.

2. The symmetric group setting. Symmetric functions.

3. The geometry of the flag variety. Bruhat decomposition and Schubert varieties. Bruhat
order.

4. Springer varieties and statement of the Springer correspondence. Examples for the sym-
metric group and in rank 2.

5. Hessenberg varieties and their geometry. Vanishing of cohomology in odd degree. Poincaré
polynomials.

6. Connections to combinatorics: chromatic quasisymmetric functions, the dot-action repre-
sentation, and the Stanley-Stembridge conjecture.

7. Computational methods. Example: computing the dimensions of irreducible representa-
tions of the Weyl groups via the Springer correspondence.
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Bibliography
[1] Walter Borho and Robert MacPherson. Partial resolutions of nilpotent varieties. In

Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101 of
Astérisque, pages 23–74. Soc. Math. France, Paris, 1983.

[2] Patrick Brosnan and Timothy Y. Chow. Unit interval orders and the dot action on the
cohomology of regular semisimple Hessenberg varieties. Adv. Math., 329:955–1001,
2018.

[3] Roger W. Carter. Finite groups of Lie type. Wiley Classics Library. John Wiley & Sons,
Ltd., Chichester, 1993.

[4] Paola Cellini and Paolo Papi. ad-nilpotent ideals of a Borel subalgebra. J. Algebra,
225(1):130–141, 2000.

[5] Corrado De Concini, George Lusztig, and Claudio Procesi. Homology of the zero-set
of a nilpotent vector field on a flag manifold. J. Amer. Math. Soc., 1(1):15–34, 1988.

[6] Jens Carsten Jantzen. Nilpotent orbits in representation theory. In Lie theory, volume
228 of Progr. Math., pages 1–211. Birkhäuser Boston, Boston, MA, 2004.

[7] Filippo de Mari, Claudio Procesi, and Mark A. Shayman. Hessenberg varieties Trans.
Amer. Math. Soc., 332(2):529–534, 1992.

[8] Marth Precup and Eric Sommers. Perverse sheaves, nilpotent Hessenberg vari-
eties, and the modular law Accepted in Pure and Applied Mathematics Quarterly,
arXiv:2201.13346. 27 pages.

[9] John Shareshian and Michelle L. Wachs. Chromatic quasisymmetric functions. Adv.
Math., 295:497–551, 2016.

[10] Eric Sommers and Julianna Tymoczko. Exponents for B-stable ideals. Trans. Amer.
Math. Soc., 358(8):3493–3509, 2006.
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Courses of the “Computational Mathematics” area



Linear and non-linear formulations
for Combinatorial Optimization

Manuel Francesco Aprile1

1Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: manuel.aprile@unipd.it

Timetable: 16 hrs. First lecture on Tuesday April 9th, 2024, 10:30 (dates already fixed, see on
https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: None. Familiarity with basic concepts in geometry of polyhedra and
discrete optimization will be helpful.

Examination and grading: Seminar.

SSD: MAT/09

Aim: Combinatorial optimization problems are ubiquitous in many fields, spanning from lo-
gistics and artificial intelligence to computational biology. The crux of solving such problems
lies in efficiently selecting an optimal solution from a finite but very large set of objects. This
course aims to equip students with a toolkit of techniques to construct effective mathematical
programming formulations for these combinatorial problems. Special emphasis will be placed
on exploring “hot” topics that have undergone substantial advancements in recent years, such
as extended formulations. Moreover, the course will delve into intriguing connections between
combinatorial optimization and other fields such as computational complexity.

Course contents:
• Classical linear formulations from the literature.

• Extended formulations: Yannakakis’ theorem, connection with communication protocols.

• Positive and negative results on the existence of small extended formulations.

• Semidefinite formulations.

• Introduction to hierarchies: from Sherali-Adams to Sum of Squares.

Bibliography:
Relevant material and research papers will be provided during the course. Most of the topics
covered can be found in: Conforti, Cornuéjols, Zambelli (2014).
Integer programming. Springer International Publishing.
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Kernels and Partitions of Regular Domains
and Compact Sets

Martin Buhmann1

1Justus-Liebig-Universität Giessen, Germany
Email: buhmann@math.uni-giessen.de

Timetable: 13 hrs. First lecture on November 21, 2023, 12:30 (date already fixed, see calendar
on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Recommended: Numerical Analysis I and Analysis I and II or Approx-
imation Theory

Examination and grading:

Aim: Understanding the particulars of the approximtion theory of many variables, namely
kernel-based methods for regular and scattered data, interpolation vs. quasi-interpolation in-
cluding polynomial reproduction, positive and strictly positive interpolation matrices and kernel
functions, partitions of compact spaces and polynomial precision, topology of regular domains
(mostly conic sections) and compact metric spaces.

Course contents: 13 hours, one introduction, four parts with three hours each

• 0. Part: Introduction
• I. Part: Basics on Kernels and Quasi-Interpolation.

1. Interpolation in several variables by polynomials and otherwise.
2. Kernel functions for interpolation; radial basis functions and main examples. Com-

plete and multiple monotonicity.
3. Concept of Quasi-Interpolation and compariion with interpolation.

• II. Part: Positive Definite Functions on Regular Domains, especially Spheres.
1. Positive definiteness, strictly and semi positive definiteness of functions and interpo-

lation matrices.
2. Positive definite functions on spheres in many dimensions.
3. Positive definite functions on other conic sections and on simplices.

• III. Part: Polynomial Reproduction with Kernels.
1. Concept of polynomial reproduction especially with quasi-interpolation.
2. Relation of this to approximation orders; examples.
3. Conditions for polynomial precision, examples especially with respect to partitions

of unity.
• IV. Part: Partitions of Compact Sets.

1. Quadrature methods.
2. Partitions of compact sets for cubature.
3. Generalisations to compact metric spaces.
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Stochastic and mean field optimal control

Alekos Cecchin1

1Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: alekos.cecchin@unipd.it

Timetable: 16 hours; first lecture on November 6th, 2023, 10:30 (date already fixed, see calen-
dar on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Basic knowledge of stochastic calculus (Brownian motion, stochastic
differential equations, filtrations, martingales, ...), as presented, for example, in the course on
stochastic analysis of the master degree. Some concepts will be recalled during the course.

Examination and grading: Oral presentation of a research paper related to the topics covered
in the course, based on student’s interest.

SSD: MAT/06 and MAT/05.

Aim: Introduce the classical tools to analyze stochastic optimal control problems (dynamic pro-
gramming, viscosity solutions, backward SDEs, relaxed controls) and then use these methods
to study the recent theory of mean field control problems.

Course contents: Introduction to the classical theory of stochastic control problems with some
motivating example. These problems consist in minimizing a cost in which the state variable is
given by a controlled stochastic differential equation driven by a Brownian motion. The course
will then cover the following topics:

• Equivalence of weak and strong formulation, existence of optimal relaxed controls via
weak convergence methods;

• Dynamic programming principle: value function, Hamilton-Jacobi-Bellman equation, ver-
ification theorem, viscosity solutions of second order PDEs;

• Backward stochastic differential equations: representation of the value function for the
weak formulation, necessary conditions for optimality given by the stochastic Pontryagin’s
maximum principle, relation with dynamic programming equation.

In the second part, we introduce the recent thoery of mean field control problems, also called
optimal control of McKean-Vlasov dynamics. In these problems, the cost and the coefficients of
the state equation depend also on the law of the state process, and can be reformulated as optimal
control of the Fokker-Planck equation. We show how to extend the results established for the
classical problem to the mean field case. In particular, the Hamilton-Jacobi-Bellman equation
is stated in the Wasserstein space of probability measures, which is infinite dimensional. Thus
we introduce a notion of differentiability of functions defined on the Wasserstein space.
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A renormalisation group approach
to log-Sobolev inequalities

Alberto Chiarini1, Giovanni Conforti2

1Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: alberto.chiarini@unipd.it
2Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova
Email: giovanni.conforti@unipd.it

Timetable: 16 hrs. First lecture on Monday March 4, 2024, 14:30 (dates already fixed, see on
https://dottorato.math.unipd.it/calendar/), Torre Archimede, Room 2BC30

Course requirements: Elements of Stochastic Analysis and Partial Differential Equations;

Examination and grading: Oral exam;

SSD:

Aim: In this course we survey a novel renormalization group approach to log-Sobolev inequal-
ities and to related properties of Glauber-Langevin dynamics. Interestingly, this approach is
related to more or less recent theories, such as Eldan’s stochastic localization, optimal transport
and stochastic control. In particular, the course will elucidate the link between the Polchinski
flow and Hamilton-Jacobi-Bellman equations. The course is mainly based on the survey article
[3] by Bauerschmidt, Bodineau and Dagallier.

Course contents:
The course is divided in 8 Lectures of 2 hours each to be spread in two/three weeks. The rough
plan of the lectures is the following:

1. Introduction to Glauber-Langevin dynamics and convergence to equilibrium.

2. Log-Sobolev inequality, Hypercontractivty and Bakry-Émery Theorem.

3. Renormalized potential and the Polchinski equation.

4. Log-Sobolev inequality via a multiscale Bakry-Émery method.

5. Pathwise Polchinski flow and stochastic localisation perspective.

6. Stochastic control and transport perspective on the Polchinski flow.

7. Application to a spin glass model.

8. Application to entropic optimal transport.

Bibliography:
[1 ] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov

diffusion operators, volume 103. Springer, 2014.

[2 ] Roland Bauerschmidt and Thierry Bodineau. Log-sobolev inequality for the continuum
sine-gordon model. Communications on Pure and Applied Mathematics, 74(10):2064–2113,
2021.
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Interface of Finance, Operations and
Risk Management

Andrea Roncoroni1

1 ESSEC Business School, Cergy-Pontoise, France
Email: roncoroni@essec.edu

Timetable: 16 hrs. First lecture on October 5th, 2023, 12:30, (date already fixed, see calendar
on https://dottorato.math.unipd.it/calendar), Torre Archimede, Room 2BC30.

Course requirements: Introductory financial derivatives and arbitrage pricing theory

Examination and grading: Project work

SSD:

Aim: This course offers an introduction to the Interfaces of Finance, Operations, and Risk
Management (iFORM) with a focus on Integrated Risk Management (IRM). This is a relatively
new research area dealing with timely, complex, and boundary-spanning issues in a variety of
commercial and industrial setups. iFORM research work addresses ways to better integrate
physical, financial, and informational flows by combining the operational choices of the firm
with its financial decisions and merging information flows between the firm and its customers
and suppliers with informational flows between the firm and its investors. We highlight the
main standing, emerging, and forthcoming contributions in IRM.

Course contents:

1. iFORM and IRM (3h)

• A closed-loop view of operations-finance interfaces.
• A framework for integrated risk management.
• Risk identification, integration conditions, and operational vs. financial flexibility.
• IRM optimization: relationship analysis and approach choice.

2. Static hedging (3h)

• Contingent claim design: linear, piecewise linear, parametric, custom.
• Business exposure. Examples: Primary commodity production, Stochastic clearance

price model, Generalized newsvendor model, Multinational production capacity allo-
cation.

• Direct hedging, cross hedging, and combined hedging.
• Mathematical formulations of optimal custom static hedging. Operational handling

integration.

3. Sample models (4h)

• Claim design models: Brennan-Solanki (1981), Carr-Madan (2001).
• Static hedging models with nonclaimable risk: McKinnon (1967), Rolfo (1980),

Brown-Toft (2002).
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• IRM models: Ritchken-Tapiero (1986), Chowdhry-Howe (1999), Gaur-Seshadri (2005),
Ding-Dong-Kouvelis (2007), Chen et al. (2015).

• The simplest IRM model with combined custom hedging.

4. Combined custom hedging (6h)

• Problem statement and solution existence and uniqueness. Examples.
• The design integral equation system.
• Corporate value assessment.
• Newsvendor IRM with combined custom hedging: solution and analysis.

Bibliography:

1. Birge, J.R. (2015). OM Forum-Operations and Finance Interactions. Manufacturing &
Service Operations Management 17(1), 4-15.

2. Brennan, M.J., Solanki, R. (1981). Optimal Portfolio Insurance. Journal of Financial and
Quantitative Analysis 16(3), 279-300.

3. Brown, G.W. and Toft, K.B. (2002). How Firms Should Hedge. Review of Financial
Studies 14, 1283-1324.

4. Chen, L., Li, S., Wang, L. (2014). Capacity Planning with Financial and Operational
Hedging in Low-Cost Countries. Production and Operations Management 23, 1495-1510.

5. Chowdhry, B., Howe, J. T. B. (1999). Corporate Risk Management for Multinational
Corporations: Financial and Operational Hedging Policies. European Finance Review 2,
229-246.

6. Ding, Q., Dong, L., Kouvelis, P. (2007). On the Integration of Production and Financial
Hedging Decisions in Global Markets. Operations Research 55, 470-489.

7. Gaur, V., Seshadri, S. (2005). Hedging Inventory Risk Through Market Instruments. Man-
ufacturing & Service Operations Management 7(2), 103-120.

8. Guiotto, P., Roncoroni, A. (2022). Combined Custom Hedging. Operations Research
70(1), 38-54.

9. Roncoroni, A. (2022): Lecture notes.

10. McKinnon, R. (1967). Futures Markets, Buffer Stocks, and Income Stability for Primary
Producers. Journal of Political Economy 75, 844-861.

11. Ritchken, P.H., Tapiero, C.S. (1986). Contingent Claims Contracting for Purchasing De-
cisions in Inventory Management. Operations Research 34(6), 864-870.

12. Rolfo, J. (1980). Optimal Hedging under Price and Quantity Uncertainty: The Case of a
Cocoa Producer. Journal of Political Economy 88, 100-116.

13. Zhao, L., Huchzermeier, A. (2015). Operations–Finance Interface Models: A Literature
Review and Framework. European Journal of Operational Research 244, 905-917.

14. Zhao, L., Huchzermeier, A. (2017). Integrated Operational and Financial Hedging with
Capacity Reshoring. European Journal of Operational Research 260, 557-570.
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Hawkes processes: from theory to (financial)
practice

Prof. Simone Scotti1

1Dipartimento di Economia e Management, Universit’i. Pisa
Email: simone.scotti@unipi.it

Timetable: 16 hrs. First lecture on April 4th, 2024, 10:30 (dates already fixed, see on -
https://dottorato.math.unipd.it/calendar/), Torre Archimede, Room 2BC30

Course requirements: Probability and Stochastic Calculus (basic)

Examination and grading: Oral presentation (seminar) of a research paper related to the topic
of the course.

SSD: MAT/06, SECS-S/06

Aim: Events that are observed over time naturally show clustering phenomena: an earthquake
happening increases the probability of so-called aftershocks, namely minor readjustments along
the portion of a fault that slipped during the mainshock. Similar clustering patterns are observed,
e.g., in criminology, when dealing with certain types of crime data, such as burglary and gang
violence, due to crime specific patterns of criminal behaviour. As a last example, in financial
markets, selling a huge amount of a stock could induce successive selling activity with relative
jumps clustering in the price or, on a larger scale, the collapse of an investment bank could
create a financial turmoil and shock-waves through the world’s financial centres.

Hawkes processes were introduced for the first time by A. Hawkes in 1971 to model the oc-
currence of seismic events. They are stochastic point processes particularly suitable to describe
these self-exciting phenomena, in which the occurrence of an event increases the probability of
a future arrival of another event. For this reason, they are also known under the name of “self-
exciting point processes” and they have been applied in numerous fields throughout science,
computer science, engineering, and human sciences.

More precisely, on a filtered probability space, denoting by N the counting process, i.e., Nt

is the random variable counting the number of relevant events on the time interval (0; t), we
define the conditional intensity

λt := lim
∆→0

E [Nt+∆ −NtFt]

where Ft denotes the information available up to time t. The original self-exciting process is
defined via an intensity that is a function of past events:

λt := µ+

∫ t

0

γ(t− u)dNu = µ+
∑

Ti<t

γ(t− Ti)

where 0 < T1 < T2 < · · · < Tn < . . . are the time instants at which the relevant events occur,
µ is a base level for the intensity and γ(u) ≥, u > 0, u > 0 is the exciting kernel. So, each event
makes the intensity jump upwardly and then, between successive events, it decays according
to the function γ. A typical kernel is γ(u) = αβe−βu, for α, β > 0 and in this case the pair
(N, λ) is a Markov process. The aim of this PhD course at the University of Padova is to pro-
vide a rigorous Mathematical introduction to point processes and a solid basis on the necessary
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Stochastic Calculus tools needed to handle models based on Hawkes processes. Markovianity,
which represents a desired theoretical property of typical stochastic models, will also be dis-
cussed, as opposed to modeling with memory, hence leading to non-Markovian settings. This
dilemma Markov/non-Markov opens the door to technical challenges, some of which are still
the object of an active debate and a rich stream of research. A Statistical overview, with many
Mathematical hints, will be also given on simulation of Hawkes processes and estimation of
Hawkes-based models. The connection with branching processes, alpha stable processes and
Volterra processes (with and without jumps) will also be discussed. To conclude, recent appli-
cations to Finance will be covered, together with possible other uses, at the frontier of research,
in different research fields.

Course contents: the 16 hours course will cover the following topics, in 8 lectures:

1 & 2 Probability and Statistics background: counting, Poisson and Cox processes; the def-
inition and the role of the intensity and examples from Economics and Finance. Basic
Statistics: graphical analysis, Kolmogorov Smirnov test.

3 & 4 Hawkes Processes: definition, properties, the self exciting feature and dynamic conta-
gion. Markovian and non-Markovian Hawkes processes: related challenges.

5 Simulation: the intensity-based and the cluster-based approaches. Estimation: parametric or
non parametric?

6 Possible extensions: branching processes, alpha stable processes and Volterra processes with
jumps.

7 Application to Finance: stochastic volatility nowadays, memory or not? Jumps cluster anal-
ysis.

8 Other applications: insurance and market microstructure

References:

[1 ] Bernis, G., Scotti, S. Clustering effects via Hawkes processes. In: From probability to
finance, 2020, Springer, pp. 145–181.

[2 ] Dassios, A., Zhao, H. A dynamic contagion process. Advances in Applied Probability,
43(3), 2011, pp. 814–846.

[3 ] Hawkes, A. Point Spectra of Some Mutually Exciting Point Processes. Journal of the Royal
Statistical Society: Series B (Methodological), 33(3), 1971, pp. 438–443.

[4 ] Hawkes, A. Hawkes processes and their applications to finance: a review. Quantitative
Finance, 18(2), 2018, pp. 193–198.

[5 ] Jaisson, T., Rosenbaum, M. Limit theorems for nearly unstable Hawkes processes. Annals
of Applied Probability, 25(2), 2015, pp. 600–631.

[6 ] Jang, J., Oh, R. A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic
contagion process and their compound processes. Annals of actuarial Science, 15(3),
2021,pp. 623–644.

[7 ] Jiao, Y., Ma, C., Scotti, S., Zhou, C. The Alpha-Heston stochastic volatility model. Math-
ematical finance, 31(3), 2021, pp. 943–978.

[8 ] Raffaelli, I., Scotti, S., Toscano, G. Hawkes-Driven Stochastic Volatility Models: Goodness-
of-Fit Testing of Alternative Intensity Specifications with S&P500 Data, preprint 2022.
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Doctoral Program in Mathematical Sciences 

a.a. 2023/2024 

 

SOFT SKILLS 

 

MATHS INFORMATION: RETRIEVING, MANAGING, EVALUATING, PUBLISHING 

(Information Literacy for Math Phd Students) 

 

Abstract: This course deals with the bibliographic databases and the resources provided by the University of 

Padova; citation databases and metrics for research evaluation; open access publishing and the submission 

of PhD theses and research data in UniPd institutional repositories.  

 

Course Program: 5 Seminars (missing details will be communicated soon) 

1. The advanced services of “Math Library” and of the “University Library System” (hrs 01:30) 

Digital Library and GalileoDiscovery: the use of the physical and electronic resources of the University 
libraries, in particular e-books and e-journals.  
The advanced services of the library: remote access, document delivery and interlibrary loan. 

The Seminar is aimed at all Doctoral Students 

2. The Bibliographic research and advanced features of MathSciNet (hrs 02:00) 

MathSciNet: research strategies with examples. 
Advanced features: full-text retrieval in MSN, references export, the bibliometric index MCQ. 
A view of the multidisciplinary databases Web of Science and Scopus. 

The Seminar is aimed at all Doctoral Students 

3. Scientific communication and open access (hrs 02:00) 
Traditional publishing market and open access publishing, the way to Open Access and CC licences. 
Unipd policy and regulations for OA, the institutional and disciplinary repositories. 

The Seminar is aimed at all Doctoral Students 

4. A reference manager for the management of bibliographies: Zotero (hrs 01:00) 

5. Where to publish and the evaluation of academic research (hrs 01:30) 
 

Language: The Course will be held in Italian or in English according to the participants  

 

Timetable:   

Seminar 1 November 17th, 2023 – 10:30-12:30, room 2AB45 

Seminar 2 December 5th, 2023 – 10:00-12:30, room 2BC30 

Seminar 3 May 6th, 2024 – 09:00-11:00, Meeting Room 7B1 

Seminar 4 Scheduled in May (more details soon) 

Seminar 5  
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Doctoral Program in Mathematical Sciences 

a.a. 2023/2024 
 

SOFT SKILLS 

 

 

 

Introduction to the use of “Mathematica”  

in Mathematics and Science 
Prof. Francesco Fassò 

 

 

Timetable: 12 hours. First lecture on Friday October 6th, 2023, at 12:30, Room 1C150. 

 

Pratical infos: 

All PhD students may have a license of Mathematica (provided by the campus Unipd license): 
https://asit.unipd.it/servizi/contratti-software-licenze/mathematica,  installed on a personal machine 

 

Course content:  

The aim of this soft skill course is to provide the basic competences to use the symbolic, numerical and 
graphical capabilities of Mathematica, with a focus on the needs of mathematicians and scientists. The course 
is a hands-on course, which takes place entirely in a computer lab. A first part of the course, for a total of 
about 5-6 hours in 2-3 sessions, will assume no previous knowledge of Mathematica and provides the 
capabilities to use it at a basic ("everyday") level. 

For interested students, a second and more advanced part of the course will provide an introduction to 
(functional) programming with Mathematica (with an eye on the needs of a mathematician, of course). 

 

 

 

 

 

 



Doctoral Program in Mathematical Sciences 

a.a. 2023/2024 

 

SOFT SKILLS 

 

 

 

Our experience in writing a successful post doctoral application  

(Proff. Annalisa Massaccesi and Elio Marconi) 
 

 

Timetable: 2 hours. Thursday, May 16th, from 10.00 to (at most) 12.00, room 2BC30, in dual form (in 

presence and via Zoom) 

 

Pratical infos: registration list at https://servizi-esterno.math.unipd.it/userlist/lista/view?id=89 
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Courses in collaboration with the Doctoral School
on “Information Engineering”

for complete Catalogue and class schedule see on

https://phd.dei.unipd.it/course-catalogues/

Please check regularly the website of the Doctoral Course

Calendar of activities on

https://calendar.google.com/calendar/u/0/embed?src=

fvsl9bgkbnhhkqp5mmqpiurn6c@group.calendar.google.com&ctz=Europe/Rome



Distributed Machine Learning and Optimization:
from ADMM to Federated and multiegent
Reinforcement Learning

Prof. Subhrakanti Dey1

1 Signals and Systems, Uppsala University, Sweden
Email: Subhra.Dey@signal.uu.se

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Advanced calculus, and probability theory and random processes.

Examination and grading: A project A project assignment for students in groups of 2 requir-
ing about 20 hours of work.

SSD:

Aim: The aim of this course is to introduce postgraduate students to the topical area of Dis-
tributed Machine Learning and Optimization. As we enter the era of Big Data, engineers and
computer scientists face the unenviable task of dealing with massive amounts of data to anal-
yse and run their algorithms on. Often such data reside in many different computing nodes
which communicate over a network, and the availability and processing of the entire data set
at one central place is simply infeasible. One needs to thus implement distributed optimization
techniques with communicationefficient message passing amongst the computing nodes. The
objective remains to achieve a solution that can be as close as possible to the solution to the
centralized optimization problem. In this course, we will start with distributed optimization
algorithms such as the Alternating Direction Method of Multipliers (ADMM), and discuss its
applications to both convex and non-convex problems. We will then explore distributed statis-
tical machine learning methods, such as Federated Learning as well as consensus based fully
distributed algorithms. The final topic will be based on multi-agent reinforcement learning and
its applications to safe (constrained) data-driven (model free) control in a multi-agent setting.
This course will provide a glimpse into this fascinating subject, and will be of relevance to grad-
uate students in Electrical, Mechanical and Computer Engineering, Computer Science students,
as well as graduate students in Applied Mathematics and Statistics, along with students dealing
with large data sets and machine learning applications to Bioinformatics.

Course contents:
• Lectures 1-4: Precursors to distributed optimization algorithms: parallelization and de-

composition of optimization algorithms (dual de- composition, proximal minimization
algorithms, augmented Lagrangian and method of multipliers), The Alternating Direction
Method of Multipliers (ADMM): (Algorithm, convergence, optimality conditions, appli-
cations to machine learning problems)

• Lectures 5-7: Applications of distributed optimization to distributed machine learning,
Federated Learning, fully distributed, consensus based methods under communication
constraints
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• Lectures 8-10: Multiagent reinforcement learning, safe (constrained) reinforcement learn-
ing and its applications to data-driven multiagent control, inverse reinforcement learning

References:

1. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and
Trends in Machine Learning, 3(1):1122, 2011.

2. Dimitri Bertsekas and John N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, 1997.

3. S. Boyd and L. Vandenverghe, Convex Optimization, Cambridge University Press.

4. R. Sutton and A. G. Barto, Reinforcement Learning, 2nd Edition, Bradford Books.

5. D. Bertsekas, Rollout, Policy Iteration and Distributed Reinforcement Learning, Athena
Scientific, 2020.

Relevant recent papers will be referred to and distributed during the lectures.
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Bayesian Machine Learning

Giorgio Maria Di Nunzio1

1 Department of Information Engineering
Email: dinunzio@dei.unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Basics of Probability Theory. Basics of R Programming.

Examination and grading: Homework assignments and final project.

SSD: Information Engineering

Aim: The course will introduce fundamental topics in Bayesian reasoning and how they apply
to machine learning problems. In this course, we will present pros and cons of Bayesian ap-
proaches and we will develop a graphical tool to analyse the assumptions of these approaches
in classical machine learning problems such as classification and regression.

Course contents:

1. Introduction of classical machine learning problems.

• Mathematical framework
• Supervised and unsupervised learning

2. Bayesian decision theory

• Two-category classification
• Minimum-error-rate classification
• Bayes decision theory
• Decision surfaces

3. Estimation

• Maximum Likelihood Estimation
• Expectation Maximization
• Maximum A Posteriori
• Bayesian approach

4. Graphical models

• Bayesian networks
• Two-dimensional visualization

5. Evaluation

• Measures of accuracy

References:

1. J. Kruschke, Doing Bayesian Data Analysis: A Tutorial Introduction With R and Bugs,
Academic Press 2010
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2. Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics), Springer 2007

3. Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification (2nd Edition),
Wiley-Interscience, 2000

4. Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin, Learning from Data, AML-
Book, 2012 (supporting material available at http://amlbook.com/support.html)

5. David J. C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, 2003 (freely available and supporting material at
http://www.inference.phy.cam.ac.uk/mackay/

6. David Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press,
2012 (freely available at
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=

7. Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012 (sup-
porting material http://www.cs.ubc.ca/ murphyk/MLbook/)

8. Richard McElreath, Statistical Rethinking, CRC Presso, 2015
(supporting material https://xcelab.net/rm/statistical-rethinking/)
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Analysis and Control of Multi-agent Systems

Marco Fabris1

1 Department of Information Engineering
Email: marco.fabris.1@unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Linear Algebra and basic Calculus

Examination and grading: oral presentation of either any topic contained in the references
[2], [3], [5], [6], [9], [10] or any other related work in the scientific literature that may also
include the own student’s research

SSD: Information Engineering

Aim: Multi-agent systems (MASs), or networked dynamic systems (NDS), are systems com-
posed of dynamic agents that interact with each other over an information exchange network.
These systems can be used to perform team objectives with applications ranging from formation
flying to distributed computation. Challenges associated with these systems are their analysis
and synthesis, arising due to their decoupled, distributed, large-scale nature, and due to lim-
ited interagent sensing and communication capabilities. This course provides an introduction to
these systems via tools from graph theory, dynamic systems and control theory. The course will
cover a variety of modeling techniques for different types of networked systems and proceed
to show how their properties, such as stability, performance and security, can be analyzed. The
course will also explore techniques for designing these systems. The course will also cover
novel applications by presenting recent results obtained in the secure-by-design consensus and
optimal time-invariant formation tracking.

Course contents:

• Lecture 1. Introduction to MASs, synchronization and coordination, illustration of the
course goals. Modeling NDSs and related examples such as opinion dynamics, wireless
sensing networks, robot rendezvous, cyclic pursuit.

• Lecture 2. Elements of graph theory: basic notation and algebraic graph theory.

• Lecture 3. Consensus theory: the linear agreement protocol both in continuous and dis-
crete time, firstly for unweighted graphs and then for weighted digraphs.

• Lecture 4. Secure-by-design linear agreement protocol against edge-weight perturbations
seen as an application of the small-gain theorem.

• Lecture 5. The nonlinear agreement protocol along with examples such as coupled oscil-
lators and the Kuramoto model. Passivity as a tool to analyze stability of the nonlinear
agreement protocol.

• Lectures 6-7. Formation control: gradient dynamics and potential-based control. Rigidity
theory. A distance-based formation controller and its stability analysis.

• Lecture 8. The optimal time-invariant formation tracking (OIFT) problem as an applica-
tion of the Pontryagin’s Maximum Principle. Distributed OIFT.
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• Lectures 9-10. Bearing-based formation control. Bearing rigidity. A bearing-only forma-
tion controller. Bearing-based formation maneuvering.

References:
1 D. Zelazo’s Ph.D. course “Analysis and Control of Multi-agent systems”, held at the De-

partment of Information Engineering (UniPD), 2019.

2 F. Bullo with the contribution of Jorge Cortés, Florian Dörfler, and Sonia Martı́nez, “Lec-
tures on Networked Systems”, Vol. 1. No. 3. Seattle, DC, USA: Kindle Direct Publishing,
2020.

3 M. Mehran and M. Egerstedt, “Graph theoretic methods in multiagent networks”, Prince-
ton University Press, 2010.

4 R. A. Horn and C. R. Johnson, “Matrix Analysis”, Cambridge University Press, 1990.

5 C. Godsil and G. Royle, “Algebraic Graph Theory”, Springer, 2009.

6 F. R. K. Chung, “Spectral graph theory”, Vol. 92. American Mathematical Soc., 1997.

7 M. Fabris and D. Zelazo, “Secure consensus via objective coding: Robustness analysis
to channel tampering”, IEEE Transactions on Systems, Man, and Cybernetics: Systems
52.12 (2022): 7885-7897.

8 M. Fabris and D. Zelazo, “A Robustness Analysis to Structured Channel Tampering over
Secureby- design Consensus Networks”, IEEE Control Systems Letters, 2023.

9 W. Ren and R. Beard, “Distributed Consensus in Multi-Vehicle Cooperative Control”,
Springer, 2008.

10 H. S. Ahn, “Formation control”, Springer International Publishing, 2020.

11 M. Fabris, A. Cenedese and J. Hauser, ”Optimal time-invariant formation tracking for a
secondorder multi-agent system”, 18th European Control Conference (ECC). IEEE, 2019.

12 M. Fabris and A. Cenedese, “Optimal Time-Invariant Distributed Formation Tracking for
Second- Order Multi-Agent Systems”, arXiv preprint arXiv:2307.12235 (2023).

13 S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-only formation stabi-
lization” IEEE Transactions on Automatic Control 61.5 (2015): 1255-1268.

Further potentially relevant recent papers will be referred to and distributed during the lectures.
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Applied Functional Analysis and
Machine Learning

Prof. Gianluigi Pillonetto1

1Department of Information Engineering, Univ. Padova
e-mail: giapi@dei.unipd.it

Timetable: 28 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Enrollment: add the course to the list of courses you plan to attend using the Course Enrollment
Form (requires SSO authentication) and, if you are taking the course for credits, to the Study
and Research Plan.

Course requirements: The classical theory of functions of real variable: limits and continuity,
differentiation and Riemann integration, infinite series and uniform convergence. The arith-
metic of complex numbers and the basic properties of the complex exponential function. Some
elementary set theory. A bit of linear algebra.

Examination and grading: Homework assignments and final test.

SSD: Information Engineering

Aim: The course is intended to give a survey of the basic aspects of functional analysis, machine
learning, regularization theory and inverse problems.

Course contents:
Review of some notions on metric spaces and Lebesgue integration: Metric spaces. Open

sets, closed sets, neighborhoods. Convergence, Cauchy sequences, completeness. Completion
of metric spaces. Review of the Lebesgue integration theory. Lebesgue spaces.

Banach and Hilbert spaces: Finite dimensional normed spaces and subspaces. Compactness
and finite dimension. Bounded linear operators. Linear functionals. The finite dimensional
case. Normed spaces of operators and the dual space. Weak topologies. Inner product spaces
and Hilbert spaces. Orthogonal complements and direct sums. Orthonormal sets and sequences.
Representation of functionals on Hilbert spaces.

Reproducing kernel Hilbert spaces, inverse problems and regularization theory: Represen-
ter theorem. Reproducing Kernel Hilbert Spaces (RKHS): definition and basic properties. Ex-
amples of RKHS. Function estimation problems in RKHS. Tikhonov regularization. Support
vector regression and classification. Extensions of the theory to deep kernel-based networks:
multi-valued RKHSs and the concatenated Representer Theorem.

References:
1. G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, L. Ljung. Regularized System Identifi-

cation – learning dynamic models from data, Springer Nature 2022

2. W. Rudin. Real and Complex Analysis, McGraw Hill, 2006

3. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006
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4. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer
2010

5. G. Pillonetto, A. Aravkin, D. Gedon, L. Ljung, A.H. Ribeiro and T.B. Schön, Deep net-
works for system identification: a Survey, eprint 2301.12832 arXiv, 2023
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Heuristics for Mathematical Optimization

Prof. Domenico Salvagnin1

1 Department of Information Engineering, Padova
email: dominiqs@gmail.com - domenico.salvagnin@unipd.it

Timetable: 20 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements:
- Moderate programming skills (on a language of choice)
- Basics in linear/integer programming.

Examination and grading: Final programming project.

SSD: Information Engineering

Aim: Make the students familiar with the most common mathematical heuristic approaches to
solve mathematical/combinatorial optimization problems. This includes general strategies like
local search, genetic algorithms and heuristics based on mathematical models.

Course contents:

• Mathematical optimization problems (intro)

• Heuristics vs exact methods for optimization (intro)

• General principle of heuristic design (diversification, intensification, randomization)

• Local search-based approaches

• Genetic/population based approaches

• The subMIP paradigm

• Applications to selected combinatorial optimization problems: TSP, QAP, facility loca-
tion, scheduling.

References:
1. Gendreau, Potvin “Handbook of Metaheuristics”, 2010

2. Marti, Pardalos, Resende “Handbook of Heuristics”, 2018
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Elements of Deep Learning

Prof. Gian Antonio Susto1

1Department of Information Engineering, Univ. Padova
e-mail: gianantonio.susto@dei.unipd.it

Timetable: 24 hrs (see Class Schedule on https://phd.dei.unipd.it/course-catalogues/)

Course requirements: Basics of Machine Learning and Python Programming.

Examination and grading: Final project.

SSD: Information Engineering

Aim: The course will serve as an introduction to Deep Learning (DL) for students who already
have a basic knowledge of Machine Learning. The course will move from the fundamental
architectures (e.g. CNN and RNN) to hot topics in Deep Learning research.

Course contents:
• Introduction to Deep Learning: context, historical perspective, differences with respect to

classic Machine Learning.

• Feedforward Neural Networks (stochastic gradient descent and optimization).

• Convolutional Neural Networks.

• Neural Networks for Sequence Learning.

• Elements of Deep Natural Language Processing.

• Elements of Deep Reinforcement Learning.

• Unsupervised Learning: Generative Adversarial Neural Networks and Autoencoders.

• Laboratory sessions in Colab.

• Hot topics in current research.

References:
1. Arjovsky, M., Chintala, S., Bottou, L. (2017). Wasserstein GAN. CoRR, abs/1701.07875.

2. Bahdanau, D., Cho, K., Bengio, Y. (2014). Neural Machine Translation by Jointly Learn-
ing to Align and Translate. CoRR, abs/1409.0473.

3. I. Goodfellow, Y. Bengio, A. Courville ‘Deep Learning’, MIT Press, 2016

4. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A.C., Bengio, Y. (2014). Generative Adversarial Nets. NIPS.

5. Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural computation,
9 8, 1735-80.

6. Kalchbrenner, N., Grefenstette, E., Blunsom, P. (2014). A Convolutional Neural Network
for Modelling Sentences. ACL.
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7. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Commun. ACM, 60, 84-90.

8. LeCun, Y. (1998). Gradient-based Learning Applied to Document Recognition.

9. Mikolov, T., Sutskever, I., Chen, K. (2013). Representations of Words and Phrases and
their Compositionality.

10. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. (2010). Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep Network with a Local Denois-
ing Criterion. Journal of Machine Learning Research, 11, 3371-3408.

11. Zaremba, W., Sutskever, I., Vinyals, O. (2014). Recurrent Neural Network Regularization.
CoRR, abs/1409.2329.
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Courses in collaboration with the Doctoral School
on “Economics and Finance”
of the University of Verona

for complete Catalogue and class schedule see on

https://www.dse.univr.it/?ent=oi&ava=&cs=1008&id=746&lang=en

Please check regularly the website of the Doctoral Course



Stochastic Processes in Finance

Sara Svaluto-Ferro1

1Dipartimento di Economia, Universitá di Verona
Email: sara.svalutoferro@univr.it

Timetable: 24 hrs. First lecture on April, 2024, University of Verona, PhD School of Eco-
nomics and Finance.

Examination and grading: Individual written and reasoned report on one of the topics of the
course.

SSD:

Aim: This is a graduate lecture on recent topics in stochastic processes in finance with particular
attention to Markov processes.

Course contents:

Part 1. - Markov processes
1. Stochastic differential equations
2. Semigroups, generators and martingale problems
3. Kolmogorov equations
4. Affine and polynomial (jump)-diffusions

Part 2. Applications
1. Pricing methods for Markovian models
2. Interest rate theory
3. Risk management.

References:

1. Jacod, Jean, and Albert Shiryaev. Limit theorems for stochastic processes. Vol. 288.
Springer Science & Business Media, 2013.

2. Ethier, Stewart N., and Thomas G. Kurtz. Markov processes: characterization and conver-
gence. John Wiley & Sons, 2009.

3. Duffie, Darrell, Damir Filipović, and Walter Schachermayer. ”Affine processes and appli-
cations in finance.” The Annals of Applied Probability 13.3 (2003): 984-1053.

4. Cuchiero, Christa, Martin Keller-Ressel, and Josef Teichmann. ”Polynomial processes
and their applications to mathematical finance.” Finance and Stochastics 16 (2012): 711-
740.

5. Filipović, Damir, and Martin Larsson. ”Polynomial diffusions and applications in fi-
nance.” Finance and Stochastics 20.4 (2016): 931-972.

6. Filipovic, Damir. Term-Structure Models. A Graduate Course. Springer, 2009.
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