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Abstract
We identify data-intensive operations that are

common to classifiers and develop a middleware that
decomposes and schedules these operations
efficiently using a backend SQL database. Our
approach has the added advantage of not requiring
any specialized physical data organization. We
demonstrate the scalability characteristics of our
enhanced client with experiments on Microsoft SQL
Server 7.0 by varying data size, number of attributes
and characteristics of decision trees.

1 Introduction

  We  focus on the classification problem, one of the
most common operations in data mining [FG*96]. The
problem can be simply stated as: given a data set with
at least m+1 fields: A1,..,Am, and C, build a model that
predicts the value of the “distinguished” field C given
the values of fields A1,..,Am. Our goal is to
demonstrate a scalable architecture for classification
that takes advantage of the functionality of SQL
backend. Our approach is based on providing a
middleware layer that can interface to a large class of
generic classification methods and help scale existing
implementations of classification algorithms. The
middleware exploits the observations that:

• A wide class of data mining algorithms do not
require direct access to data but are driven purely by
sufficient statistics of the data obtainable via batches
group-by/count queries.

• The above queries are numerous, similar in form,
but unique (no repetitions). The structure of these
waves of query batches can be exploited to achieve
significant improvement in performance .

We present our scheme in the context of
classification with decision trees, but other
classification algorithms such as Naïve Bayes can also
“plug-in” to this architecture [CFB97]. We require no
changes to the physical design of the SQL database.
The key aspects of the proposed middleware execution
module that contribute to its performance are:

• Batching execution of multiple queries (to compute
sufficient statistics) for the classification client in a
single scan of data.

• Appropriately staging data from server to client file
system and to client main memory.
The middleware’s execution module is

complemented by a scheduler that determines the
staging of data as well as batched query execution. The
optimization decisions to tradeoff the cost of scanning
data at the server versus use of in-memory operations
in the middleware is transparent to the client. We
report performance results on a variety of experiments
run with an implementation of the middleware on
Microsoft SQL Server 7.0 using a traditional in-
memory classification client. We report experimental
results that demonstrate the effect of data size,
available memory, and properties of the decision tree
being generated on performance of the middleware.
For purposes of this discussion we assume all
attributes are categorical or have been discretized (see
[CFB97] for how numeric-valued attributes are
treated).

2 Preliminaries
The classification problem is fundamentally one of

statistical estimation: given attributes Ai∈A, i=1,..,m,
the problem is to estimate the probability that the class
variable C takes on some value c, i.e. for each possible
value cj of the class C, determine the probability:

),...,|Pr( 1 mAAcjC = .  Not all attributes in A need be

relevant to C; classification algorithms attempt to
determine key attributes for the problem. In this
section, we introduce decision-tree classifiers and
identify the data-centric operations (gathering
sufficient statistics) that critically impact performance
of algorithms that construct them.

2.1 Decision Tree Classifiers

We focus on decision trees for various reasons.
First, they are widely studied in statistics, pattern
recognition and machine learning literature [B*84,
Q93, F94]. Next, unlike other classifiers such as the
nearest neighbor, neural networks, regression-based
statistical techniques, decision trees deal effectively



with high-dimensional data. Finally, decision trees can
be examined and understood. The leaves, represented
as decision rules, are more easily understood by
domain experts [Q93].

Algorithm Grow is an abstract description of a
decision tree classifier that generates trees top-down in
a greedy fashion. The algorithm starts with all the data
set at the root node. A partition is selected, splitting
the data into two or more subsets. The procedure is
repeated recursively on each new subset until a
termination criterion is met:

Algorithm Grow(TreeNode, S)

1. Partition S into subsets Split (S) = {S1,…,Sr}

2. For each subset Si ∈ Split(S)

3. Create ith child of TreeNode: Childi
4. IF Termination Criteria for Si satisfied

THEN: Childi is a leaf; assign class; return
ELSE:  Grow(Childi, Si)

Several measures have been proposed and used to
determine the partitioning of data [B*84, Q93,
FI92b]. The scheme proposed in this paper can
support the above measures (see [CFB97] for
examples). We describe the partitioning step in
details in Section 2.2. A class assignment to a leaf is
based on the proportion of counts of class values at
the leaf node. Several termination criteria exist in the
literature. The most common is to terminate if either
all cases in Si are in one class (the node is pure), or it
is not possible to split the node further since all
attributes have the same values in this subset.

A decision tree algorithm can be structured so that

at any stage each node obtains the counts pertinent to
the data represented at the node, scores all possible
partitions, and selects the best partition.  This is
illustrated in Figure 1. A node may be in any one of
the following three states: partitioned, active or leaf. A
node is partitioned if all its children nodes are created.
A node that satisfies a stopping criterion becomes a
leaf node. All other nodes are active nodes. For each
active node, its count table needs to be constructed
prior to partitioning. We use the term frontier to refer
to the set of all active nodes.

2.2 Sufficient Statistics

A key insight here is that to score partitions a
decision tree requires access to only sufficient
statistics (a set of counts) and not to the data itself.
More precisely, for each attribute, for each
combination of its attribute value and class value, we
need a count of the number of tuples where it co-
occurs. Thus, all the splitting criteria used to determine
Split(S) can be computed from the counts table, which
is a simple 4-column table giving the set of counts of
co-occurrences of each attribute value with each class
value:  (attr_name, value, class, count). This table
(henceforth called CC table) has many uses. Once
obtained, there is no further need to refer to the data
again. Hence, the following observation holds:

Observation 1: In a decision tree algorithm, the single
operation that needs to reference the data is the
construction of CC table.

Furthermore, the following observation guides our
tradeoffs in algorithm design:

Observation 2: The Counts table is typically much
smaller than the size of the data, and in most
applications does not grow with number of records.

2.3   Using the SQL Backend

There are two straightforward ways of using a
classification client on a SQL backend. Unfortunately,
as we will demonstrate in the experiment section, each
of these techniques performs extremely poorly.

Generate a SQL query to extract data needed for all
nodes: This corresponds to the case where the entire
data set is extracted from the SQL database and loaded
in the client secondary storage.

Generate SQL queries for creating CC tables: For
each active node, its CC table may be created by
executing a SQL statement at the server. Syntactically
such a SQL statement may be expressed by using
UNION (see below). Unfortunately, optimizers in
most database systems are not capable of exploiting
the commonality. Observe that the form of the SQL
statement using UNION is different from the CUBE
operation proposed in [GC*97]. Unlike CUBE, the
grouping columns only share the class attribute and no
grouping is required for combinations of other
attributes. The SQL query to create the CC table for a
single active node with m attributes A1,..,Am has the
following form:
Select “attr1”  as attr_name, A1 as
value, class, count(*) From Data_table
Where node_condition
Group By class, A1
UNION … UNION
Select “attrm”  as attr_name, Am as
value, class, count(*) From Data_table
Where node_condition
Group By class, Am

Create CC
where (A1=a2 AND A2= a)

A1=a1A1=a2 A1=a3

A2=a A2 not a

Create CC where (A1=a3)
Create  CC where (A1=a2)

B=b2

I-3

S-1

L-6

B=b1

 Figure 1: Queries Associated with Tree Nodes



Since at any given time the decision tree may have
multiple active nodes, we will need one UNION query
to build the CC table for each of the nodes. (with
different WHERE clauses).

3 Architecture
Figure 2 describes the architecture of the data

mining system that we implemented on Microsoft SQL
Server 7.0. The data-mining client maintains the
decision tree structure and implements the scoring
functions to be used in selecting the partition at any
node in the decision tree. As we explained, the client
need not access the individual rows from the data table
but needs to see only the sufficient statistics for a
node. The basic function of the client is to issue a
batch for requests to the middleware for creating
counts tables for every active node. This interface may
be described using the following steps: :

1. Queue batch of requests, one for each active node.

2. Wait for middleware notification that some
requests have been fulfilled

3. Process (consume) all counts tables returned by the
middleware.

4. Grow the decision tree one level at each node
whose request has been fulfilled.

5. If there are any active nodes left, go to 1, else

output the decision tree.

Thus, the middleware is responsible for supporting all
data access requests from the clients. It extracts the
information from the backend databases as needed
(See Section 4 ).

3.1 Changes to Data Mining Client

Our architecture can support any classification
algorithm that is driven by the sufficient statistics with
few changes. We discuss how to adapt traditional in-
memory classification clients to exploit the
middleware that builds the CC tables. The most
important change in a client’s implementation
involves invoking the middleware to obtain
information from CC tables instead of having to
compute them from data in its own memory.  Another

change that is needed is that the client no longer
decides which nodes in the decision tree should be
expanded next. Rather, at each step, the middleware
determines (See Section 4.2) which of the active
nodes are to be processed next. This behavior is
illustrated in Figure 3. Note that the client is free to
partition the processed nodes in any order it sees fit.
This approach does not affect the decision tree that is
finally produced by the classifier.

The specific details of our data mining client are as
follows: the selection measure we used in our
experiments is the standard entropy measure used in
ID3, C4.5, and CART [B*84, Q93]. We did not
implement any tree pruning criteria as our
experiments are primarily intended to study behavior
of the algorithm on generating a full decision tree.
This can be easily implemented in our scheme.

4 Scalable Classification Middleware
In processing the set of requests from the data

mining client, the scalable classification middleware
employs a novel combination of techniques that
exploits generic properties of decision-tree
classification algorithms. The key techniques
supported in the execution module of the middleware
are:

(a) Efficient computation of count tables for multiple
active nodes using a single data scan.

(b) Staging data, i.e., copying relevant data from
server to middleware file system and eventually to
memory.

A scheduling module in the middleware
complements the execution module. The scheduling
module is responsible for determining:

(a) The order of processing of the outstanding
requests from the client for building CC tables for
active nodes.

(b) The data fragments that need to be staged.

Data Mining
Client

Traditional
RDBMS
(SQL)

Produced
ModelData

Mining
Middle
ware Counts

Request
batches

 Figure 2: System Architecture, with Middleware

Client
IF any requests are pending
processing, consume and

release them

Place all Nodes requiring
sufficient Statistics on the

request Queue

If no more nodes need
processing, terminate

Middleware

Get next batch of requests

Post fulfilled requests on
results queue

Schedule Requests for
servicing, and initiate scan

Request Queue

Processed
nodes

Figure 3: Client and Middleware Interaction



4.1 The Execution Module

In this section, we describe how, given the list of
the active nodes to be processed (as specified by
scheduler), the execution module constructs their
counts tables using a single data scan. We also discuss
how staging of data from server to middleware is
accomplished.

4.1.1 Efficient Computation of Counts Tables

The execution module is able to build counts
tables for multiple active nodes efficiently in a single
scan of data without the need to use external sorting.
This capability allows us to significantly improve
performance compared to straightforward SQL
implementations where UNION queries (Section 2.3)
are used to compute all counts.

The scan-based-counting algorithm we use to
build the counts tables takes as input the designated set
of active nodes (specified by the scheduler) and creates
the counts tables. Note that since data may be staged,
the data used to build the CC tables may reside either
on the database sever, middleware files or in the
middleware memory (as determined by middleware
policy). However, unless the data for the specified
active nodes are already in memory or local file a scan
of data at the server is initiated. As each record in the
server data set is retrieved via a cursor at the
middleware, the relevant counters in the counts table
are updated.

As mentioned earlier, the scheduling module
ensures that the aggregate memory requirements for
the CC tables (scheduled in any single scan) is
estimated to be within memory available to the
middleware. Any error in estimation is handled at
runtime. Specifically, if due to an estimation error, no
new count table entries can be accommodated in
memory, then the scan-based-counting algorithm
dynamically switches to a SQL based implementation.
Furthermore, since the full counts table cannot be
accommodated in the available memory, the rows of
the counts tables are obtained from the server lazily
[CFB97].

4.1.2 Staging Data

As the tree is grown, only a fraction of the entire
data set becomes relevant for processing since over
time some of the active nodes turn into leaves.
Therefore, as the active nodes are expanded, the
relevant data set for all the active nodes that are
descendants of the current set of active nodes decrease
monotonically. Thus, even if at the beginning the data
set for any active node cannot be staged to
middleware, it may be possible to stage data for a set
of active nodes from the server to the middleware as
the decision tree is grown. Data may be staged either

to the middleware file system or to middleware
memory. As the decision tree is grown, the relevant
data set associated with a middleware file, where data
has been staged, may also shrink significantly. In such
cases, selective copying of staged data from the
middleware file to middleware memory or creating a
smaller middleware file is a useful operation.  Thus, as
the size of “active” data decreases, data will smoothly
migrate from the SQL server, to middleware file
system, and to middleware memory. With each node
of the tree classifier we track the current location of its
data. This is indicated as the prefix of the node number
in Figure 1 (S for scan, I for middleware file, and L for
in-memory).

When the data set for an active node is staged in
the middleware, then the data set for processing all
descendant nodes of that node becomes available at the
middleware as well. Thus, database server scans to
compute CC tables for any descendants of the nodes
that have been cached are eliminated.

Finally, note that the application program using
the scalable classification tool can customize staging.
In particular, staging can be completely disabled or
can be restricted to only caching in middleware files
from database server or to only memory caching. This
allows us to operate our middleware effectively in
system environments that do not support a local disk
or in which allocated memory is low.

4.2 Scheduler

The scheduler is responsible for driving the
execution module. In particular, it provides:

• Estimators to determine the size of the data set and
the count tables for the given data. This information
is used in the following two steps.

• A priority-based scheduling scheme to pick a set of
active nodes from the request queue.

• Determining staging of data for active nodes to
enhance performance.

We discuss each of these aspects of the scheduler.

4.2.1 Estimating Data and Count Table Sizes

Let ni refer to a node in the decision tree and let pi

be its parent. The estimator determines (exactly) the
size of the data set associated with any node ni as well
as estimates the sizes of the counts table for the node
ni. The data size of an active node ni, denoted by | ni |,
can be calculated precisely from the count table of its
parent. This is because the scan of pi gives the number
of records that go to ni (since partitions are of the form
A = vi or A  = other). Hence memory load
requirements are known.

The count table size of an active node, however,
can only be estimated. The estimated size of the count



table of an active node is based on the number of
distinct values of each attribute Aj appearing in the
data at a node. Let us refer to the latter as card(ni,Aj).
To estimate card(ni, Aj), the inequality card(ni,Aj) ≤
card(pi,Aj) provides an upper bound on the count table
since we can add the above cardinalities over all
attributes present in ni. Note that the number of
attributes present in ni can be one less than in pi, e.g., if
the splitting condition were A = vi. If size of CC table
at parent node pi is |CC(pi)|, then if ni is a child of pi

reached via a split on Aj=vi, the quantity |CC(pi)|-1 is a
trivial upper bound on |CC(ni)|. Furthermore, if the
split at pi was on every value of Aj, then |CC(pi)|-
card(pi,Aj) is in fact an upper bound on |CC(ni)|. Both
these upper bounds are pessimistic. We chose to use
the estimate of |CC(ni)|:

∑=
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i
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n
n )A ,card(p
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||
)(Est_cc ji  which is based on

independence of the partitioning attribute with respect
to the remaining attributes present in the node ni. Since
pi is the parent of ni, the estimate is (1) fairly
conservative in use of available memory, and  (2) there
is no propagation of error since card(pi, Aj) is known
exactly without any uncertainty.

4.2.2 Priority-based Scheduling Scheme

Consider the case where for a give node n, data is
available at middleware file I, created for the data set
corresponding to an ancestor p of n. In such a case, we
always use the file I to retrieve data for the node n and
create CC tables. While not globally optimal, this
scheduling policy is pragmatic. Therefore, while
scheduling n, we only schedule other active nodes that
are descendants of p, i.e., are able to share the same
file I.

An analogous situation arises for nodes that have
their data staged in the middleware memory. This can
happen if in an earlier server scan, the data D’ for an
ancestor node p of n was loaded into memory. In this
case, the goal is to process all active nodes in the
subtree rooted at p and free up memory as quickly as
possible. Hence, while scheduling n, we only schedule
other active nodes that are descendants of p, i.e., are
able to share the same data set D’ in memory. Hence
once the data for p is loaded, all descendants of p get
precedence over other nodes in scheduling, leading
eventually to flushing D’ out of memory and freeing
up the resource. The resulting priority-based
scheduling scheme is determined by first applying
Rule 1, followed by Rule 2 and then Rule 3:

Relative order among scans: nodes that require
data loaded in middleware memory get preference
over nodes that can make use of one or more files (or

index structures – see Section 4.3.3). Nodes that
require sequential scan get lowest priority:

(Rule 1) In-Memory Scan > Middleware File Scan >
Server Scan.

Scheduling constraint for in-memory or file scans:
If a set of nodes is to be serviced by local
(middleware) file scan, then they must share a
common ancestor for which the file was created,
ensuring that the same file scan services all nodes. If a
set of nodes can be serviced by data loaded in
memory, then the set must share an ancestor node p
such that data for this node is currently loaded in
memory. Such a policy favors depth-first expansion of
the subtree rooted at p if its data has been loaded in
memory.

(Rule 2) All nodes that are scheduled together must
share the same in-memory data set or must share the
same file on the middleware

Ordering among eligible nodes: For a selected
scan mode and data location (in case of file and in-
memory scan), there may be many nodes to be
serviced. Servicing each node requires memory to hold
its counts table in memory, limiting the number of
nodes that may be accommodated. For simplicity, we
order eligible nodes by the increasing estimated sizes
of count tables.

(Rule 3) Node with smallest estimated size of the
counts table has the highest precedence.

4.2.3 Determining Staging of Data

We consider the option of moving data to
middleware when there is available memory and/or
file space. However, we consider staging in memory
only after we have scheduled as many nodes as
possible using the priority scheduling scheme above.
The staging of data is governed by the following rules:

(Rule 4) Only data for one or more of the nodes
picked by the priority scheduling scheme qualify to be
loaded to middleware file/memory

(Rule 5) Nodes are ordered by their decreasing size:
pick the node with the largest data size that may be
accommodated in the available file/memory.

(Rule 6) Caching server data to local file precedes
caching data in memory, i.e., data is first moved from
the database server to local cache. Movement from
local file to memory follows the same rules (4 and 5)
that prioritize movement of data from database server
to local cache.

To summarize, the steps in the scheduler are:

1. Estimate data size and count tables for each active
node (unless it has already been evaluated)

2. Pick a set of active nodes using Rules 3-4



3. Exploit available file space in middleware by
loading data for a subset of nodes picked in (2)

Exploit remaining memory in middleware by loading
data from local files to memory (or, directly    from
server to memory, if appropriate).

4.3 Discussion

4.3.1 Reducing Data Transmitted from the
Server

To ensure that each record fetched from the server
to the middleware contributes to one or more of the
counts, we generate a filter expression to be used in
the select query. The filter expression is obtained from
the collective set of active tree nodes to be processed,
ensuring that only data that is relevant to the nodes are
transmitted from the server to the client. With each
node n of the decision tree, we can associate a
predicate which is a conjunction of the predicates on
the edges of the path from n to the root. Designate this
expression by S. Given nodes n1,…, nk we generate the
filter expression (S1 ∨…∨ Sk).  The predicate for each
Si is illustrated in Figure 1 (where clauses). This
allows us to avoid the problem of having to tag records
in the database explicitly with their memberships (e.g.
in [MAR96,SAM96]), thus avoiding writes into a data
table and consequently  reducing I/O time.

4.3.2 File Splitting in Middleware

If data corresponding to an active node has been
loaded in a middleware file, any future references to
data for the active node or its descendants must
sequentially scan the entire file. However, future
descendants of the active node may use only a
relatively small fraction of the data in the entire file.
To optimize such accesses, smaller files are created to
reduce the cost of scanning local files At any point, the
fraction of cache data that is being counted for the
current set of active nodes acts as the thresholding
parameter for creation of new middleware files. If this
threshold is set to 100%, then a new cache will be
created for each node in the tree. This approach is
wasteful early on in the tree growing process because a
complete scan of the data is usually needed at each
level of the tree, and a price is paid for unnecessarily
partitioning the file. However, towards the end of the
tree growing process, much of the data will not be
scanned at each new level of the tree and the compact
size of a node's cache contributes to efficient access.

4.3.3 Using Auxiliary Structures  

As the decision tree grows, the fraction of the
relevant (active) data set monotonically diminishes.
We considered whether this effect could be exploited
to reduce the work done by the server on scanning
data. In other words, if D’ is the relevant subset of data
set D, we considered if we can build an auxiliary

structure such that the server can scan only the records
in D’. This leverages the same intuition as in file
splitting above, except that we use index structures to
simulate it at the server. This can be accomplished in
several ways:

a) Copy data and use new table: copy the subset of
data into a new temporary table. In most cases, such
“data copying” results in unacceptably high overhead.

b) Copy TIDs and make indexed access to D: We can
copy only the tuple identifiers (TID) of the data tuples
in D’ from D and create a new temp table T’. We can
then retrieve the data set D’ using a join between T
and T’ on the TID attribute. Join overhead negatively
impacts the improvement in reduced data scans.

c) Open a Keyset cursor and use Stored Procedure:
In this mode, we define a keyset cursor on D’. This
makes it possible to do a sequential scan of D’ without
paying the overhead of either copying the data set or
doing a join at runtime. Use of a keyset cursor will
result in the client receiving all the tuples in D’ each
time the cursor scan is used. However, in future scans,
only a subset of D’ maybe needed since the active data
set decreases monotonically. Therefore, we would like
to filter data before they are sent to the middleware.
This is achieved by a stored procedure that applies the
filters on the results obtained by the cursor before the
results are returned. Despite the promise, in practice,
the gain in efficiency due to this technique was
limited. Note that this technique applies only when the
relevant data set has shrunk to a small percentage of
the given file (around 10%). Unfortunately, at a low
threshold such as 10%, in most cases the decision tree
is quite close to being complete, limiting the
effectiveness of this technique. Thus, despite their
potential, our experiments indicate that unlike file
splitting in the middleware, optimizing data scan using
the above alternatives for reducing the cost of data
scans at the server are not beneficial (See Section
5.2.5).

5 Experimental Study
The data scanning and counting algorithms are

implemented on Windows NT in C++ as a family of
COM Automation objects that a consumer manipulates
to extract sufficient statistics from a data source. A
queue of pending and completed Counts is maintained.
The items are dequeued based on the Scheduler’s
policy. Counts tables are stored as binary trees. The
unique combinations of attribute (column) number and
state (value) number specify an entry in the counts
table. Because of the way points are sorted in the tree,
retrieving a vector of counts for the states of a class
correlated with a particular attribute and its state is
efficient [CFB97].



5.1  Experimental Setup

Our experiments were conducted using three data
sets. The first two are synthetically generated data sets
designed to study the behavior of our system in a
controlled setting where properties of the tree to be
generated are in some sense “predictable”.  The third
data set is a large, publicly available database obtained
from the U.S. Census Bureau. The idea here was to
ensure that the improvement demonstrated on
synthetic data sets still holds when the algorithm is
used on a real database that can be publicly accessed
for benchmarking purposes. However, for lack of
space, these results are omitted and can be found in
[CFB97]. We used 4 Pentium-II machines, each with
about 128M RAM. All machines were running
Microsoft Windows NT 4.0 and had OLE-DB version
1.5 communicating with Microsoft SQL Server 7.0.  In
this section, we present experimental results that
establish:

• Staging directed by the scheduler greatly enhances
performance. In Section 5.2.1, we study the effect of
staging data to memory. In Section 5.2.2, we study
the effect of staging data to local file system and
demonstrate its effectiveness.

• Our techniques are scalable with respect to number
of attributes and number of rows (Section 5.2.3),
and we significantly outperform straightforward
SQL Server implementations (Section 5.2.3).

• Our techniques are robust with respect to varying
shapes of decision trees (Section 5.2.4).

5.1.1 Data from Random Trees

Given a decision tree, data was generated such that
the effect of applying classification on the data will be
the given decision tree. Such a generation process
allowed us to study the scaling behavior of our scheme
as we varied certain properties of the tree.

The tree generation program provides many
parameters for controlling the structure of the tree that
is used to produce the data. These include number of
leaves in the generating tree (measure of tree size),
branching factor and tree skewness. The branching
parameter allows us to control the bushiness of the
generating decision tree. It also makes it possible to
explore various distributions of cases and classes in
the tree. Furthermore, the number of attributes and the
desired average number of values per attribute may be
set.

5.1.2 Data from Mixtures of Gaussians

This data set was generated from a mixture of
Gaussians in 100 dimensions. The means of the
Gaussians are chosen uniformly randomly over the

interval [-5, +5] in each dimension. The variances in
each dimension are uniformly random over the interval
[0.7, 1.5]. We generated 10,000 samples from each
Gaussian (class), giving us a starting database of
1,000,000 samples.

These data sets allow us to test performance of our
algorithm in a setting where properties of the data are
well understood (as opposed to properties of the
generating tree in the previous section). Another
difference from the data generated in Section 5.1.1 is
that the data do not come from a known decision tree.
This is to verify that our scheme is not well-tuned for a
specific type of data set. Furthermore, with the mixture
of Gaussians, we may omit dimensions and still have a
mixture of Gaussians, allowing us to vary
dimensionality and keep the data properties fixed.
Finally, by taking out some of the Gaussians, we can
vary the number of classes, again without changing
fundamental properties of the data.

5.1.3 Default Settings
Except for the “Real World” data set, the performance
and functionality tests were performed on synthetic
data produced by the algorithm described in Section
5.1.1. Unless otherwise stated, the following
parameters were used to produce data:

(1) Number of attributes = 25  (2) Number of attribute
values = 4 (with standard deviation=4)  (3) Number of
class values = 10  (4) Fanout factor = 0  (5) Complete
splits = true, (6) standard deviation on number of cases
generated per leaf = 0.0

Although the data was generated to produce even splits
of cases amongst an attribute’s 4 possible values, only
binary trees were grown from the data. In general, this
resulted in sufficiently “bushy” trees that rounded out
at the bottom.

5.2 Results

5.2.1 Effects of Memory Size

The amount of memory available in the system has
two important effects. If not enough memory is
available to build count tables for all nodes in the
active list, then multiple scans of the database will be
needed to build CC tables for active nodes. Second, if
any memory is not reserved for count tables, it can be
used to stage data in memory. The experiments in this
section demonstrate these effects.



(A) Increasing Memory Usage with a Fixed Data Size
and Vice Versa (Fig. 4):

For the data generator, the number of leaves was
set to 500 and the cases per leaf were around 950. This
produced an approximately 50 MB data set that
generates a 7000 node tree.  In the 64MB RAM with
caching mode, the entire data set is loaded into
memory on the first scan. In the other curve (no
caching), additional memory has no effect after a full
set of count tables can be built in one scan. Both
curves flatten off after 64MB.  The chart on the right
shows the effect of data set size, the number of leaves
is set to 500 and the cases per leaf are varied to
produce the needed data set size.

(B) Limited Memory for Count Tables (Fig 5a)

The 5MB data set from above is used again here.
This graph shows the effect of not having enough
memory to hold the count tables for all active nodes,
forcing us to make multiple scans to count the frontier.
There is no data caching in this experiment. This
experiment demonstrates the key effect of staging data
in middleware memory.

5.2.2 Effects of Staging Data in Middleware File
System

 Overall tree building performance is also
improved by staging data in the middleware file
system. It is particularly effective in situations where
available middleware memory is low and adequate
local file system space is available. The chart in
Figure 6 illustrates the effect on total tree building

time for the four configurations of staging as amount
of available memory increases. These experiments
were run on the Census data set, however the scoring
algorithm was adjusted to produce a smaller tree
(about 300 nodes)

 The four caching configurations are as follows: (1)
One staging file for every active node. A new
middleware file (cache) is created for each active node
of the tree. (2) Singleton file caching, i.e., only one
staging file is used for the entire tree and then
repeatedly scanned. (3) Hybrid scheme. One staging
file is created and repeatedly scanned until the
cardinality for the set of nodes being processed is
below 50% of the cardinality of the source file cache.
(4) The same as (3) but staging data in memory was
also enabled. The amount of available memory was
varied to demonstrate two effects. First, with lower
amounts of memory, only a few of the count tables
can fit into memory at one time, thus causing multiple
scans of a shared middleware staging file for
expanding one level of the tree. This effect goes away
as memory increases. Second, in configuration (4)
there is a trade off between memory for counting and
memory for data staging until the 50M case in which
all data and counts fit into memory (no staging file is
used)

5.2.3 Effects of Data Size

These experiments demonstrate the ability for the
counting algorithm to “scale up” to larger data sets.
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(A) Increasing Number of Rows (Fig. 5b): The data
generator used 500 leaves and a gradual increase in
the number of cases per leaf. The final size of this

data set is 5 million records. These runs have 64MB
of memory for data staging and counting. One
obvious effect as the amount of data being classified
increases is that a smaller proportion of the data can
be staged into the middleware memory. This in turn
leads to more scans of the data.

(B) Increasing Number of Attributes (Fig. 7): One not
so obvious effect of a large number of attributes is that
the estimated size of a count table goes up. This graph
shows an increasing number of attributes with a fixed
number of cases. The size of the data set grows from
40MB to 200MB. The data generator uses an
increasing number of binary attributes (only 2 attribute
values), 200 leaves, and 125 cases per leaf for a total
of 100,000 records. These runs have 64MB of memory
for data staging and CC tables.

When data is stored in a SQL capable RDBMS, an
alternative to counting sufficient statistics with a
cursor scan is to harness the power of SQL and have
all counting done by the database server via a union of
group by queries. An implementation of such an
approach was used for comparison. The data set was
similar to the one above, but with the number of leaves
and cases per leaf scaled down to produce data sets
ranging in size from 1MB to 3MB. For larger data
sets, the straightforward SQL implementation results
in an unacceptably poor performance.

5.2.4 Effects of Tree Shape

It is important to vary the tree shape since tree
shape has a direct impact on the relative number of
counts (CC) tables that need to be accommodated.
Varying tree shape also demonstrates how our
algorithms cope with changes in the size of the
relevant data set as the execution progresses. For
example, a broad (bushy) tree’s active nodes may
require several cursor scans, and a very thin deep tree
requires a scan for every level of the tree.

(A) Increasing Attribute Values (Fig. 8a): We used a
tree with 200 leaves and 480 cases per leaf to generate
10MB of data from a long lop-sided tree (see

[CFB97]) for these tests. The Curve for “File Based
Data Store” shows the effect of not using the RDBMS
as a continuous source of data. Records are read from
the database and saved locally. During early part of the
execution, this seems like a good idea because reading
from the file is faster than reading from the cursor.
However, as the scope of interesting data decreases
pulling data from the server becomes faster than
reading from the middleware file (server can utilize the
WHERE clause to limit records).

(B) Increasing Number of Leaves (Figure 8b):
Increasing the number of leaves for a fixed data set
size will make the data points less “similar” and
therefore harder to classify. This will cause more scans
with the cursor, but also greatly increases the size of
the request frontier. To show the ill effects of these
phenomena, this graph represent runs with and without
data caching and only use a small amount of memory
(8MB) for count tables for the 10MB data set size.

5.2.5 Use of Index Scans
In Section 4.3.3 we introduced the notion of

building server-based index structures on the fly to
optimize access to data for active nodes. Our results
show that such indexes are not beneficial. Due to space
limitations, we omit the details, but we present  a brief
overview of an experiment. In this experiment, we
simulate an idealized situation on the server by
neglecting the cost of creating index structures. We
also pick a tree that maximizes the potential for benefit
from indexing. The tree we choose is built from the
Census database and has the property that at some
point 70% of the data becomes inactive. The tree has
one long path (thin subtree) that utilizes 30% of the
data and monotonically drops to 1% as subtree is
grown. Results showed that even under such favorable
circumstances, indexing does not help [CFB97].
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6 Related Work
There is fairly extensive literature on decision tree

generation in Statistics [B*84] and Machine Learning
[Q93, FI92b, FI93, F94]. Since the implementations
available for these communities assume the data to be
in memory, much of the work has been with very
small data sets, typically in the hundreds to thousands
of records. More recently, database research has
addressed the problem of scaling classification
algorithms, e.g., [MAR96, SAM96, GRG98]. These
algorithms may need to create new data structures that
correspond to vertical partitions of the given data set
(one partition for each attribute in the data set), with at
least the class attribute replicated. In contrast, we
avoid the need to create vertical partitions.

The RainForest work [GRG98] comes closest to
the work reported in this paper. Our work was
developed independently and contemporaneously. We
share with RainForest the observation that
constructing CC tables efficiently is at the heart of
achieving high scalability for the family of decision
tree classifiers. Their AVC-group data structure
corresponds to CC-tables in our system. However,
despite this similarity, our approach is distinguished
by our objective to develop a middleware that works
against SQL databases efficiently. We provide the
client with complete freedom to consume CC tables in
any desired order (not necessarily just depth-first or
breadth-first) while allowing the middleware also to
serve the active nodes in any order so as to optimize
performance. We also support a smooth transition
between file staging and staging in middleware
memory. This has led to a powerful scheduler that
ensures optimized server scans and staging. Also, our
experimental results are based on an implementation
on a commercial DBMS system (Microsoft SQL
Server).

Finally, it is important to point out that while we
do need multiple aggregations over the same data set,
the nature of the aggregations is quite different from
that needed in the CUBE construct [GC*97]. We need
to aggregate the data with varying filter expressions
and our aggregations require computing count for each
combination of attribute value and value from the class
variable. We refer the reader back to Section 2.3 for a
detailed exposition.
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