

Wireless Networks

Daniele Ronzani

Ph.D in Brain Mind and Computer Science
dronzani@math.unipd.it

A.A. 2015/2016

Introduction

- Routing is a mechanism to send a packet from a source to a destination
 - Routing in a MANET is difficult due to the continue change of topology
 - There are several routing protocols that tackle the problem.
- Focus on position-based protocols in 3D MANETs
 - State-of-the-art of position-based routing protocols in 3D topologies
 - □ 2D → 3D
 - Different performance results

Routing in MANETs (1)

What is a MANET?

- Mobile Ad-hoc Network (MANET)
 - Self-organizing, self-administred network of mobile nodes
 - No fixed infrastructure
 - Interesting, timely and challenging topic
- Drone Ad-hoc Network (DANET)
 - Drones (UAVs) as nodes
 - Several applications
 - Civilian
 - Tactical
 - Emergency
 - Entertainment

Routing in MANETs (2)

What is routing?

- Find a path from a source to a destination
 - Multi-hop routing
- Main routing challenges
 - Link failures
 - Limited bandwidth
 - Limited energy
- Two main approaches
 - Topology-based
 - Position-based

Taxonomy

Taxonomy

Topology-based

- Use information about links
- Routing table
- Proactive, reactive and hybrid approaches
- Reactive approach is more suitable for MANETs
 - Need route only when required
 - There are not continuos table updates
 - AODV, DSR, etc...

...BUT...

Topology-based

- There are some limitation also using these protocols, if we have a <u>very mobile</u> and <u>large</u> networks
 - Huge amount of control traffic
 - Reactive approaches need to flood the request packets
 - Need of a routing table
 - Node memory
 - Need information about entire network
- In limited bandwidth, limited energy and large networks, this is not really nice!!!

NOT SCALABLE!

Position-based

- Use geographic position information for forwarding decision
 - Location service (GPS)
- No need for a routing table
 - Only neighbors' information
- Limited control overhead
- Assumption:
 - Data message contains the location of destination

More scalable

Taxonomy

Single Path Forwarding (1)

- A node sends a single copy of packet to one neighbor
 - Deterministic progress-based
 - Randomized progress-based
 - Face-based

Single Path Forwarding (2)

Deterministic progress-based

- A node forwards the packet to one of its neighbors that make progress to the destination.
 - Greedy strategy
 - Local minima

Failure of greedy forwarding

Single Path Forwarding (3) Randomized progress-based

- Try to solve the local minimum problem
- AB algorithm
 - 1. Selects two candidate nodes using a greedy strategy
 - 2. Choose the next node randomly
- Threshold value on the hop number to stop the forwarding process

Single Path Forwarding (4)

Face-based

- The packet walks adjacent faces to reach the destination
- Graph planarization → planar sub-graph
- Remove cross links

Single Path Forwarding (5)

Face-based

- Right Hand Rule
- Delivey guaranteed in 2D graphs

Multi Path Forwarding

- A node send the same packet to multiple neighbors
- LAR: uses a rectangle that includes transmission ranges of source and destination
- Limited flooding

Extension to 3D

- Position-based routing focused on 2D networks
 - E.g., Vehicular Ad-hoc Networks (VANETs)
 - DANETs are intrinsically 3D
- Difficult to extend 2D concepts to 3D space
 - NO planarization
 - NO above and below a line

Solutions (1/4)

- 3D Deterministic progress-based
 - Extension is trivial
 - Euclidean distance
- 2D

$$dist(u, v) = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2}$$

• 3D

$$dist(u,v) = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2 + (u_z - v_z)^2}$$

Solutions (2/4)

- 3D Randomized progress-based
- AB3D algorithm
 - Candidates are selected above and below a plane
 - The plane passes through C, D and the first candidate n1.

Solutions (3/4)

3D Face

- Project nodes on a plane
- Start face routing on this projected graph
- Packet delivery is not guaranteed!!

Solutions (4/4)

• 3D Flooding (3D LAR)

Simulation Scenario

- NS-2 simulation environment
- Cube of 500 meters of side length
- Transmission range of 100 meters
- Single Packet
 - Network sizes: 50, 100, 150, 200 nodes
 - Application examples: sensor data, pictures

Performance Metrics

- Delivery Rate
 - Percentage of delivered packets at the recipient
- Path Dilation
 - Average ratio of the number of hops traveled to the minimum path length

Performance Results (1/2)

- Single Packet 150 nodes
- Delivery Rate

Performance Results (2/2)

- Single Packet 150 nodes
- Path Dilation

Conclusion and Future Works

- Position-based protocols perform better than topologybased ones
 - Scalable
 - Require less resources (memory, energy, bandwidth)
- Several forwarding algorithms in 3D graphs
 - 2D geometric concepts not adaptable to 3D space
 - Delivery not guaranteed with local strategy
- Promising approaches could be improved to achieve good results
 - Hybrid solutions
 - Reduce search space
 - Information regarding past decisions
 - Memory (Depth First Search) → POSSIBLE THESIS!!

Some References

- A.E. Abdallah, T. Fevens, and J. Opatrny. "Randomized 3D Position-based Routing Algorithms for Ad-hoc networks". In: Proceedings of the Third Annual International Conference on Mobile and Ubiquitous Systems: Networks and Services (MOBIQUITOUS) (2006)
- J. Opatrny A.E Abdallah T. Fevens. "High delivery rate position-based routing algorithms for 3d ad-hoc networks". In: Computer Communications 31 (4) (2007)
- J. Opatrny A.E. Abdallah T. Fevens. "Hybrid Position-based 3D Routing Algorithms with Partial Flooding". In: Proceedings of the Canadian Conference on Electrical and Computer Engineering (2006)
- H.T. Kung B. Karp. "GPSR: Greedy Perimeter Stateless Routing for wireless networks". In: Proceedings MOBICOM (2000)
- J. Wu C. Liu. "Efficient Geometric Routing in Three Dimensional Ad Hoc Networks".
 In: Proceedings of the 28th Conference on Computer Communications (IEEE INFOCOM 2009) (2009)
- H. Singh E. Kranakis and J. Urrutia. "Compass routing on geometric networks". In: Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG'99) (1999)
- J. Opatrny G. Kao T. Fevens. "3D localized position-based routing with nearly certain delivery in mobile ad-hoc networks". In: Proceeding of 2nd International Symposius on Wireless Pervasive Computing (ISWPC'07) (2007)