
Efficient Enumeration of Frequent Sequences �

Mohammed J. Zaki
Computer Science Department, Rensselaer Polytechnic Institute, Troy NY 12180

Abstract

In this paper we present SPADE, a new algorithm for fast discov-
ery of Sequential Patterns. The existing solutions to this problem
make repeated database scans, and use complex hash structures
which have poor locality. SPADE utilizes combinatorial properties
to decompose the original problem into smaller sub-problems, that
can be independently solved in main-memory using efficient lattice
search techniques, and using simple join operations. All sequences
are discovered in only three database scans. Experiments show that
SPADE outperforms the best previous algorithm by a factor of two,
and by an order of magnitude with some pre-processed data. It also
has linear scalability with respect to the number of customers, and
a number of other database parameters.

1 Introduction

The sequence mining task is to discover a set of attributes, shared
across time among a large number of objects in a given database.
For example, consider the sales database of a bookstore, where the
objects represent customers and the attributes represent authors or
books. Let’s say that the database records the books bought by each
customer over a period of time. The discovered patterns are the se-
quences of books most frequently bought by the customers. An
example could be that “70% of the people who buy Jane Austen’s
Pride and Prejudice also buy Emma within a month.” Stores can
use these patterns for promotions, shelf placement, etc. Consider
another example of a web access database at a popular site, where
an object is a web user and an attribute is a web page. The discov-
ered patterns are the sequences of most frequently accessed pages
at that site. This kind of information can be used to restructure
the web-site, or to dynamically insert relevant links in web pages
based on user access patterns. There are many other domains where
sequence mining has been applied, which include identifying plan
failures [12], finding network alarm patterns [4], and so on.

The task of discovering all frequent sequences in large databases
is quite challenging. The search space is extremely large. For ex-
ample, with m attributes there are O(mk) potentially frequent se-
quences of length k. With millions of objects in the database the

�This work was performed while the author was at the University of Rochester, and
was supported in part by a NSF Research Initiation Award (CCR-9409120), an ARPA
contract F19628-94-C-0057, and a NSF research grant CCR-9705594.

problem of I/O minimization becomes paramount. However, most
current algorithms are iterative in nature, requiring as many full
database scans as the longest frequent sequence, which is clearly
very expensive. Some of the methods, especially those using some
form of sampling, can be sensitive to the data-skew, which can ad-
versely effect performance. Furthermore, most approaches use very
complicated internal data structures which have poor locality [8],
and add additional space and computation overheads. Our goal is
to overcome all of these limitations.

In this paper we present SPADE (Sequential PAttern Discovery
using Equivalence classes), a new algorithm for discovering the set
of all frequent sequences. The key features of our approach are
as follows: 1) We use a vertical id-list database format, where we
associate with each sequence a list of objects in which it occurs,
along with the time-stamps. We show that all frequent sequences
can be enumerated via simple id-list intersections. 2) We use a
lattice-theoretic approach to decompose the original search space
(lattice) into smaller pieces (sub-lattices) which can be processed
independently in main-memory. Our approach usually requires
three database scans, or only a single scan with some pre-processed
information, thus minimizing the I/O costs. 3) We decouple the
problem decomposition from the pattern search. We propose two
different search strategies for enumerating the frequent sequences
within each sub-lattice: breadth-first and depth-first search.

SPADE not only minimizes I/O costs by reducing database scans,
but also minimizes computational costs by using efficient search
schemes. The vertical id-list based approach is also insensitive to
data-skew. An extensive set of experiments shows that SPADE out-
performs previous approaches by a factor of two, and by an order
of magnitude if we have some additional off-line information. Fur-
thermore, SPADE scales linearly in the database size, and a number
of other database parameters.

The rest of the paper is organized as follows: In Section 2 we
describe the sequence discovery problem and look at related work.
In Section 3 we develop our lattice-based approach for problem de-
composition, and for pattern search. Section 4 describes our new
algorithm, and an experimental study is presented in Section 6. Fi-
nally, we conclude in Section 7.

2 Sequence Mining

The problem of mining sequential patterns can be stated as fol-
lows: Let I = fi1; i2; � � � ; img be a set of m distinct attributes,
also called items. An itemset is a non-empty unordered collection
of items (without loss of generality, we assume that items of an
itemset are sorted in increasing order). A sequence is an ordered
list of itemsets. An itemset i is denoted as (i1i2 � � � ik), where ij is
an item. An itemset with k items is called a k-itemset. A sequence
� is denoted as (�1 7! �2 7! � � � 7! �q), where the sequence
element �j is an itemset. A sequence with k items (k =

P
j
j�j j)

is called a k-sequence. For example, (B 7! AC) is a 3-sequence.
An item can occur only once in an itemset, but it can occur multiple
times in different itemsets of a sequence.

A sequence � = (�1 7! �2 7! � � � 7! �n) is a subsequence
of another sequence � = (�1 7! �2 7! � � � 7! �m), denoted
as � � �, if there exist integers i1 < i2 < � � � < in such that
aj � bij for all aj . For example the sequence (B 7! AC) is a
subsequence of (AB 7! E 7! ACD), since the sequence elements
B � AB, and AC � ACD. On the other hand the sequence
(AB 7! E) is not a subsequence of (ABE), and vice versa. We
say that � is a proper subsequence of �, denoted � � �, if � � �

and � 6� �. A sequence is maximal if it is not a subsequence of any
other sequence.

A transaction T has a unique identifier and contains a set of
items, i.e., T � I. A customer, C, has a unique identifier and
has associated with it a list of transactions fT1; T2; � � � ; Tng. With-
out loss of generality, we assume that no customer has more than
one transaction with the same time-stamp, so that we can use the
transaction-time as the transaction identifier. We also assume that
the list of customer transactions is sorted by the transaction-time.
Thus the list of transactions of a customer is itself a sequence T1 7!
T2 7! � � � 7! Tn, called the customer-sequence. The database, D,
consists of a number of such customer-sequences.

A customer-sequence, C, is said to contain a sequence �, if
� � C, i.e., if � is a subsequence of the customer-sequence C.
The support or frequency of a sequence, denoted �(�), is the the
total number of customers that contain this sequence. Given a user-
specified threshold called the minimum support (denoted min sup),
we say that a sequence is frequent if occurs more than min sup
times. The set of frequent k-sequences is denoted as Fk.

Given a database D of customer sequences and min sup, the
problem of mining sequential patterns is to find all frequent se-
quences in the database. For example, consider the customer database
shown in figure 1 (used as a running example throughout this pa-
per). The database has eight items (A to H), four customers, and
ten transactions in all. The figure also shows all the frequent se-
quences with a minimum support of 50% or 2 customers. This
example has a unique maximal frequent sequence D 7! BF 7! A.

D G H

B F

A G H

4

4

4 25

10

20

A B F

E

2

2

15

20

A C D F

A B F

C D

A B C

1

1

1

1

10

20

15

25

Transaction-TimeCustomer-Id Items

BF->A
D->BF

D->B->A
D->F->A

ABF 3
2
2
2
2

Frequent 3-Sequences

B
D
F

4
4

4
2

A
Frequent 1-Sequences

AB

B->A

F->A
D->F
D->B
D->A
BF

AF
3

2
2
2
2
4
2
3

Frequent 2-Sequences

D->BF->A 2
Frequent 4-Sequences

FREQUENT SEQUENCES

A B F103

DATABASE

Figure 1: Original Database

2.1 Related Work

The problem of mining sequential patterns was introduced in [2].
They also presented three algorithms for solving this problem. The
AprioriAll algorithm was shown to perform equal to or better than
the other two approaches. In subsequent work [11], the same au-
thors proposed the GSP algorithm that outperformed AprioriAll by
up to 20 times. They also introduced maximum gap, minimum gap,
and sliding window constraints on the discovered sequences.

The problem of finding frequent episodes in a sequence of events
was presented in [6]. An episode consists of a set of events and
an associated partial order over the events. Our definition of a

sequence can be expressed as an episode, however their work is
targeted to discover the frequent episodes in a single long event
sequence, while we are interested in finding frequent sequences
across many different customer-sequences. They further extended
their framework in [5] to discover generalized episodes, which al-
lows one to express arbitrary unary conditions on individual episode
events, or binary conditions on event pairs. The MEDD and MSDD
algorithms [7] discover patterns in multiple event sequences. How-
ever, they only find sequences of length 2 with a given window size
and a time-gap.

Sequence discovery can essentially be thought of as association
discovery [1] over a temporal database. While association rules dis-
cover only intra-transaction patterns (itemsets), we now also have
to discover inter-transaction patterns (sequences). The set of all fre-
quent sequences is a superset of the set of frequent itemsets. Due
to this similarity sequence mining algorithms like AprioriAll, GSP,
etc., utilize some of the ideas initially proposed for the discovery of
association rules [1, 10]. Our new algorithm is based on the fast as-
sociation mining techniques presented by us in [13]. Nevertheless,
the sequence search space is much more complex and challenging
than the itemset space, and thus warrants specific algorithms.

3 Sequence Enumeration: Lattice-based Approach

We assume that the reader is familiar with basic concepts of lattice
theory (see [3] for a good introduction). Let P be a set. A partial
order on P is a binary relation� on P that is 1) reflexive: X � X ,
2) anti-symmetric: X � Y and Y � X imply X = Y , and 3)
transitive: X � Y and Y � Z imply X � Z, for all X; Y;Z 2
P . A partially ordered set L is called a lattice if the two binary
operations 1) join, denoted as X _ Y , and 2) meet, denoted as
X ^ Y , exist of all X;Y 2 L. L is a complete lattice if the join
and meet exist for arbitrary subsets of L. Any finite lattice is thus
complete. M is a sub-lattice of L if X;Y 2 M implies X _ Y 2
M and X ^ Y 2M .

BF->AABF D->B->A D->BF D->F->A

A B D F

{ }

D->BF->A

AB AF D->A D->B D->F F->AB->ABF

Figure 2: Lattice Induced by Maximal Sequence D 7! BF 7! A

Theorem 1 Given a set I of items, the ordered set S of all possible
sequences on the items, is a complete lattice in which join and meet
are given by union and intersection, respectively:
_
fAi j i 2 Ig =

[

i2I

Ai

^
fAi j i 2 Ig =

\

i2I

Ai

The bottom element ? of the sequence lattice S is ? = fg, but
the top element is undefined, since, in the abstract, the sequence
lattice is infinite. However, in all practical cases it is bounded and
sparse. The set of atoms of latticeL are defined to be the immediate
upper neighbors of the bottom element, given as A(L) = fX 2
L j ? < X; and ? � Y � X implies Y = Xg. For exam-
ple, consider Figure 2 which shows the sequence lattice induced

by the maximal frequent sequence D 7! BF 7! A for our exam-
ple database. The set of atoms A is given by the frequent items
fA;B;D; Fg. It is obvious that the set of all frequent sequences
forms a meet-semilattice, because it is closed under the meet oper-
ation, i.e., ifX and Y are frequent sequences, then the meet X\Y
is also frequent. However, it is not a join-semilattice, since it is not
closed under joins, i.e.,X and Y being frequent, doesn’t imply that
X [Y is frequent. The closure under meet leads to the well known
observation on sequence frequency:

Lemma 1 All subsequences of a frequent sequence are frequent.

The above lemma leads very naturally to a bottom-up search pro-
cedure for enumerating frequent sequences, which has been lever-
aged in many sequence mining algorithms [11, 6, 7]. However, the
lattice formulation makes it apparent that we need not restrict our-
selves to a purely bottom-up search. We can employ a number of
different search procedures, which we will discuss later.

3.1 Support Counting

Lets associate with each atom X in the sequence lattice its id-list,
denoted L(X), which is a list of all customer (cid) and transaction
identifiers (tid) pairs containing the atom. Figure 3 shows the id-
lists for the atoms in our example database. For example consider
the atom D. In our original database in Figure 1, we see that D
occurs in the following customer and transaction identifier pairs
f(1; 10); (1; 25); (4; 10)g. This forms the id-list for item D.

1

1

2

3

4

20

25

15

10

25

A

TIDCID CID TID

D

1

1

4

10

25

10

B

1

1

2

3

4

15

20

15

10

20

TIDCID

F

1

1

2

3

4

20

25

10

20

15

TIDCID

1 15

Figure 3: Id-Lists for the Atoms
Lemma 2 For any X 2 S , let J = fY 2 A(S) j Y � Xg. Then
X =

S
Y 2J

Y , and �(X) =j
T
Y 2J

L(Y) j.

The above lemma states that any sequence in S can be obtained
as a union or join of some atoms of the lattice, and the support
of the sequence can be obtained by intersecting the id-list of the
atoms. This lemma is applied only to the atoms of the lattice. We
generalize this for a set of sequences in the next lemma.

Lemma 3 For anyX 2 S , ifX =
S
Y , then �(X) =j

T
L(Y) j.

This lemma says that if a sequence is given as a union of a set of
sequences in J , then its support is given as the intersection of id-
lists of elements in J . In particular we can determine the support
of any k-sequence by simply intersecting the id-lists of any two of
its (k� 1) length subsequences. A simple check on the cardinality
of the resulting id-list tells us whether the new sequence is frequent
or not. Figure 4 shows this process pictorially. It shows the initial
vertical database with the id-list for each atom. The intermediate
id-list for D 7! A is obtained by intersecting the lists of atoms D
and A, i.e., L(D 7! A) = L(D) \ L(A). Similarly, L(D 7!
BF 7! A) = L(D 7! BF)\L(D 7! B 7! A), and so on. Thus,
only the lexicographically first two subsequences at the last level
are required to compute the support of a sequence at a given level.

Lemma 4 If X � Y , then L(X) � L(Y).

This lemma says that if X is a subsequence of Y , then the car-
dinality of the id-list of Y (i.e., support) must be equal to or less
than the cardinality of the id-list of X . A practical and important
consequence of this lemma is that the cardinalities of intermediate
id-lists shrink as we move up the lattice. This results in very fast
intersection and support counting.

{ }

BF->AABF D->B->A D->BF D->F->A

D->BF->A

A B D F

AB AF D->A D->B D->F F->A
1

1

4

20

25

25

1

2

3

4

20

25

15

10

25

(Intersect D->B->A and D->BF)

(Intersect D->B and D->F)

(Intersect D and A)

BF B->A

A

1

TIDCID CID TID

D

1

1

4

10

25

10

B

1

1

2

3

4

15

20

15

10

20

TIDCID

CID TID CID TID

1

1

4

15

20

20

CID TID

1

1

20

25

204

D->A D->B D->F

F

1

1

2

3

4

20

25

10

20

15

TIDCID

CID TID

1

1

4

20

25

25

D->B->A

CID TID

1

4

25

25

D->BF->A

CID TID

1

4

20

20

D->BF

ID-LIST DATABASE

1

1

15

151

Figure 4: Computing Support via Id-list Intersections
3.2 Lattice Decomposition: Pre�x-Based Classes

If we had enough main-memory, we could enumerate all the fre-
quent sequences by traversing the lattice, and performing intersec-
tions to obtain sequence supports. In practice, however, we only
have a limited amount of main-memory, and all the intermediate
id-lists will not fit in memory. This brings up a natural question:
can we decompose the original lattice into smaller pieces such that
each piece can be solved independently in main-memory. We ad-
dress this question below.

An equivalence relation on a set is a reflexive, symmetric and
transitive binary relation. An equivalence relation partitions the set
into disjoint subsets, called equivalence classes. Define a function
p : S 7! S where p(X;k) = X[1 : k]. In other words, p(X; k)
returns the k length prefix of X . Define an equivalence relation
�k on the lattice S as follows: 8X;Y 2 S , we say that X is re-
lated to Y under �k, denoted as X � Y (mod �k) if and only if
p(X; k) = p(Y; k). That is, two sequences are in the same class
if they share a common k length prefix. We therefore call �k a
prefix-based equivalence relation.

Figure 5 shows the lattice induced by the equivalence relation
�k where we collapse all sequences with a common k length prefix
into an equivalence class. Figure 5a shows the equivalences classes
induced by �1 on S , namely, f[A]�1 ; [B]�1 ; [D]�1 ; [F]�1g. At the
bottom of the figure, it also shows the links among the four classes.
These links carry pruning information. In other words if we want to
prune a sequence (if it has at least one infrequent subsequence) then
we may need some cross-class information. We will have more to
say about this later.

Lemma 5 Each equivalence class [X]�k induced by the equiva-
lence relation �k is a sub-lattice of S .

Each [X]�1 is thus a lattice with its own set of atoms. For ex-
ample, the atoms of [D]�1 are fD 7! A;D 7! B;D 7! Fg,
and the bottom element is ? = D. By the application of Lem-
mas 2, and 3, we can generate all the supports of the sequences in
each class (sub-lattice) by intersecting the id-list of atoms or any
two subsequences at the previous level. If there is enough main-
memory to hold temporary id-lists for each class, then we can solve
each [X]�1 independently.

In practice we have found that the one level decomposition in-
duced by �1 is sufficient. However, in some cases, a class may
still be too large to be solved in main-memory. In this scenario,
we apply recursive class decomposition. Lets assume that [D] is
too large to fit in main-memory. Since [D] is itself a lattice, it can
be decomposed using �2. Figure 5b shows the classes induced by
applying �2 on [D] (after applying �1 on S). Each of the resulting
six classes, [A], [B], [D 7! A], [D 7! B], [D 7! F], and [F], can
be solved independently. Thus depending on the amount of main-
memory available, we can recursively partition large classes into
smaller ones, until each class is small enough to be solved indepen-
dently in main-memory.

{ }

D->F->A

B->ABF

BF->A

AB AF

B D F

D->B->A D->BF

D->A D->B D->F

D->BF->A

ABF

F->A

A

[{}]

[A] [B] [F][D]

Equivalence Classes

{ }

D->F->A

B->ABF

BF->A

AB AF

B D F

D->B->A D->BF

D->A D->B D->F

D->BF->A

ABF

F->A

A

Equivalence Classes

[D->F][D->A]
[D->B]

[A] [B] [F][D]

Figure 5: Equivalence Classes Induced by a) �1 on S , b) �1 on S and �2 on [D]�1
3.3 Search for Frequent Sequences

In this section we discuss efficient search strategies for enumerating
the frequent sequences within each class. We will discuss two main
strategies: breadth-first and depth-first search. Both these methods
are based on a recursive decomposition of each class into smaller
classes induced by the equivalence relation �k. Figure 6 shows the
decomposition of [D]�1 into smaller and smaller classes, and the
resulting lattice of equivalence classes.

Breadth-First Search (BFS) In a breadth-first search the lat-
tice of equivalence classes generated by the recursive application
of �k is explored in a bottom-up manner. We process all the child
classes at each level before moving on to the next level. For ex-
ample, in Figure 6 we process the equivalence classes f[D 7!
A]; [D 7! B]; [D 7! F]g, before moving on to the classes f[D 7!
B 7! A]; [D 7! BF]; [D 7! F 7! A]g, and so on.

{ }

D->A D->B D->F

D->F->AD->B->A D->BF

D->BF->A

[D]

[D->B][D->A] [D->F]

[{}]

[D->BF][D->B->A] [D->F->A]

[D->BF->A]

D

Equivalence Class Lattice

Figure 6: Recursive Decomposition of Class [D] via �k

Depth-First Search (DFS) In a depth-first search, we com-
pletely solve all child equivalence classes along one path before
moving on to the next path. For example, we process the classes
in the following order [D 7! A], [D 7! B], [D 7! B 7! A],
[D 7! BF], [D 7! BF 7! A], and so on.

The advantage of BFS over DFS is that we have more infor-
mation available for pruning. For example, we know the set of
2-sequences before constructing the 3-sequences, while this infor-
mation is not available in DFS. On the other hand DFS requires less
main-memory than BFS. DFS only needs to keep the intermediate
id-lists for classes along a single path, while BFS must keep track
of id-lists for all the classes in the current level.

Besides BFS and DFS search, there are many other search pos-
sibilities. For example, in the DFS scheme, if we determine that
D 7! BF 7! A is frequent, then we do not have to process the
classes [D 7! F], and [D 7! F 7! A], since they must neces-
sarily be frequent. We are currently investigating such schemes for
efficient enumeration of only the maximal frequent sequences.

4 SPADE: Algorithm Design and Implementation

In this section we describe the design and implementation of SPADE.
Figure 7 shows the high level structure of the algorithm. The main
steps include the computation of the frequent 1-sequences and 2-
sequences, the decomposition into prefix-based equivalence classes,
and the enumeration of all other frequent sequences via BFS or
DFS search within each class. We will now describe each step in
some more detail.

SPADE (min sup;D):
F1 = f frequent items or 1-sequences g;
F2 = f frequent 2-sequences g;
E = f equivalence classes [X]�1g;
for all [X] 2 E do Enumerate-Frequent-Seq([X]);

Figure 7: The SPADE Algorithm

4.1 Computing Frequent 1-Sequences and 2-Sequences

Most of the current sequence mining algorithms [2, 11] assume a
horizontal database layout such as the one shown in Figure 1. In the
horizontal format the database consists of a set of customers. Each
customer has a set of transactions, along with the items contained
in the transaction. In contrast our algorithms use a vertical database
format, where we maintain a disk-based id-list for each item. Each
entry of the id-list is a (cid; tid) pair where the item occurs. This
enables us to check support via simple id-list intersections.
Computing F1: Given the vertical id-list database, all frequent 1-
sequences can be computed in a single database scan. For each
database item, we read its id-list from the disk into memory. We
then scan the id-list, incrementing the support for each new cid
encountered.
ComputingF2: LetN = jIj be the number of frequent items, and
A the average id-list size in bytes. A naive implementation for com-
puting the frequent 2-sequences requires

�
N

2

�
id-list intersections

for all pairs of items. The amount of data read isA �N �(N�1)=2,
which corresponds to around N=2 data scans. This is clearly in-
efficient. Instead of the naive method we propose two alternate
solutions: 1) Use a preprocessing step to gather the counts of all
2-sequences above a user specified lower bound. Since this infor-
mation is invariant, it has to be computed once, and the cost can
be amortized over the number of times the data is mined. 2) Per-
form a vertical-to-horizontal transformation on-the-fly. This can be
done quite easily, with very little overhead. For each item i, we
scan its id-list into memory. For each customer and transaction id
pair, say (c; t) in L(i), we insert (i; t) in the list for customer c.
For example, consider the id-list for item A, shown in Figure 3.
We scan the first pair (1; 15), and then insert (A; 15) in the list
for customer 1. Figure 8 shows the complete horizontal database
recovered from the vertical item id-lists. Computing F2 from the
recovered horizontal database is straight-forward. We form a list of

all 2-sequences in each customer sequence, and update counts in a
2-dimensional array indexed by the frequent items.

cid (item; tid) pairs
1 (A 15) (A 20) (A 25) (B 15) (B 20) (C 10) (C 15) (C 25)

(D 10) (D 25) (F 20) (F 25)
2 (A 15) (B 15) (E 20) (F 15)
3 (A 10) (B 10) (F 10)
4 (A 25) (B 20) (D 10) (F 20) (G 10) (G 25) (H 10) (H 25)

Figure 8: Vertical-to-Horizontal Database Recovery

Enumerate-Frequent-Seq(S):
for all atoms Ai 2 S do
Ti = ;;
for all atoms Aj 2 S, with j > i do
R = Ai [Aj ;
if (Prune(R) == FALSE) then
L(R) = L(Ai) \ L(Aj);
if �(R) �min sup then
Ti = Ti [fRg; FjRj = FjRj [fRg;

end
if (Depth-First-Search) then Enumerate-Frequent-Seq(Ti);

end
if (Breadth-First-Search) then

for all Ti 6= ; do Enumerate-Frequent-Seq(Ti);

Figure 9: Pseudo-code for Breadth-First and Depth-First Search

4.2 Enumerating Frequent Sequences of a Class

Figure 9 shows the pseudo-code for the breadth-first and depth-first
search. The input to the procedure is a set of atoms of a sub-lattice
S, along with their id-lists. Frequent sequences are generated by
intersecting the id-lists of all distinct pairs of atoms and checking
the cardinality of the resulting id-list against min sup. Before in-
tersecting the id-lists a pruning step is inserted to ensure that all
subsequences of the resulting sequence are frequent. If this is true,
then we go ahead with the id-list intersection, otherwise we can
avoid the intersection. The sequences found to be frequent at the
current level form the atoms of classes for the next level. This re-
cursive process is repeated until all frequent sequences have been
enumerated. In terms of memory management it is easy to see that
we need memory to store intermediate id-lists for at most two con-
secutive levels. The depth-first search requires memory for two
classes on the two levels. The breadth-first search requires memory
of all the classes on the two levels. Once all the frequent sequences
for the next level have been generated, the sequences at the current
level can be deleted.
Disk Scans: Before processing each of equivalence classes from
the initial decomposition, all the relevant item id-lists for that class
are scanned into from disk into memory. The id-lists for the atoms
of each initial class are constructed by intersecting the item id-
lists. All the other frequent sequences are enumerated as described
above. If all the initial classes have disjoint set of items, then each
item’s id-list is scanned from disk only once during the entire fre-
quent sequence enumeration process over all sub-lattices. In the
general case there will be some degree of overlap of items among
the different sub-lattices. However only the database portion corre-
sponding to the frequent items will need to be scanned, which can
be a lot smaller than the entire database. Furthermore, sub-lattices
sharing many common items can be processed in a batch mode to
minimize disk access. Thus we claim that our algorithms will usu-
ally require a single database scan after computing F2, in contrast
to the current approaches which require multiple scans.

4.3 Id-List Intersection

We now describe how we perform the id-list intersections for two
sequences. Consider an equivalence class [B 7! A] with the atom

set fB 7! AB;B 7! AD;B 7! A 7! A;B 7! A 7! D;B 7!
A 7! Fg. If we let P stand for the prefix B 7! A, then we can
rewrite the class to get [P] = fPB; PD; P 7! A;P 7! D; P 7!
Fg. One can observe the class has two kinds of atoms: the item-
set atoms fPB; PDg, and the sequence atoms fP 7! A;P 7!
D; P 7! Fg. We assume without loss of generality that the item-
set atoms of a class always precede the sequence atoms. To extend
the class it is sufficient to intersect the id-lists of all pairs of atoms.
However, depending on the atom pairs being intersected, there can
be upto three possible resulting frequent sequences:

1. Itemset Atom vs Itemset Atom: If we are intersecting PB
with PD, then we get a new itemset atom PDB.

2. Itemset Atom vs Sequence Atom: If we are intersecting
PB with P 7! A, then the only possible outcome is new
sequence atom PB 7! A.

3. Sequence Atom vs Sequence Atom: If we are intersecting
P 7! A with P 7! F , then there are three possible out-
comes: a new itemset atom P 7! AF , and two new se-
quence atoms P 7! A 7! F and P 7! F 7! A. A special
case arises when we intersect P 7! A with itself, which can
only produce the new sequence atom P 7! A 7! A.

TIDCIDTIDCID

10

70

20

15 60

20

10

80

50

308

8

8

8

7

4

1

1

1 20

30

40

60

40

10

1

1

3

5

8

8

8

8

11

16

20 20

80

30

80

50

40

30

80

70

17

13

13

50

70

13 10

TIDCID
1

1

8

8

8

8 80

50

40

30

80

70

TIDCID
8

8 80

50

13

13

50

70

TIDCID
30

50

808

8

8

P->F->A

P->A->F

P->AF

P->FP->A

Figure 10: Id-List Intersection
We now describe how the actual id-list intersection is performed.

Consider Figure 10, which shows the hypothetical id-lists for the
sequence atoms P 7! A and P 7! F . To compute the new
id-list for the resulting itemset atom P 7! AF , we simply need
to check for equality of (cid,tid) pairs. In our example, the only
matching pairs are f(8; 30); (8; 50); (8; 80)g. This forms the id-
list for P 7! AF . To compute the id-list for the new sequence
atom P 7! A 7! F , we need to check for a follows relationship,
i.e., for a given pair (c; t1) in L(P 7! A), we check whether there
exists a pair (c; t2) in L(P 7! F) with the same cid c, but with
t2 > t1. If this is true, it means that the item F follows the item A

for customer c. In other words, the customer c contains the pattern
P 7! A 7! F , and the pair (c; t2) is added to its id-list. Finally,
the id-list for P 7! F 7! A can be obtained in a similar manner
by reversing the roles of P 7! A and P 7! F . The final id-lists
for the three new sequences are shown in Figure 10. Since we only
intersect sequences within a class, which have the same prefix, we
only need to keep track of the last tid for determining the equality
and follows relationships. As a further optimization, we generate
the id-lists of all the three possible new sequences in just one join.

4.4 Pruning Sequences

The pruning algorithm is shown in Figure 11. Let �1 denote the
first item of sequence �. Before generating the id-list for a new
k-sequence �, we check whether all the k subsequences of length
k � 1 are frequent. If they all are frequent then we perform the
id-list intersection. Otherwise, � is dropped from consideration.

Prune (�):
for all (k � 1)-subsequences, � � � do

if ([�1] has been processed, and � 62 Fk�1) then
return TRUE;

return FALSE;

Figure 11: Sequence Pruning

Note that all subsequences except the last are within the current
class. For example consider a sequence � = (D 7! BF 7! A).
The first three subsequences, (D 7! BF), (D 7! B 7! A), and
(D 7! F 7! A) are all lie in the class [D]. However, the last sub-
sequence (BF 7! A) belongs to the class [B]. If [B] has already
been processed then we have complete subsequence information
for pruning. Otherwise, if [B] has not been processed, then we
cannot determine whether (BF 7! A) is frequent or not. Never-
theless, partial pruning based on the members of the same class is
still possible. It is generally better to process the classes in lexico-
graphically descending order, since in this case at least for itemsets
all information is available for pruning. This is because items of
an itemset are kept sorted in increasing order. For example, if we
wanted to test � = ABDF , then we would first check within its
class [A] if ADF is frequent, and since [B] will have been pro-
cessed if we solve the classes in reverse lexicographic order, we
can also check if BDF is frequent.

5 The GSP Algorithm

Below we describe the GSP algorithm [11] in some more detail,
since we use it as a base against which we compare SPADE, and it
is one of the best current algorithms.

F1 = f frequent 1-sequences g;
for (k = 2;Fk�1 6= ;; k = k + 1) do
Ck = Set of candidate k-sequences;
for all customer-sequences E in the database do

Increment count of all � 2 Ck contained in E
Fk = f� 2 Ckj�:sup � min supg;

Set of all frequent sequences =
S
k
Fk;

Figure 12: The GSP Algorithm
GSP makes multiple passes over the database. In the first pass,

all single items (1-sequences) are counted. From the frequent items
a set of candidate 2-sequences are formed. Another pass is made
to gather their support. The frequent 2-sequences are used to gen-
erate the candidate 3-sequences, and this process is repeated until
no more frequent sequences are found. There are two main steps
in GSP, shown in Figure 12 (see [11] for more details). 1) Can-
didate Generation: Given the set of frequent (k � 1)-sequences,
Fk�1, the candidates for the next pass are generated by joining
Fk�1 with itself. A pruning phase eliminates any sequence at least
one of whose subsequences is not frequent. For fast counting, the
candidate sequences are stored in a hash-tree. 2) Support Count-
ing: To find all candidates contained in a customer-sequence E ,
all k-subsequences of E are generated. For each such subsequence
a search is made in the hash-tree. If a candidate in the hash-tree
matches the subsequence, its count is incremented.

6 Experimental Results

In this section we compare the performance of SPADE with the
GSP algorithm. The GSP algorithm was implemented as described
in [11]. For SPADE results are shown only for the BFS search.
Experiments were performed on a 100MHz MIPS processor with
256MB main memory running IRIX 6.2, with non-local 2GB disk.
Synthetic Datasets: The synthetic datasets are the same as those
used in [11], albeit with twice as many customers. We used the
publicly available dataset generation code from the IBM Quest data
mining project [9]. These datasets mimic real-world transactions,

Dataset Size (MB)
C10-T2.5-S4-I1.25-D200K 36.8
C10-T2.5-S4-I1.25-D500K 92.0
C10-T2.5-S4-I1.25-D1000K 184.0
C10-T5-S4-I1.25-D200K 56.5
C10-T5-S4-I2.5-D200K 54.3
C20-T2.5-S4-I1.25-D200K 76.7
C20-T2.5-S4-I2.5-D200K 66.5
C20-T2.5-S8-I1.25-D200K 76.4

Table 1: Synthetic Datasets
where people buy a sequence of sets of items. Some customers
may buy only some items from the sequences, or they may buy
items from multiple sequences. The customer sequence size and
transaction size are clustered around a mean and a few of them
may have many elements. The datasets are generated using the
following process. First NI maximal itemsets of average size I
are generated by choosing from N items. Then NS maximal se-
quences of average size S are created by assigning itemsets from
NI to each sequence. Next a customer of average C transactions
is created, and sequences in NS are assigned to different customer
elements, respecting the average transaction size of T . The gen-
eration stops when D customers have been generated. Like [11]
we set NS = 5000, NI = 25000 and N = 10000. The number
of data-sequences was set to D = 200; 000. Table 1 shows the
datasets with their parameter settings. We refer the reader to [2] for
additional details on the dataset generation.
Plan Dataset: The real-life dataset was obtained from a Natural
Language Planning domain. The planner generates plans for rout-
ing commodities from one city to another. A “customer” corre-
sponds to a plan identifier, while a “transaction” corresponds to an
event in a plan. An event consists of an event identifier, an outcome
(such as “success”, “late”, or “failure”), an action name (such as
“move”, or “load”), and a set of additional parameters specifying
things such as origin, destination, vehicle type (“truck”, or “heli-
copter”), weather conditions, and so on. The data mining goal is
to identify the causes of plan failures. There are 77 items, 202071
plans (customers), and 829236 events (transactions). The average
plan length is 4.1, and the average event length is 7.6.

6.1 Comparison of SPADE with GSP

Figure 13 compares our SPADE algorithm with GSP, on different
synthetic datasets. Each graph shows the results as the minimum
support is changed from 1% to 0.25%. Two sets of experiments
are reported for each value of support. The bar labeled SPADE
corresponds to the case where we computed F2 via the vertical-
to-horizontal transformation method described in Section 4.1. The
times for GSP and SPADE include the cost of computing F2. The
bars labeled SPADE-F2 and GSP-F2 correspond to the case where
F2 was computed in a pre-processing step, and the times shown
don’t include the pre-processing cost.

The figures clearly indicate that the performance gap increases
with decreasing minimum support. SPADE is about twice as fast as
GSP at lower values of support. In addition we see that SPADE-F2
outperforms GSP-F2 by an order of magnitude in most cases. There
are several reasons why SPADE outperforms GSP: 1) SPADE uses
only simple join operation on tid-lists. As the length of the frequent
sequences increases, the size of the tid-lists decreases, resulting in
very fast joins. 2) No complicated hash-tree structure is used, and
no overhead of generating and searching of customer subsequences
is incurred. These structures typically have very poor locality [8].
On the other hand SPADE has excellent locality, since a join re-
quires only a linear scan of two lists. 3) As the minimum support
is lowered, more and larger frequent sequences are found. GSP
makes a complete dataset scan for each iteration. SPADE on the
other hand restricts itself to usually only three scans. It thus cuts
down the I/O costs.

Another conclusion that can be drawn from the SPADE-F2 and
GSP-F2 comparison is that nearly all the benefit of SPADE comes

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

Tim
e (

sec
on

ds)
GSP

SPADE

GSP-F2

SPADE-F2

C10-T5-S4-I1.25-D200K

1 0.75 0.5 0.33

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

1800

Tim
e (

sec
on

ds)

GSP

SPADE

GSP-F2

SPADE-F2

C10-T5-S4-I2.5-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

1800

Tim
e (

sec
on

ds)

GSP

SPADE

GSP-F2

SPADE-F2

C20-T2.5-S4-I2.5-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

500

1000

1500

2000

2500

3000

Tim
e (

sec
on

ds)

GSP

SPADE

GSP-F2

SPADE-F2

C20-T2.5-S8-I1.25-D200K

Figure 13: Performance Comparison: Synthetic Datasets

75 67 50 40

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

Tim
e (

sec
on

ds)

GSP

SPADE

GSP-F2

SPADE-F2

Natural Language Planning

100 200 500 1000

Number of Customers (’000s)

1

2

3

4

5

6

7

8

9

10

11

12

13

Re
lat

ive
 Ti

me

SPADE-0.1%

SPADE-0.25%

SPADE-0.5%

GSP-0.1%

GSP-0.25%

GSP-0.5%

C10-T2.5-S4-I1.25

Figure 14: a) Performance Comparison: Planning Dataset; b) Scale-up: Number of Customers

10 25 50 100

Number of Transactions per Customers

1

2

3

4

5

6

7

8

Re
lati

ve
Tim

e

1000

500

T2.5-S4-I1.25

2.5 5 10 20 25

Transaction Size

1

2

3

4

5

6

Re
lati

ve
Tim

e

1000

500

C10-S4-I1.25

Figure 15: Scale-up: a) # of Transactions/Customer; b) Transaction Size

2 4 6 8 10

Frequent Sequence Length

0

1

2

Re
lati

ve
Tim

e

0.5%

0.25%

0.1%

C10-T2.5-I1.25-D200K

1 2 3 4 5

Frequent Itemset Length

0

1

2

Re
lati

ve
Tim

e

1%

0.5%

0.25%

C10-T5-S4-D200K

Figure 16: Scale-up: a) Frequent Sequence Length; b) Frequent Itemset Length

from the improvement in the running time after the F2 pass since
both algorithms spend roughly the same time in computing F2. Be-
tween F3 and Fk, SPADE outperforms GSP anywhere from a fac-
tor of three to an order of magnitude.

We also compared the performance of the two algorithms on
the plan database. The results are shown in Figure 14 a). As in
the case of synthetic databases, the SPADE algorithm outperforms
GSP by a factor of two.

6.2 Scaleup

Figure 14 b) shows how SPADE scales up as the number of cus-
tomers is increased ten-fold, from 0.1 million to 1 million (the num-
ber of transactions is increased from 1 million to 10 million, respec-
tively). All the experiments were performed on the C10-T2.5-S4-
I1.25 dataset with different minimum support levels ranging from
0.5% to 0.1%. The execution times are normalized with respect to
the time for the 0.1 million customer dataset. It can be observed
that SPADE scales quite linearly.

We next study the scale-up as we increase the dataset param-
eters in two ways: 1) keeping the average number of items per
transaction constant, we increase the average number of transac-
tions per customer; and 2) keeping the average number of trans-
actions per customer constant, we increase the average number of
items per transaction. The size of the datasets is kept nearly con-
stant by ensuring that the product of the average transaction size,
the average number of transactions per customer, and the number
of customers (T � C � D) remains the same. The aim of these ex-
periments is to gauge the scalability with respect to the two test
parameters, and independent of factors like data size or number of
frequent sequences.

Figure 15 shows the scalability results. To ensure that the num-
ber of frequent sequences doesn’t increase by a great amount, we
used an absolute minimum support value instead of using percent-
ages (the graph legends indicate the value used). For both the
graphs, we used S4-I1.25, and the database size was kept a con-
stant at T � C � D = 500K. For the first graph we used T = 2:5,
and varied C from 10 to 100 (D varied from 200K to 20K), and for
the second graph we set C = 10, and varied T from 2.5 to 25 (D
varied from 200K to 20K). It can be easily observed the the algo-
rithm scales linearly with the two varying parameters. The scalabil-
ity is also dependent on the minimum support value used, since for
a lower minimum support relatively more frequent sequences are
generated with increase in both the number of transactions, and the
transaction size, and thus it takes more time for pattern discovery.

We further study the scalability as we change the size of the
maximal elements in two ways: i) keeping all other parameters
constant, we increase the average length of maximal potential fre-
quent sequences; and ii) keeping all other parameters constant, we
increase the average length of maximal potential frequent itemsets.
The constant parameters for the first experiment were C10-T2.5-
I1.25-D200K, and S was varied from 2 to 10. For the second ex-
periment, the constant parameters were C10-T5-S4-D200K, and I
was varied from 1 to 5.

Figure 16 shows how the algorithm scales with the two test pa-
rameters. For higher values of support the time starts to decrease
with increasing maximal element size. This is because of the fact
that the average transaction size and average number of customer
transactions remains fixed, and increasing the maximal frequent
sequence or itemset size means that fewer of these will fit in a
customer-sequence, and thus fewer frequent sequences will be dis-
covered. For lower values of support, however, a larger sequence
will introduce many more subsequences, thus the time starts to in-
crease initially, but then decreases again due to the same reasons
given above. The peak occurs at roughly the median values of C10
(at S6) for the sequences experiment, and of T5 (at I2) for the
itemsets experiment.

7 Conclusions

In this paper we presented SPADE, a new algorithm for fast min-
ing of sequential patterns in large databases. Unlike previous ap-
proaches which make multiple database scans and use complex
hash-tree structures that tend to have sub-optimal locality, SPADE
decomposes the original problem into smaller sub-problems us-
ing equivalence classes on frequent sequences. Not only can each
equivalence class be solved independently, but it is also very likely
that it can be processed in main-memory. Thus SPADE usually
makes only three database scans – one for frequent 1-sequences,
another for frequent 2-sequences, and one more for generating all
frequent k-sequences (k � 3). SPADE uses only simple intersec-
tion operations, and is thus ideally suited for direct integration with
a DBMS. An extensive set of experiments has been conducted to
show that SPADE outperforms the best previous algorithm, GSP,
by a factor of two, and by an order of magnitude with precomputed
support of 2-sequences. It also has excellent scaleup properties
with respect to a number of parameters such as the number of cus-
tomers, the number of transactions per customer, transaction size,
and size of potential maximal frequent itemsets and sequences.

This work opens several research opportunities, which we plan
to address in the future: 1) Implementation of SPADE directly on
top of a DBMS. 2) Parallel discovery of sequences. 3) Discovery
of quantitative sequences – where the quantity of items bought is
also considered. 4) Enumerating generalized sequences using the
SPADE approach – introducing minimum and maximum time gap
constraints, incorporating sliding windows, and imposing a taxon-
omy on the items.

References

[1] R. Agrawal et al. Fast discovery of association rules. In
U. Fayyad, et al (eds.) Advances in KDD, AAAI Press, 1996.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In
11th ICDE Conf., 1995.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[4] K. Hatonen, et al. Knowledge discovery from telecom. net-
work alarm databases. In 12th ICDE Conf., Feb 1996.

[5] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurences. In 2nd Intl. Conf. Knowl-
edge Discovery and Data Mining, 1996.

[6] H. Mannila, H. Toivonen, and I. Verkamo. Discovering fre-
quent episodes in sequences. In 1st Intl. Conf. KDD, 1995.

[7] T. Oates, et al. Algorithms for finding temporal structure in
data. In 6th Intl. Wkshp. AI and Statistics, Mar 1997.

[8] S. Parthasarathy, M. J. Zaki, and W. Li. Memory placement
techniques for parallel association mining. In 4th Intl. Conf.
KDD, Aug 1998.

[9] http://www.almaden.ibm.com/cs/quest/syndata.html. Quest
Project. IBM Almaden Research Center, San Jose, CA 95120.

[10] A. Savasere, et al. An efficient algorithm for mining associa-
tion rules in large databases. In 21st VLDB Conf., 1995.

[11] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In 5th Intl. Conf.
Extending Database Technology, Mar 1996.

[12] M. J. Zaki, et al. PLANMINE: Sequence mining for plan
failures. In 4th Intl. Conf. KDD, Aug 1998.

[13] M. J. Zaki, et al. New algorithms for fast discovery of associ-
ation rules. In 3rd Intl. Conf. KDD, Aug 1997.

