Position-based Routing Protocols for 3D MANETs

Wireless Networks

Daniele Ronzani
Ph.D in Brain Mind and Computer Science
dronzani@math.unipd.it

A.A. 2015/2016

Padua, 10 December 2015
Introduction

• Routing is a mechanism to send a packet from a source to a destination
 ▫ Routing in a MANET is difficult due to the continue change of topology
 ▫ There are several routing protocols that tackle the problem.

• Focus on position-based protocols in 3D MANETs
 ▫ State-of-the-art of position-based routing protocols in 3D topologies
 ▫ 2D → 3D
 ▫ Different performance results
Routing in MANETs (1)

What is a MANET?

- **Mobile Ad-hoc Network (MANET)**
 - Self-organizing, self-administered network of mobile nodes
 - No fixed infrastructure
 - Interesting, timely and challenging topic

- **Drone Ad-hoc Network (DANET)**
 - Drones (UAVs) as nodes
 - Several applications
 - Civilian
 - Tactical
 - Emergency
 - Entertainment
Routing in MANETs (2)

What is routing?

- Find a path from a source to a destination
 - Multi-hop routing
- Main routing challenges
 - Link failures
 - Limited bandwidth
 - Limited energy
- Two main approaches
 - Topology-based
 - Position-based
Taxonomy of MANET Routing Algorithms:

- **Topology-based**:
 - Proactive
 - Reactive
 - Hybrid

- **Position-based**:
 - Single-path forwarding
 - Deterministic progress-based
 - Randomized progress-based
 - Face-based
 - Hybrid
 - Multi-path forwarding
 - Flooding
 - Restricted Directional Flooding
Taxonomy

MANET Routing Algorithms

- Topology-based
 - Proactive
 - Reactive
 - Hybrid

- Position-based
 - Single-path forwarding
 - Deterministic progress-based
 - Randomized progress-based
 - Face-based
 - Hybrid
 - Multi-path forwarding
 - Flooding
 - Restricted Directional Flooding
Topology-based

- Use information about links
- Routing table
- Proactive, reactive and hybrid approaches
- Reactive approach is more suitable for MANETs
 - Need route only when required
 - There are not continuos table updates
 - AODV, DSR, etc..

...BUT...
Topology-based

- There are some limitation also using these protocols, if we have a very mobile and large networks
 - Huge amount of control traffic
 - Reactive approaches need to flood the request packets
 - Need of a routing table
 - Node memory
 - Need information about entire network

- In limited bandwidth, limited energy and large networks, this is not really nice!!!

NOT SCALABLE!
Position-based

- Use geographic position information for forwarding decision
 - Location service (GPS)
- No need for a routing table
 - Only neighbors’ information
- Limited control overhead
- Assumption:
 - Data message contains the location of destination

More scalable
Taxonomy
Single Path Forwarding (1)

- A node sends a single copy of packet to one neighbor
 - Deterministic progress-based
 - Randomized progress-based
 - Face-based
Single Path Forwarding (2)

Deterministic progress-based

- A node forwards the packet to one of its neighbors that make progress to the destination.
 - Greedy strategy
 - Local minima

![Greedy forwarding (distance)](image)

![Failure of greedy forwarding](image)
Single Path Forwarding (3)
Randomized progress-based

- Try to solve the local minimum problem
- AB algorithm
 1. Selects two candidate nodes using a greedy strategy
 2. Choose the next node randomly
- Threshold value on the hop number to stop the forwarding process
Single Path Forwarding (4)

Face-based

- The packet walks adjacent faces to reach the destination
- Graph planarization \rightarrow planar sub-graph
- Remove cross links
Single Path Forwarding (5)
Face-based

- Right Hand Rule
- Delivery guaranteed in 2D graphs
Multi Path Forwarding

- A node send the same packet to multiple neighbors
- LAR: uses a rectangle that includes transmission ranges of source and destination
- Limited flooding
Extension to 3D

- Position-based routing focused on 2D networks
 - E.g., Vehicular Ad-hoc Networks (VANETs)
 - DANETs are intrinsically 3D

- Difficult to extend 2D concepts to 3D space
 - NO planarization
 - NO above and below a line
Solutions (1/4)

- **3D Deterministic progress-based**
 - Extension is trivial
 - Euclidean distance

- **2D**

 \[
 \text{dist}(u, v) = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2}
 \]

- **3D**

 \[
 \text{dist}(u, v) = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2 + (u_z - v_z)^2}
 \]
Solutions (2/4)

- 3D Randomized progress-based
- AB3D algorithm
 - Candidates are selected above and below a plane
 - The plane passes through C, D and the first candidate n1.
Solutions (3/4)

- **3D Face**
 - Project nodes on a plane
 - Start face routing on this projected graph
 - Packet delivery is not guaranteed!!
Solutions (4/4)

- 3D Flooding (3D LAR)
Simulation Scenario

- NS-2 simulation environment
- Cube of 500 meters of side length
- Transmission range of 100 meters
- Single Packet
 - Network sizes: 50, 100, 150, 200 nodes
 - Application examples: sensor data, pictures
Performance Metrics

- Delivery Rate
 - Percentage of delivered packets at the recipient

- Path Dilation
 - Average ratio of the number of hops traveled to the minimum path length
Performance Results (1/2)

- Single Packet – 150 nodes
- Delivery Rate
Performance Results (2/2)

- Single Packet – 150 nodes
- Path Dilation

![Graph showing performance results for different routing algorithms]

- **Deterministic**
- **Randomized**
- **Face**
- **Hybrid**
- **Partial Flooding**
Conclusion and Future Works

- Position-based protocols perform better than topology-based ones
 - Scalable
 - Require less resources (memory, energy, bandwidth)
- Several forwarding algorithms in 3D graphs
 - 2D geometric concepts not adaptable to 3D space
 - Delivery not guaranteed with local strategy
- Promising approaches could be improved to achieve good results
 - Hybrid solutions
 - Reduce search space
 - Information regarding past decisions
 • Memory (Depth First Search) → POSSIBLE THESIS!!
Some References